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Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra

Wen-Juan Che,1 Shao-Chun Chen,1 Chong Liu,1,2,3,4,* Li-Chen Zhao,1,3,4,† and Nail Akhmediev 2,‡

1School of Physics, Northwest University, Xi’an 710127, China
2Optical Sciences Group, Department of Fundamental and Theoretical Physics, Research School of Physics,

Australian National University, Canberra, Australian Capital Territory 2600, Australia
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China

4NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China

(Received 25 February 2022; accepted 6 April 2022; published 29 April 2022)

We study the dynamics of Kuznetsov-Ma solitons (KMSs) in the framework of vector nonlinear Schrödinger
(Manakov) equations. An exact multiparameter family of solutions for such KMSs is derived. This family of
solutions includes the known results as well as the previously unknown solutions in the form of nondegenerate
KMSs. We present the existence diagram of such KMSs that follows from the exact solutions. These nondegen-
erate KMSs are formed by nonlinear superposition of two fundamental KMSs that have the same propagation
period but different eigenvalues. We present the amplitude profiles of solutions, their exact physical spectra, and
their link to ordinary vector solitons and offer easy ways for their excitation using numerical simulations.
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I. INTRODUCTION

Oscillating localized structures in a wide variety of con-
servative and dissipative systems known as breathers have
attracted considerable interest in recent decades [1–7]. They
are known in optics [8], hydrodynamics [9], Bose-Einstein
condensates [6], micromechanical arrays [10], and cavity
optomechanics [11]. Breathers play a crucial role in under-
standing various nonlinear coherent phenomena, including
modulation instability [12,13], Fermi-Pasta-Ulam recurrence
[14], rogue wave events [15], supercontinuum generation
[16], and even turbulence [17].

In conservative integrable systems governed by the scalar
nonlinear Schrödinger equation (NLSE), fundamental (first-
order) breathers can be presented in the form of a mul-
tiparameter family of solutions that are periodic both in
time and in space [18,19]. Comprehensive analysis of all
physical effects described by this family is difficult due to
the presence of free parameters in the solution and a large
variety of possibilities [19]. Subdividing the whole family
into particular cases simplifies the task. Among the partic-
ular cases of this general family we can select the class of
breathers on a plane-wave background that are periodic in the
transverse direction [18,19]. These are known as Akhmediev
breathers. Another class of solutions is solitons on a con-
stant background. Due to the beating between the soliton and
the background, these solitons are periodic in the propaga-
tion direction. These are known as Kuznetsov-Ma solitons
(KMSs) [20,21]. As these solitons are periodic, sometimes
they are also dubbed Kuznetsov-Ma breathers. Periods in
each of these subfamilies of solutions are variable parameters.
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When the period in either space or time becomes large, the
common limit of each of these subfamilies is the Peregrine
soliton. It has an infinite breathing period both in time and
in space, thus describing an isolated event such as a rogue
wave. Recent results [22,23] reveal the universal role that the
Peregrine soliton plays in complex dynamics of multisoliton
evolution.

The KMS is oscillating due to the coherent interaction
with a constant background [24,25]. When the amplitude of
the background tends to zero, the period of oscillations in-
creases and in the zero limit the KMS turns into an ordinary
bright soliton [24]. The periodic evolution in propagation of
the KMS has been observed experimentally both in fiber op-
tics [26] and in hydrodynamics [27]. Kuznetsov-Ma solitons
should not be confused with pulsating solitons in dissipative
optical systems [28,29], where the physical reason for soli-
ton oscillations is different. Oscillations can also appear as
a result of beating between several solitons in higher-order
solutions [30–32].

The single NLSE describes the nonlinear dynamics of a
scalar wave field. On the other hand, the nonlinear interac-
tion of two or more coupled wave components is common
in physics. Such interaction is important in optical fibers
[33], in Bose-Einstein condensates [34], and in multidirec-
tional wave dynamics in the open ocean known as crossing
seas [35]. The mathematical model that describes the in-
teraction of two wave components is commonly based on
Manakov equations [36–49]. The interaction between the two
wave components makes the wave dynamics more complex.
One example is the presence of unusual dark and four-petal
structures in such systems [46,47]. Another example is dark
breathers with an infinite period (dark rogue waves). The latter
have been observed experimentally in fiber optics [48,49].
Even when considering common soliton solutions, Manakov
equations admit qualitatively new types of formations such as
nondegenerate solitons [50–53].
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In this work we present theoretical and numerical studies
of KMS dynamics in the model governed by the Manakov
equations. We derive a family of multiparameter vector KMS
solutions. We show that this family contains a nondegenerate
family that has no analogs in the case of scalar KMSs. We
analyze their amplitude profiles and their physical spectra and
using numerical simulations suggest an easy way of excitation
of these solutions. Just as in the scalar case, solitons are the
limiting cases of KMSs in the vector model as well. However,
finding the link between the KMSs and ordinary solitons in
the vector case has been elusive. Here we fill this gap in the
existing knowledge and find the limit of vector KMSs when
they are converted to nondegenerate vector solitons.

II. MANAKOV EQUATIONS, THEIR KMS SOLUTIONS,
AND THE CORRESPONDING SYMMETRIES

The Manakov equations in dimensionless form are given
by [54]

i
∂ψ (1)

∂t
+ 1

2

∂2ψ (1)

∂x2
+ (|ψ (1)|2 + |ψ (2)|2)ψ (1) = 0,

i
∂ψ (2)

∂t
+ 1

2

∂2ψ (2)

∂x2
+ (|ψ (1)|2 + |ψ (2)|2)ψ (2) = 0,

(1)

where ψ (1)(t, x) and ψ (2)(t, x) are the two nonlinearly cou-
pled components of the vector wave field. The physical
meaning of the variables x and t depends on a particular
physical problem of interest. In optics, t is commonly a nor-
malized distance along the fiber, while x is the normalized
time in a frame moving with the group velocity [33]. In the
case of Bose-Einstein condensates, t is time, while x is the
spatial coordinate [34]. The choice of signs for the dispersion
and nonlinear terms in Eqs. (1) corresponds (in optics) to the
self-focusing effect and anomalous dispersion regime.

A fundamental (first-order) solution for vector KMSs [i.e.,
ψ

( j)
1 (t, x)] in compact form obtained using a Darboux trans-

formation scheme is given by

ψ
( j)
1 (t, x) = ρ jψ

( j)
0 (t, x)ψ ( j)

km (t, x), (2)

where ψ
( j)
0 is the background vector plane wave

ψ
( j)
0 = a j exp

{
i
[
β jx + (

a2
1 + a2

2 − 1
2β2

j

)
t
]}

, (3)

with a j the two real amplitudes and β j the wave numbers of
the background waves, and

ρ ( j) = χ̃∗ + β j

χ̃ + β j

√
(χ∗ + β j )(χ̃∗ + β j )

(χ + β j )(χ̃ + β j )
, (4)

ψ
( j)
km = � cosh(� + iδ j ) + cos(� + iγ j )

� cosh � + cos �
, (5)

where

� = α(x + χrt ) + 1

2
ln

(
α + χi

χi

)
, (6)

� = 
t = α
(α

2
+ χi

)
t, (7)

and

χ̃ = χ + iα, (8)

where α is a real parameter. Without loss of generality, we
set α � 0. Subscripts r and i in (6) and (7) denote the real
and imaginary parts of the complex parameter χ, respectively.
The latter is the eigenvalue of the Manakov system (1), which
obeys the relation

1 +
2∑

j=1

a2
j

(χ − β j )(χ̃ − β j )
= 0. (9)

The relation between the eigenvalue and the spectral parame-
ter of the associated Lax pair is given by

λ = χ −
2∑

j=1

a2
j

χ + β j
. (10)

The other parameters in Eq. (5) are

δ j = arg[(χ∗ + β j )(χ + iα + β j )], (11)

γ j = −1

2
ln

[
(χ∗ − iα + β j )(χ + iα + β j )

(χ∗ + β j )(χ + β j )

]
, (12)

� = α + 2χi

2α + 2χi

√
α + χi

χi
. (13)

From here, one can readily confirm that |ρ ( j)| = 1. The solu-
tion (2) depends on the background parameters aj and β j and
the real parameter α.

From a physical perspective, an important parameter is the
relative wave number β1 − β2, since it cannot be eliminated
through Galilean transformation. Indeed, when β1 = β2, for
any eigenvalue given by Eq. (9), ψ

(1)
1 is merely proportional

to ψ
(2)
1 , i.e., ψ

(1)
1 /ψ

(2)
1 = a1/a2. The solution (2) contains the

trivial vector generalization of the scalar KMS solution which
has been found in [55]. Our solution is far from being a simple
rotation on a (ψ (1), ψ (2) ) plane. As it will be shown below,
it has nontrivial properties of vector KMSs once β1 �= β2.
Without loss of generality, we can set β1 = −β2 = β �= 0.

Physically, the solution (2) describes solitons located on
top of plane-wave backgrounds (3). Such solitons are local-
ized in x (the width is ∼1/α) and they propagate along t
with the group velocity Vg = −χr . Due to the beating with
the background, the amplitude of the soliton oscillates peri-
odically along the t axis. In the limiting case of the infinite
period, which implies α → 0, the solution (2) is transformed
into the vector rogue wave.

The solution (2) has two symmetries. The first one is the
symmetry of the solution (2) relative to the sign change of β

and simultaneous exchange of the wave component. When the
background amplitudes are equal a1 = a2 = a, this means

ψ
(1)
1 (β ) = ψ

(2)
1 (−β ), β �= 0. (14)

The second symmetry of the vector solution is more com-
plicated. Namely, if χi ⇒ −χi − α, then

ψ ( j){(x, t ); χi} = ψ ( j){(x + �x, t + �t ); −χi − α}e(−ir j ),

(15)

where x′ = x + �x and t ′ = t + �t , with �x and �t fixed
constant shifts along the x and t axes, respectively, and r j are
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constant phases. The shifts are given by

�x = − 1

α

(
4πχr

α + 2χi
+ ln

[
α + χi

χi

])
, (16)

�t = 4π

α2 + 2αχi
, r j = 2 arg (ρ ( j) ). (17)

The symmetry (15) means that the vector KMSs have periodic
amplitude profiles:∣∣ψ ( j)

1 [(x, t ); χi]
∣∣ = ∣∣ψ ( j)

1 [(x′, t ′); −χi − α]
∣∣. (18)

The symmetries (14) and (15) serve as a basis for revealing
the richness of KMS properties found below.

The form of the KMS solution (2) has an important ad-
vantage. It can be analyzed using the Hessian matrix theory
[46,47]. In order to do that, we introduce the derivatives
|ψ ( j)

km |� and |ψ ( j)
km |�. Then the zero derivatives |ψ ( j)

km |� = 0 and
|ψ ( j)

km |� = 0 define the special points in each cell of t-periodic
pattern of the KMS. One of them (at the center) is given by
(�,�) = (0, π ). The type of these points can be revealed
using the Hessian matrix

H ( j) =
(∣∣ψ ( j)

km

∣∣
��

∣∣ψ ( j)
km

∣∣
��∣∣ψ ( j)

km

∣∣
��

∣∣ψ ( j)
km

∣∣
��

)
. (19)

Three distinctive cases which correspond to three different
types of KMS can be identified from this analysis. We call
them bright, four-petal, and dark solitons. They are shown in
Fig. 1.

(a) When det(H ( j) ) > 0 and |ψ ( j)
km |2�� < 0, the Hessian is a

negative-definite matrix. This implies that the special point is
a maximum. The two components ψ

( j)
1 (t, x) of the solution in

this case have classical bright structure. This case is shown in
Fig. 1(a). The point of maximal compression in the periodic
soliton evolution has a high bump and two small dips on each
side of it.

(b) When det(H ( j) ) < 0, the Hessian is an indefinite ma-
trix. The center of each period in this case is a saddle point.
The two components of the soliton profile are shown in
Fig. 1(b). Here the pattern of the second component ψ

(2)
1 (t, x)

can be called a four-petal structure. Namely, each period has
two bumps and two dips symmetrically located around the
center.

(c) When det(H ( j) ) > 0 and |ψ ( j)
km |2�� > 0, the Hessian is

a positive-definite matrix. In this case, the second component
ψ

(2)
1 (t, x) is a periodic repetition of dark structures as can be

seen in Fig. 1(c). The central point in each cell is a minimum.
It is surrounded by two small bumps on the sides.

III. EXACT ANALYTIC SPECTRA OF THE KMS

Commonly measured characteristics of solitons and
breathers are their physical spectra. They are often measured
experimentally in optics and hydrodynamics. One example
is the Akhmediev breathers (ABs). The AB spectra can be
calculated in analytic form [12]. These spectra are discrete and
have an infinite number of sidebands decaying in a geometric
progression [12]. Recent experimental observation of more
than ten spectral sidebands in an optical fiber [56] confirmed
the theoretical predictions. In contrast to the ABs, which are
periodic in the transverse variable and therefore have discrete

FIG. 1. Amplitude profiles of the two components of the vector
KMS |ψ ( j)

1 (t, x)| for three different relative background wave num-
bers producing qualitatively different wave patterns: (a) β = 0.3, (b)
β = 0.6, and (c) β = 1. The other parameters are a = 1 and α = 2.
All variables in this plot and the plots below are dimensionless in
accordance with the choice of units in Eq. (1) and in the following
equations

spectra, the spectra of the KMS are continuous. They can be
calculated using the Fourier transform

A( j)
ω (ω, t ) = 1

2π

∫ ∞

−∞
ψ ( j)(t, x)e−iωxdx. (20)

However, finding the exact analytic KMS spectra is far from
being a trivial task due to the symmetry breaking of the Man-
akov system. In our previous works [13,47], we gave some
examples of asymmetric discrete spectra in analytic form.
Here we present calculations of the exact analytic continuous
spectra of the vector KMS (2).

Let us first rewrite the solution (2) in the form

ψ ( j) = ψ
( j)
0 ρ ( j)[1 + ψa(x, t )], (21)

where the new function ψa(x, t ) is given by

ψa(x, t ) = B1(t ) + B2(t )eαx + B3(t )e−αx

D1(t ) + D2(t )eαx + D3(t )e−αx
, (22)

with

B1(t ) = eγ j−i� + e−γ j+i� − ei� − e−i�,

B2(t ) = � (e�−αx − e�−αx+iδ j ),

B3(t ) = � (e−(�−αx) − e−(�−αx)+iδ j ),

D1(t ) = ei� + e−i�,

D2(t ) = �e�−αx, D3(t ) = �e−(�−αx).
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The essential part of the integral (20) is the Dirac delta func-
tion δ(ω − β j ) caused by the presence of the background ψ

( j)
0 .

We will omit it in further calculations. The nontrivial part of
the integral (20) is

I = 1

2π

∫ ∞

−∞
ψa(x, t )e−iωxdx. (23)

The integral in (23) can be calculated analytically using a
residue theorem, namely, I = 2π iR, where R is the residue
of the corresponding singularity of ψa in x. The function ψa

has two singularities at the points x1 and x2 which are given
by

x1 = 1

α
ln

[
1

2D2

( − D1 −
√
D2

1 − 4D2D3
)]

, (24)

x2 = 1

α
ln

[
1

2D2

( − D1 +
√
D2

1 − 4D2D3
)]

. (25)

The explicit expressions for the corresponding residues Rx1

and Rx2 at x = x1 and x = x2 are given by

Rx1 = 1

2παD2X

( H + P
D1 + X

)
e−iωx1 , (26)

Rx2 = 1

2παD2X

( H − P
D1 − X

)
e−iωx2 , (27)

where

X =
√
D2

1 − 4D2D3,

H = (D1B2 − D2B1)X ,

P = D1(D1B2 − D2B1) + 2D2(D2B3 − D3B2).

The point x1 is located on the lower complex plane, while
the point x2 is on the upper complex plane. This means that
I = 2π iRx1 when ω > 0, while I = 2π iRx2 when ω < 0.
Thus, the exact analytic expressions of the KMS spectra can
be written as

A( j)
ω (ω, t ) = i

H + P
αD2X (D1 + X 2)

e−iωx1 , ω > 0,

A( j)
ω (ω, t ) = i

H − P
αD2X (D1 − X 2)

e−iωx2 , ω < 0.

(28)

Figure 2(a) shows the spectral evolution of the vector
bright-dark KMS given by Eqs. (28) with ω′ = ω − β j .
The spectra correspond to the amplitude profiles shown in
Fig. 1(c). In each component, the spectrum is periodic along
the t axis just like the KMS itself. The spectra are widest at
the points of the maximal self-compression of the soliton. We
have compared the exact spectra with the numerical results
obtained by the numerical integration for the wave fields fac-
tored by a super-Gaussian function. As shown in Fig. 2(b), the
spectral profiles are very close to each other.

IV. EIGENVALUE ANALYSIS, KMS EXISTENCE
DIAGRAMS, AND CRITICAL RELATIVE WAVE NUMBER

All examples shown in Fig. 1 correspond to the solu-
tion (2) with a single eigenvalue (i.e., χ1). However, Eq. (9)
admits multiple roots. The presence of several eigenvalues
adds different physics to the KMS in a Manakov system. For

FIG. 2. (a) Evolution of the two spectral components |A( j)
ω (ω, t )|

of vector KMSs given by Eqs. (28) when ω′ = ω − β j . These spectra
correspond to the KMS solution shown in Fig. 1(c). (b) Comparison
of numerical (solid curves) and exact (dotted curves) data at the point
of the widest spectra (t ≈ 1).

simplicity, we consider only the case of equal background
amplitudes a1 = a2 = a. Then there are four eigenvalues

χ1 = − i

2
α −

√
κ − √

η, χ2 = − i

2
α +

√
κ − √

η,

χ3 = − i

2
α −

√
κ + √

η, χ4 = − i

2
α +

√
κ + √

η,

(29)

where

κ = β2 − a2 − α2

4
,

η = a4 − 4a2β2 − α2β2.

Naturally, the solution (2) with either of the eigenvalues (29)
satisfies the Manakov system (1). However, not all four so-
lutions are realistic. Figure 3 shows the regions of existence
of four-vector KMSs with different eigenvalues on the (α, β )
plane. The pink, yellow, and cyan areas on these plots cor-
respond to dark, four-petal, and bright KMSs, respectively.
These are defined by Eq. (19) as described above. The dashed
and solid curves separate the regions of different types of
solitons. The solid curves are found analytically, while the
dashed curves are calculated numerically.

The analytic expressions for the solid curves can be ob-
tained directly from Eq. (29) using the condition η = 0. These
are given by

β2 = β2
c = a4

4a2 + α2
. (30)

This equation defines the critical relative wave number that
plays a key role in the properties of the vector KMS. It is
represented by two solid lines in Fig. 3. Namely, the KMSs
are different in the regions β2 � β2

c and β2 > β2
c .
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FIG. 3. Existence diagrams of vector KMSs with four eigenval-
ues (29) in the (α, β ) plane. In all panels, cyan, yellow, and gray
areas denote the bright, dark, and four-petal KMSs, respectively. The
two solid lines in each panel represent the critical condition (30). For
(a) χ1 and (b) χ2, KMSs are degenerate in the regions within these
two lines (β2 � β2

c ). The KMSs outside these areas β2 > β2
c are

nondegenerate. For (c) χ3 and (d) χ4, beating solitons are obtained
in the regions β2 � β2

c . Outside these areas, KMSs are the same as
those in the cases for χ1 and χ2.

A. The KMS in the case β2 � β2
c

When β2 � β2
c , the eigenvalues (29) and the corresponding

Lax spectral parameters are purely imaginary. This means that
the wave propagates along t with the vanishing group velocity
Vg = 0. Moreover, we have

χ1i + χ2i = −α, (31)

χ3i + χ4i = −α. (32)

These relations satisfy the symmetry (15):∣∣ψ ( j)
1 [(x, t ); χ1]

∣∣ = ∣∣ψ ( j)
1 [(x′, t ′); χ2]

∣∣, (33)∣∣ψ ( j)
1 [(x, t ); χ3]

∣∣ = ∣∣ψ ( j)
1 [(x′, t ′); χ4]

∣∣. (34)

This indicates that {ψ ( j)
1 (χ1), ψ ( j)

1 (χ2)} or
{ψ ( j)

1 (χ3), ψ ( j)
1 (χ4)} have the same amplitude profiles.

The only difference between them is the trivial shifts in x
and t equal to �x and �t . Figures 4(a) and 4(b) confirm this.
These figures also show that the two upper profiles |ψ ( j)

1 (χ1)|
and |ψ ( j)

1 (χ2)| are the conventional bright KMS structures,
while the profiles |ψ ( j)

1 (χ3)| and |ψ ( j)
1 (χ4)| are the four-petal

ones.
Importantly, when β2 � β2

c , the solutions ψ
( j)
1 (χ3) and

ψ
( j)
1 (χ4) are not KMSs which are formed by the interaction

between solitons and plane waves. In order to elucidate this
point, let us consider the limit β → 0. When the Manakov
system (1) decouples at β → 0, only solutions ψ

( j)
1 (χ1) and

ψ
( j)
1 (χ2) become scalar (bright) KMSs [see Fig. 4(a)]. In the

FIG. 4. Amplitude profiles of |ψ (1)
1 | in the region β2 � β2

c with
different eigenvalues (29). The parameters are a = 1, α = 2, and β =
0.1.

limit β = 0 we have

ψ
(1)
1 = ψ

(2)
1 for χ1,χ2. (35)

The relation (35) is the reduction of the vector solution to the
scalar KMS. Figure 5(a) shows the amplitude profiles of the
decoupled KMSs when the eigenvalue χ1 is chosen. We can
see that this solution is a scalar KMS.

FIG. 5. Amplitude profiles |ψ ( j)
1 | and the total intensity distribu-

tions ψw =
√

|ψ (1)
1 |2 + |ψ (2)

1 |2 when β = 0 with the eigenvalues (a)
χ1 and (b) χ3. The other parameters are the same as in Fig. 4.
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On the other hand, the solutions ψ
( j)
1 (χ3) and ψ

( j)
1 (χ4)

have the four-petal amplitude patterns when β2 � β2
c . Such

solutions cannot be reduced to the scalar ones in the limit
β = 0:

ψ
(1)
1 �= ψ

(2)
1 for χ3,χ4. (36)

In this limit, the solutions ψ
( j)
1 (χ3) and ψ

( j)
1 (χ4) have the

form

ψ
( j)
1 (χ3) = ψ

( j)
0 (ψDS ∓ ψBS ), (37)

ψ
( j)
1 (χ4) = ψ

( j)
0 (ψ̃DS ∓ ψ̃BS ), (38)

where

ψ̃DS = ψDS (−x), ψ̃BS = −ψBS (−x) (39)

and

ψDS = − (4a2 + α2) sinh(αx) + α2 cosh(αx)

(4a2 + α2) cosh(αx) + α2 sinh(αx)
, (40)

ψBS = 2(2a2 + α2) exp ( 1
2 iα2t )

(4a2 + α2) cosh(αx) + α2 sinh(αx)
. (41)

These solutions can be considered as linear superpo-
sitions of the dark and bright solitons (ψDS , ψBS , ψ̃DS ,
and ψ̃BS). These are different from the multisoliton com-
plexes, which are the nonlinear superpositions of several
fundamental solitons [57,58]. Figure 5(b) gives an example
showing that such a solution is the result of the beating ef-
fect of vector solitons with the oscillation frequency α2/2

along the t axis. The total intensity ψw =
√

|ψ (1)
1 |2 + |ψ (2)

1 |2
shows an antidark soliton profile. Similar solutions can
be obtained by SU(2) rotations of vector dark-bright
solitons [59–61].

Thus, the solutions ψ
( j)
1 (χ3) and ψ

( j)
1 (χ4) are vector soli-

tons in the region β2 � β2
c which can be interpreted as the

result of linear interference between the dark and bright soli-
tons. Only the solutions ψ

( j)
1 (χ1) and ψ

( j)
1 (χ2) are KMSs

which are formed by the interaction between solitons and
plane waves when β2 � β2

c . Moreover, for any fixed set of
parameters (a, β, and α), the solutions ψ

( j)
1 (χ1) and ψ

( j)
1 (χ2)

are degenerate KMBs.

B. Nondegenerate KMSs in the case β2 > β2
c

In the case β2 > β2
c , all four eigenvalues are valid and

satisfy the relations

χ1i + χ3i = −α, χ2i + χ4i = −α, (42)

χ1r = χ3r = −χ2r = −χ4r . (43)

The symmetry (15) leads to∣∣ψ ( j)
1 [(x, t ); χ1]

∣∣ = ∣∣ψ ( j)
1 [(x′, t ′); χ3]

∣∣, (44)∣∣ψ ( j)
1 [(x, t ); χ2]

∣∣ = ∣∣ψ ( j)
1 [(x′, t ′); χ4]

∣∣, (45)

but ∣∣ψ ( j)
1 [(x, t ); χ1]

∣∣ �= ∣∣ψ ( j)
1 [(x, t ); χ2]

∣∣. (46)

FIG. 6. Amplitude profiles of the vector KMSs |ψ ( j)
1 | with the

eigenvalues (a) χ1 and (b) χ2, in the region β2 > β2
c . The parameters

are the same as in Fig. 4, except for β = 3.

It follows, from Eqs. (44)–(46), that for any fixed set of param-
eters (a, β, and α) there are only two different types of vector
KMSs in the region β2 > β2

c . Such complexity of KMSs is
absent in the scalar case.

Figure 6 shows the wave profiles of KMSs ψ ( j)(χ1) and
ψ ( j)(χ2) in the region β2 > β2

c . The first solution is a bright-
dark soliton pair shown in Fig. 6(a). It is propagating to the
right with the group velocity Vg = −χr according to Eq. (43).
The second solution is dark-bright soliton pair shown in
Fig. 6(b). It is propagating to the left with the same group
velocity Vg = −χr . They have the same period 
/2π along t
and the same width (∼1/α) along x.

V. MULTIPLE KMSS IN THE REGION β2 > β2
c

Each of the vector KMSs can be part of the nonlinear
superposition of more complex solutions. The superposition
of several KMSs can be constructed via the Darboux trans-
formation as shown in the Appendices. In the NLSE case,
such superpositions have been constructed in [62]. Here we
concentrate on the solutions which do not have analogs in the
scalar NLSE case. Namely, we consider the multiple KMSs in
the region β2 > β2

c corresponding to the eigenvalues χ1 and
χ2 given by Eq. (29).

Figure 7 shows the interaction of the two KMSs shown in
Fig. 6 positioned on the same plane-wave background. The
two KMSs propagate with opposite group velocities inter-
acting at the time t = 0. An interesting finding is that such
interaction do not induce any amplitude enhancement at the
point of the intersection. The two solitons pass through each
other without visible mutual influence when crossing each
other. This is in sharp contrast to the interaction between the
scalar KMSs [62].

The comparison of the amplitude profiles of a single
soliton and the two-soliton solution at t = 0 in Fig. 7(b)
shows their complete overlapping. On the other hand, the
phase jump of the two-soliton interaction at t = 0 shown in
the lower part of Fig. 7(b) is a simple sum of the phase
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FIG. 7. (a) Amplitude profiles of the second-order KMSs |ψ ( j)
2 |.

The plot shows the interaction of the two fundamental solitons
in Fig. 6 placed on the same background. (b) Comparison of the
amplitude (upper plots) and phase (lower plots) profiles of the
second-order and the first-order solutions at t = 0. The parameters
are the same as in Fig. 6.

of each KMS shown in Fig. 6. The amplitude and phase
profiles shown in Fig. 7(b) may serve as the initial con-
ditions for the excitation of such a solution in numerical
simulations.

More possibilities can be realized when we consider the
second-order KMS solution corresponding to the eigenvalues
χ1 and χ2 with different α in the region β2 > β2

c . Figure 8
shows the fourth-order KMS formed by two pairs of vec-
tor fundamental solitons corresponding to the eigenvalues
χ1 and χ2 with α = 2 and 2.1. The plot shows two pairs
of bright-dark KMSs in each of the ψ (1) and ψ (2) wave
components. The group velocities of each pair of KMSs are
opposite, leading to the collision of the group of the KMSs at
t = 0.

FIG. 8. Amplitude profiles (a) |ψ (1)
4 | and (b) |ψ (2)

4 | of the
fourth-order solution that involves four intersecting KMSs with the
eigenvalues χ1 and χ2 given by Eq. (29) and α = 2 and 2.1, respec-
tively. The other parameters are the same as in Fig. 7.

FIG. 9. Numerical simulations starting from (a) the exact initial
condition (2) at t = 0 and (b) an approximation (47). The parameter
β is chosen in the region β2 � β2

c . (c) Amplitude profiles of the
exact (red solid curve) and approximate (black dashed curve) initial
conditions. (d) Phase profiles of the same initial conditions.

VI. NUMERICAL SIMULATIONS

From an experimental point of view, an important question
is what type of initial conditions can create the vector KMS
that we have derived above. Clearly, our exact solution (2)
provides an ideal initial condition at any given t . A conve-
nient choice is t = 0. Then, if we use ψ ( j)(x, t = 0) as the
initial condition, both degenerate or nondegenerate KMSs can
be excited. Another possibility is to use approximations that
are relatively close to the exact solution. Below we used the
expression

ψ ( j) = ψ
( j)
0 [1 + L( j)(x/w)], (47)

where the localized perturbation L( j)(x/w) is either the
sech or Gaussian function with w its width. Without loss of
generality, we use a Gaussian function

L( j) = s( j) exp(−x2/w2) exp(iθ ), (48)

where s( j) and θ are the amplitudes and the phase, respec-
tively. We choose the width of the localized perturbation w

close to that of our exact solutions, w ∼ 1/α.
Figure 9 depicts numerical simulations of the KMS in the

first component ψ (1) that started with the exact initial condi-
tions given by the solution (2) [Fig. 9(a)] and the approximate
initial condition (47) [Fig. 9(b)]. Simulations are done for the
region β2 � β2

c . The amplitude profiles shown in Fig. 9(c) are
similar in each case. However, the phase profiles shown in
Fig. 9(d) are different.

The fundamental KMS in each case is excited initially.
However, the background is unstable and modulations around
the KMS appear soon after the propagation starts. The latter
is known as the automodulation that appears spontaneously
from a localized initial modulation [63–65]. Such additional
modulation has been observed also in the case of the scalar
NLSE [66]. This means that the clean observation of the KMS
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FIG. 10. Numerical simulations starting from (a) the exact initial
condition (2) at t = 0 and (b) an approximation (47). The parameter
β is chosen in the region β2 > β2

c . (c) Amplitude profiles of the
exact (red solid curve) and approximate (black dashed curve) initial
conditions. (d) Phase profiles of the same initial conditions.

in experiments would be difficult. The experimental observa-
tions of the scalar KMS in an optical fiber are based on purely
periodic modulation [26]. Such a technique may prevent the
appearance of the automodulation patterns.

Next we consider numerical simulations of the KMS in the
region β2 > β2

c . The exact and approximate initial conditions
that we use here are the same as in Fig. 9. The results of
numerical simulations of the KMS in this case are shown in
Figs. 10(a) and 10(b). In each case, instead of one KMS, two
KMSs propagating with opposite group velocities are excited.
Numerical simulations in Fig. 10(a) started with the exact
initial condition show very good agreement with the exact
results presented in Fig. 7(a). Remarkably, the automodulation
in this case is very weak and can be seen only after four
KMS periods of propagation. Approximate initial conditions,
on the contrary, lead to the quick appearance of the modu-
lation pattern, as can be seen in Fig. 10(b). This means that
accurate initial conditions provide a better way of excitation
of nondegenerate KMSs in experiments.

VII. TRANSFORMATION OF THE VECTOR KMS TO AN
ORDINARY SOLITON

In the NLSE case, the KMS becomes a standard bright
soliton at the zero amplitude of the background wave [24]. A
similar transformation occurs in the case of the vector KMS.
This can be demonstrated directly using the exact solution (2)
by adjusting the corresponding parameters. Below we estab-
lish the link between the vector KMS and an ordinary soliton
by considering the condition of degeneracy of the eigenval-
ues. Indeed, the ordinary soliton formation can be extracted
from the analysis of the eigenvalues (9). Alternatively, the
plain soliton solutions can be independently derived using the
Darboux transformation. The details are given in Appendix B.

For solitons of the Manakov system (1), there are two
backgrounds. Therefore, the two cases can be considered sep-
arately. These are (i) a1 = a2 = 0 and (ii) a1 �= 0 and a2 = 0.
We will show that in case (i), the vector KMS is reduced to
a nondegenerate bright soliton with opposite velocities of the
two components. However, case (ii) reveals a qualitatively dif-
ferent type of nondegenerate localized waves. Let us consider
these two cases in detail.

A. Nondegenerate bright solitons with a1 = a2 = 0

From Eq. (10) we can see that the spectral parameter is

λ = χ. (49)

The resulting eigenvalues (29) are

χ1 = −β, χ2 = −iα + β,

χ4 = +β, χ3 = −iα − β.
(50)

Among them, only the complex eigenvalues χ2 and χ3 are
valid. Each of these two eigenvalues leads to the fundamental
vector bright soliton.

However, a nontrivial finding is that the second-order so-
lution with the same eigenvalues χ2 and χ3 is a different
family of nondegenerate bright solitons. The derivation of
these solutions is presented in Appendix B 1. The final result
is

ψ
( j)
2 = T [(α + 2iβ ) cosh(κ j ) − α sinh(κ j )]eiφ j

G cosh(2αβt ) + N cosh(2αx) − α2 sinh(2αx)
,

(51)

where the values κ j and φ j are given by

κ j = α(x ± βt ), φ j = 1
2 (β2 − α2)t ± βx

and the coefficients T , G, and N are

T = 2α(iα + β ), G = 2(α2 + β2), N = α2 + 2β2.

Figure 11(a) shows the amplitude profiles of the nondegen-
erate vector solitons given by Eq. (51). The distinctive feature
of this solution is that there is only one soliton in each wave
component. However, solitons in different wave components
have opposite group velocities. This can also be seen from the
expression for κ j in (51).

A more detailed comparison of the second-order soliton
solution with a limiting case of the second-order KMS is
provided in Fig. 11. Figure 11(a) shows the nondegenerate
second-order soliton solution, while Fig. 11(b) shows the
second-order KMS solution in the limiting case of a1 → 0 and
a2 → 0. This is the same solution as in Fig. 7 but in the limit
of zero background. As expected, the plots in Figs. 11(a) and
11(b) are identical. A comparison of the soliton profiles at the
point t = 0 confirms additionally that the two second-order
solutions have the same profiles. Interestingly, there is no
visible interaction between the two solitons.

More complex patterns can be revealed from the fourth-
order solutions derived in Appendix B 1. Figure 12(a) displays
the two wave components of the fourth-order soliton solu-
tion with the eigenvalues χ2 and χ3 where α = 2 and 2.1,
respectively. These patterns show the interaction between the
nondegenerate solitons. However, only two solitons interact
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FIG. 11. (a) Amplitude profiles of nondegenerate solitons given
by Eq. (51), with β = 3 and α = 2. (b) Amplitude profiles of non-
degenerate KMSs in the limiting case a1 = a2 = a → 0. We use
a = 10−4 in the solutions shown in Fig. 7. (c) Comparison of the
soliton profiles shown in (a) and (b) at t = 0.

with each other in each wave component. Again, there is no
interaction between different wave components, although the
two pairs of solitons have opposite velocities and collide at the
point t = 0.

The same fourth-order soliton solution can be obtained as
the limiting case of the fourth-order KMS solution shown
in Fig. 8 but when a1 → 0 and a2 → 0. This solution is
shown in Fig. 12(b). The two fourth-order solutions shown
in Figs. 12(a) and 12(b) are identical. This can also be seen
from the comparison of the soliton profiles at t = 0 shown in
Fig. 12(c).

B. Nondegenerate localized waves with a1 �= 0 and a2 = 0

When a1 �= 0 and a2 = 0, the spectral parameter defined
by Eq. (10) is

λ = χ − a2
1

χ + β1
. (52)

The corresponding eigenvalues χ are obtained explicitly from
Eq. (9):

χ1 = −β1 − i

2
α + i

2

√
4a2

1 + α2, χ2 = −β2 − iα,

χ3 = −β1 − i

2
α − i

2

√
4a2

1 + α2, χ4 = −β2. (53)

Here the three complex eigenvalues χ1, χ2, and χ3 are valid.

FIG. 12. (a) Amplitude profiles of nondegenerate fourth-order
solutions given by Eqs. (B3) and (B4), with β = 3, α = 2, and α =
2.1. (b) Amplitude profiles of the two second-order nondegenerate
KMSs. These are limiting cases of the solutions shown in Fig. 8
when a1 = a2 = a → 0. In order to avoid numerical artifacts, we
use a1 = a2 = 10−4. (c) Comparison of the wave profiles shown in
(a) and (b) at the point t = 0.

The use of only χ1 or χ3 as the eigenvalue in the first step
of Darboux transformation leads to a bright KMS in the ψ (1)

wave component and a zero solution in ψ (2). This solution is
given by Eq. (B15). It is the KMS solution of the nonlinear
Schrödingier equation. As

χ1i + χ3i = −α, χ1r = χ3r . (54)

the use of either of χ1 or χ3 leads to the same result. On the
other hand, the use of χ2 as the eigenvalue in the first step
of Darboux transformation results in the exact solution in the
form of the vector dark-bright soliton.

The second step of the Darboux transformation with the
use of the eigenvalues χ1 (or χ3) and χ2 results in more
complex vector localized waves. The corresponding exact
solutions are presented in Appendix B 2. Figure 13 shows
examples of amplitude profiles of these solutions for par-
ticular values of β and α. Figure 13(a) corresponds to the
KMS in the first wave component and a bright soliton in the
second component moving with the opposite group velocity.
The same solution can be obtained from the one shown in
Fig. 7 in the limit a2 → 0. The corresponding amplitude pro-
file is shown in Fig. 13(b). Naturally, the profiles shown in
Figs. 13(a) and 13(b) are identical. More evidence comes from
the comparison of the wave profiles of the solutions shown in
Figs. 13(a) and 13(b) at t = 0. This is shown in Fig. 13(c).
The two profiles completely overlap.
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FIG. 13. (a) Amplitude profiles of nondegenerate solitons given
by Eq. (51), with β = 3 and α = 2. (b) Amplitude profiles of non-
degenerate KMSs in the limiting case of a1 = 1 and a2 → 0 (we use
here a2 = 10−4). This is a limiting case of the KMS shown in Fig. 7.
(c) Comparison of the profiles shown in (a) and (b) at t = 0.

The wave profile shown in Fig. 13(c) can be used as the
initial condition for the excitation of nondegenerate waves.
Such simulations will provide an independent way of proving
the validity of solutions. Figure 14 shows the results of the
simulations. As we can see from this figure, the nondegenerate
waves are well reproduced. Namely, the results are basically
the same as shown in Figs. 13(a) and 13(b). The KMS is
excited in the first component, while the bright soliton with the
opposite group velocity is excited in the second component.

VIII. CONCLUSION

We have presented theoretical and numerical studies of
vector KMSs for the Manakov equations. We derived a gen-

FIG. 14. Numerical simulations of nondegenerate waves starting
with the initial condition shown in Fig. 13(c) with a2 = 0. (a) and (b)
are the two components of the field.

eral family of exact vector KMS solutions of the first and
higher (up to the fourth) orders that cannot be reduced to
the solutions of the scalar NLSE. Solutions that we derived
can be useful for experimental works in optics, hydrodynam-
ics, and cold-atom physics. One of our nontrivial findings is
the prediction of a different class of nondegenerate KMSs.
They appear as higher-order solutions of the Manakov equa-
tions that form a nonlinear superposition of fundamental
KMSs. We provided the amplitude profiles for such solutions
and their physical spectra and confirmed our exact solutions
by numerical simulations. We also considered the limiting
case of zero background when the KMS is reduced to ordinary
soliton solutions. This way, we found two different families of
nondegenerate solitons.
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APPENDIX A: VECTOR KMS SOLUTIONS

We represent Eqs. (1) as the condition of compatibility of
two linear equations with 3 × 3 matrix operators

�x = U�, �t = V�, (A1)

where � = (R, S,W )T (T means a matrix transpose) and

U = i

⎛
⎝ λ ψ (1)∗ ψ (2)∗

ψ (1) 0 0
ψ (2) 0 0

⎞
⎠, (A2)

V = i
U2

2
+ i

⎛
⎝a2 + λ2 ψ (1)∗λ ψ (2)∗λ

ψ (1)λ a2 + |ψ (1)|2 ψ (1)ψ (2)∗

ψ (2)λ ψ (1)∗ψ (2) a2 + |ψ (2)|2

⎞
⎠,

(A3)

where the asterisk denotes the complex conjugate, λ is the
spectral parameter, and a2 = a2

1 + a2
2. The Manakov system

(1) is equivalent to the compatibility condition

Ut − Vx + [U, V] = 0. (A4)

In order to obtain the fundamental (first-order) vector KMS
solution, we start with the vector plane wave (3) ψ

( j)
0 as

the seed solution. The corresponding spectral parameter λ[1]

should satisfy the relation (10). The related eigenfunctions
(R[1], S[1],W[1] ) are given by

R[1] = ϕ[1] + ϕ̃[1], (A5)

S[1] = ψ
(1)
0

(
ϕ[1]

β1 + χ[1]
+ ϕ̃[1]

β1 + χ̃[1]

)
, (A6)

W[1] = ψ
(2)
0

(
ϕ[1]

β2 + χ[1]
+ ϕ̃[1]

β2 + χ̃[1]

)
, (A7)

where χ̃[1] = χ[1] + iα, with χ[1] one of the complex roots of
Eq. (9). As mentioned above, the choice of χ[1] is not arbitrary.
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For the case β2 � β2
c shown in Sec. IV, we have to use χ[1] =

χ1 or χ[1] = χ2. Moreover,

ϕ[1] = exp
[
iχ[1]

(
x + 1

2χ[1]t
)]

, (A8)

ϕ̃[1] = exp
[
iχ̃[1]

(
x + 1

2 χ̃[1]t
)]

. (A9)

The fundamental KMS solution is then obtained through the
first step of the Darboux transformation:

ψ
(1)
1 = ψ

(1)
0 + (λ∗

[1] − λ[1] )R∗
[1]S[1]

|R[1]|2 + |S[1]|2 + |W[1]|2 ,

ψ
(2)
1 = ψ

(2)
0 + (λ∗

[1] − λ[1] )R∗
[1]W[1]

|R[1]|2 + |S[1]|2 + |W[1]|2 .

(A10)

Equations (A10) lead directly to Eq. (2).
Higher-order KMS solutions can be obtained via the it-

eration of a Darboux transformation from the fundamental
KMS solution (A10). An alternative technique is based on
a Bäcklund transformation [46]. After performing the trans-
formation, we obtain the general determinant form of the
N th-order KMS solution

ψ
( j)
N = ψ

( j)
0

det(Mj )

det(M )
, (A11)

Mj = (
m( j)

[k1],[k2]

)
1�k1,k2�N , (A12)

M = (m[k1],[k2])1�k1,k2�N , (A13)

where

m[k1],[k2] = ϕ[k1] + ϕ∗
[k2]

χ∗
[k2] − χ[k1]

+ ϕ̃[k1] + ϕ̃∗
[k2]

χ̃∗
[k2] − χ̃[k1]

+ ϕ[k1] + ϕ̃∗
[k2]

χ̃∗
[k2] − χ[k1]

+ ϕ̃[k1] + ϕ∗
[k2]

χ∗
[k2] − χ̃[k1]

, (A14)

m( j)
[k1],[k2] = χ∗

[k2] + β j

χ[k1] + β j

ϕ[k1] + ϕ∗
[k2]

χ∗
[k2] − χ[k1]

+ χ̃∗
[k2] + β j

χ̃[k1] + β j

ϕ̃[k1] + ϕ̃∗
[k2]

χ̃∗
[k2] − χ̃[k1]

+ χ̃∗
[k2] + β j

χ[k1] + β j

ϕ[k1] + ϕ̃∗
[k2]

χ̃∗
[k2] − χ[k1]

+ χ∗
[k2] + β j

χ̃[k1] + β j

ϕ̃[k1] + ϕ∗
[k2]

χ∗
[k2] − χ̃[k1]

. (A15)

Here m[k1],[k2] and m( j)
[k1],[k2] represent the matrix ele-

ments of M and Mj in the (k1)th row and (k2)th
column. Moreover, χ̃[k1](χ̃[k2]) = χ[k1](χ[k2]) + iα (k1, k2 =
1, 2, 3, . . . , N), with χ[k1](χ[k2]) one of the complex roots of
Eq. (9). The function ϕ[k1](ϕ[k2]) is given by

ϕ[k1] = exp
[
iχ[k1]

(
x + 1

2χ[k1]t
)]

, (A16)

ϕ̃[k1] = exp
[
iχ̃[k1]

(
x + 1

2 χ̃[k1]t
)]

, (A17)

ϕ[k2] = exp
[
iχ[k2]

(
x + 1

2χ[k2]t
)]

, (A18)

ϕ̃[k2] = exp
[
iχ̃[k2]

(
x + 1

2 χ̃[k2]t
)]

. (A19)

Figures 7 and 8 show the amplitudes of the solutions in the
cases N = 2 and 4 with the selected eigenvalues.

APPENDIX B: ORDINARY VECTOR SOLITON
SOLUTIONS

Here we present the vector soliton solutions constructed
by a Darboux transformation. Two cases are considered: (i)
a1 = a2 = 0 and (ii) a1 �= 0 and a2 = 0.

1. Nondegenerate bright solitons with a1 = a2 = 0

When a1 = a2 = 0, we have, from Eq. (10),

λ[1] = χ[1]. (B1)

The eigenvalue χ[1] is given by Eq. (50). However, as men-
tioned above, we must have χ[1] = χ2 or χ3. Using such an
eigenvalue (or spectral parameter) and solving the associated
Lax pair with zero seed solution, we have the eigenfunctions
�[1] = (R[1], S[1],W[1] ),

R[1] = exp
[
iχ[1]

(
x + 1

2χ[1]t
)]

,

S[1] = Cs[1],

W[1] = Cw[1]. (B2)

Here Cs[1] and Cw[1] are real constants. Performing the Dar-
boux transformation (A10) with ψ

( j)
0 = 0, we obtain the

fundamental vector bright soliton solution. The higher-order
iterations of the Darboux transformation lead to the nonde-
generate soliton shown in Sec. VII A. The N th-order soliton
solution can be written as

ψ
(1)
N = −(λ∗

[N] − λ[N] )
N−1∑
i=1

P[N]
12 , (B3)

ψ
(2)
N = −(λ∗

[N] − λ[N] )
N−1∑
i=1

P[N]
13 , (B4)

where

T[N] = I − λ[N] − λ∗
[N]

λ − λ∗
[N]

P[N], (B5)

P[N] = �
[N−1]
[N] �

[N−1]†
[N]

�
[N−1]†
[N] �

[N−1]
[N]

, (B6)

�
[N−1]
[N] = (T[N−1]T[N−2] · · · T[1]T[0] )|λ=λ[N]�[N]. (B7)

Here T[0] = I is the identity matrix. The eigenfunctions
�[N] = (R[N], S[N],W[N] ) corresponding to N different spec-
tral parameters λ[1], λ[2], . . . , λ[N] are given by

R[N] = exp
[
iχ[N]

(
x + 1

2χ[N]t
)]

,

S[N] = Cs[N],

W[N] = Cw[N]. (B8)

Letting Cs[1] = Cw[2] = 1 and Cw[1] = Cs[2] = 0, we obtain the
nondegenerate soliton solution (51) with N = 2. The profiles
are shown in Fig. 11. Furthermore, the fourth-order soliton so-
lutions with Cs[3] = Cw[4] = 1 and Cw[3] = Cs[4] = 0 describe
the interaction between two nondegenerate solitons shown in
Fig. 12.
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2. Nondegenerate localized waves with a1 �= 0 and a2 = 0

In this case, we have, from Eq. (10),

λ[1] = χ[1] − a2
1

χ[1] + β1
. (B9)

The eigenvalue χ[1] is given by Eq. (53). However, as men-
tioned above, we must have χ[1] = χ1(χ3) or χ2. Here we
first consider the eigenvalue χ[1] = χ1. The corresponding
eigenfunctions (R[1], S[1],W[1] ) are given by

R[1] = ϕ[1] + ϕ̃[1], (B10)

S[1] = ψ
(1)
0

(
ϕ[1]

β1 + χ[1]
+ ϕ̃[1]

β1 + χ̃[1]

)
, (B11)

W[1] = 0, (B12)

where χ̃[1] = χ[1] + iα and

ϕ[1] = exp
[
iχ[1]

(
x + 1

2χ[1]t
)]

, (B13)

ϕ̃[1] = exp
[
iχ̃[1]

(
x + 1

2 χ̃[1]t
)]

. (B14)

The first-order solution obtained through the Darboux trans-
formation is

ψ
(1)
1 = ψ

(1)
0 + (λ∗

[1] − λ[1] )R∗
[1]S[1]

|R[1]|2 + |S[1]|2 + |W[1]|2 , (B15)

ψ
(2)
1 = 0. (B16)

The solution (B15) contains a KMS but only in the ψ
(1)
1

component.
To obtain the nondegenerate localized waves shown in

Sec. VII B, we apply the second step of the Darboux

transformation. Note that the second spectral parameter used
here is different from that in the first step, namely, λ[2] =
χ[2] − a2

1
χ[2]+β1

, where χ[2] = χ2. The corresponding eigenval-
ues are given by

R[2] = exp
[
iχ[2]

(
x + 1

2χ[2]t
)]

, (B17)

S[2] = ψ
(1)
0

(
exp[iχ[2](x + 1

2χ[2]t )]

β1 + χ[2]

)
, (B18)

W[2] = exp(iθ2)

(
exp[iχ[2](x + 1

2χ[2]t )]

β2 + χ[2]

)
. (B19)

Finally, the second-order solution which describes the nonde-
generate localized waves shown in Fig. 13 can be written as

ψ
(1)
2 = ψ

(1)
1 + 2i(λ∗

[2] − λ[2] )�∗
1�2

|�1|2 + |�2|2 + |�3]|2 ,

ψ
(2)
2 = 2i(λ∗

[2] − λ[2] )�∗
1�3

|�1|2 + |�2|2 + |�3|2 ,

(B20)

where

�1 = �

[(
1

�
+ R[1]R∗

[1]

φ2

)
R[2] + R[1]S∗

[1]

φ2
S[2]

]
, (B21)

�2 = �

[
S[1]R∗

[1]

φ2
R[2] +

(
1

�
+ S[1]S∗

[1]

φ2

)
S[2]

]
, (B22)

�3 = W[2]. (B23)

Here � = λ∗
[1]−λ[1]

λ[2]−λ∗
[1]

and |φ|2 = |R[1]|2 + |S[1]|2.
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