
PHYSICAL REVIEW A 105, 043524 (2022)

Impact of the lattice period on the stability dynamics of defect solitons in periodic lattices
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The dynamics of fundamental solitons is examined for periodic and defective lattices when the lattice period
is varied. The existence domain and stability intervals of solitons are determined and it is shown that the solitons
can exist and stay stable for a wide range of parameters. It is observed that the domain of existence is extended
by increased lattice period for the periodic lattice and the square lattice with an edge dislocation. It is also
demonstrated that stability of solitons around a vacancy defect and near edge dislocation can be improved by
decreased lattice period, whereas a higher lattice period supports the stability of periodic lattice solitons. Further,
it is shown that there are a lower limit for the period of a square lattice and an upper limit for the period of a
lattice with a vacancy defect for no collapse of the solitons in their entire existence domains. Thus modification
of the lattice period provides great controllability of the soliton dynamics. It is also observed that the deeper (or
strong) vacancy defect in the lattice extends the stability domain of solitons for larger lattice periods.
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I. INTRODUCTION

Optical solitons are localized waves that form when the
medium’s nonlinear and dispersive effects are balanced. This
balance results in an optical field that maintains its shape dur-
ing transmission. Since their experimental observation in [1],
multidimensional solitons in nonlinear optical systems with
optically induced lattices have attracted researchers’ inter-
est due to their stabilizing effects on soliton stability [2–5].
Recently, real and complex (parity-time symmetric [6,7])
lattice solitons in the media with cubic (Kerr) [6,8,9],
quadratic [10–12], saturable [13,14], and competing nonlin-
earities [15,16] and higher-order dispersion effects [17,18]
have been investigated. Solitons have also been shown to exist
in aperiodic or quasicrystal lattice structures [3,19,20], as well
as lattices with defects [4,21–24].

In the mentioned studies, the existence and stability proper-
ties of solitons in real and complex lattices have been studied
and it has shown that optical lattices can be utilized to ar-
rest wave collapse in optical systems [3,4,9,11,23–28]. These
studies focused on the lattice structure (periodic, quasiperi-
odic, or parity-time symmetric) and irregularities (point or
line defects) in the lattices. Moreover, it is known that soli-
ton dynamics can be manipulated by lattice depth and lattice
frequency (or period) [29]. In [30] it was shown that quadratic
modulation of lattice frequency serves an effective mechanism
to control the shape and diffraction of lattice solitons. In [31] it
was demonstrated that the dynamics of matter solitons can be
managed by uniform modulation of optical lattices. In [32] the
possibility of controlling the bend rate and output position of
solitons was presented by a change of the depth and frequency
of periodic optical lattices in the transverse direction. Fur-
thermore, the instability of bidirectional solitons in photonic
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lattices has been investigated numerically and these solitons
have been stabilized experimentally by increasing the lattice
period for a certain range of lattice amplitude [33,34]. This
stabilization phenomenon in two-dimensional square lattices
was explained as follows: An increase in the lattice period can
significantly reduce the mobility of beams by trapping each of
them in a single lattice site.

The soliton dynamics in a homogeneous medium can
be governed by the nonlinear Schrödinger equation (NLSE)
[35,36]

iuz(z, x) = −�u − |u|p−1u, (1)

where z is the longitudinal coordinate, x = (x1, . . . , xd ) are
spatial coordinates, and � = ∂x1x1 + · · · + ∂xd xd is the Lapla-
cian operator. The nonlinearity is denoted by p and it is
focusing when p > 1. In nonlinear optics, the variables z
and x j are normalized by the diffraction length and the input
beam radius, respectively. Different cases of the NLSE can be
described as follows [4,35]:

0 < p − 1 <
4

d
(the subcritical case),

p − 1 = 4

d
(the critical case),

p − 1 >
4

d
(the supercritical case). (2)

It is known that adding an external lattice to Eq. (1) supports
the stability of the solitons for the critical case (e.g., a two-
dimensional NLSE with cubic nonlinearity) [3,5,23], whereas
the lattice does not affect the stability and instability of the
solitons in the subcritical and supercritical cases, respec-
tively [35,37]. In [35,36,38] comprehensive investigations of
the (in)stability (collapse) dynamics were done for the non-
linear lattice solitons. These studies showed that the soliton
profile and stability dynamics are significantly altered by the
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width of the soliton and the lattice period. The soliton can be
wider, of the same order, or narrower than the lattice period. It
was shown that the same nonlinear lattice can stabilize beams
of specific widths and destabilize beams of other widths [36].
In [39] it was revealed that the solitons located at the lattice
minimum are stable in the subcritical case regardless of their
widths, but in the critical case the solitons can stay stable when
they are narrower than a few lattice periods [2,40]. For the
supercritical case, it was demonstrated that solitons located
at the lattice minimum can be stabilized when they are suffi-
ciently wide, but the external lattice cannot stabilize narrow
solitons [35,37]. Also, in [35] it was shown that when the
narrow solitons focus on a lattice maximum, the (in)stability
dynamics is extremely susceptible to the lattice parameters.
It is noteworthy that in nonlinear optics, the input beam size
is larger than the lattice period for most cases [1,41,42], but
if the beam collapses, its width shrinks to zero and thus the
width of beam becomes significantly smaller than the lattice
period [4,35].

In [4] the relation between the soliton width and
(in)stability dynamics was investigated in a crystal (periodic),
a quasicrystal, and a square lattice with a vacancy defect with
fixed lattice periods. In this study, the existence and stability
properties of fundamental solitons are explored in a real peri-
odic (square) lattice, in a square lattice with a vacancy defect,
and in a square lattice with an edge dislocation by variation
of the lattice period. Linear stability analysis and nonlinear
evolution of the solitons show that modification of the lattice
period provides great controllability of the soliton dynamics
for the considered lattices. Further, it is shown that there are
a lower limit for the period of the square lattice and an upper
limit for the period of the lattice with a vacancy defect for
no collapse of the solitons in their entire existence domains.
This study is also focused on the effect of a deeper (or strong)
vacancy defect in the lattice and it is observed that there is a
relation between the depth of the vacancy defect and the lattice
period for the stability of solitons.

It is noteworthy that a vacancy defect is a point defect that
is produced when an atom is missing from a normal site and
all crystalline materials contain vacancies naturally; in fact,
it is impossible to create a perfect crystal that is completely
free of them [43]. Another type of irregularity in optical
materials is the edge dislocation. It is a line defect in which
a line of atoms moves from its original position [44]. It is
known that these defects can be created in materials by plas-
tic deformation and high-energy particle irradiation [45–47].
Recently, there has been significant progress in designing
and fabricating irregular lattice structures with point and line
defects [46,48–50].

The dynamics of lattice solitons in a cubic nonlinear
medium can be characterized by a (2 + 1)-dimensional NLSE
[the critical case of Eq. (1)] with an external lattice [2,25,26],
which can be written as

iuz + 1
2�u + |u|2u − V (x, y)u = 0, (3)

where u(x, y) is the slowly varying amplitude of the nor-
malized static electric field, z is the propagation distance,
�u ≡ uxx + uyy is the diffraction of the medium, and V (x, y)
is an external lattice. In this study, a two-dimensional (2D)
periodic (square) lattice and two irregular lattices with defects
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FIG. 1. Contour images of (a) periodic lattices, (b) square lattices
with a vacancy defect, and (c) square lattices with an edge disloca-
tion. The lattices are obtained when (ai)–(ci) K = 3 and (aii)–(cii)
K = 5 with V0 = 12.5.

are considered. The first lattice is a 2D square lattice with a
vacancy defect that is defined by [3]

V (x, y) = V0

25
|2 cos(kxx) + 2 cos(kyy) + εeiθ (x,y)|2, (4)

where V0 > 0 is the depth of the lattice, ε is the depth (or
strength) of the vacancy defect, and θ is a phase distortion
function that is given as

θ (x, y) = tan−1
(y − y0

x

)
− tan−1

(y + y0

x

)
. (5)

Here (kx, ky) is a wave vector and θ produces a vacancy
defect at the origin (0,0) of the square lattice. This point
defect is a shallow maximum and it corresponds to two first-
order phase dislocations displaced in the y direction by a
distance 2y0 [3,4]. A vacancy defect can be created by taking
y0 = π/K , where K = kx = ky. Furthermore, far away from
the origin (center), the lattice is locally similar to a square
lattice with period 2π/K . Thus, K can be considered as a
frequency (or period) control parameter for the optical lattice.
Note that, unless specified otherwise, ε is set equal to 1 for the
lattice with a vacancy defect [see Figs. 1(bi) and 1(bii)] and if
ε = 0, a perfectly periodic lattice is obtained [see Figs. 1(ai)
and 1(aii)].

The second irregular potential we study is a 2D square
lattice with an edge dislocation that is given by [3]

V (x, y) = V0

25
{2 cos[kxx + θ (x, y)] + 2 cos(kyy) + 1}2, (6)

where the phase dislocation function θ (x, y) is defined as

θ (x, y) = 3π

2
tan−1

(y

x

)
. (7)

As can be seen from Figs. 1(ci) and 1(cii), the density of
lattice sites varies vertically throughout the lattice with an
edge dislocation.

In Fig. 1 the contour images of a square lattice [Fig. 1(a)],
a square lattice with a vacancy defect [Fig. 1(b)], and a square
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lattice with an edge dislocation [Fig. 1(c)] are displayed for
varied lattice periods (K = 3 and 5). The center (x = y = 0)
of the lattice with a vacancy defect is a local minimum. By
comparing lattices in the top and bottom rows it can be seen
that the structure of the lattices does not change qualitatively
by modification of the lattice period (see Fig. 1). Note that
both the defects in optical lattices and modification of the lat-
tice period can be engineered [46,47,51]. Thus, it is important
to investigate the impact of the lattice period on the dynamics
of defect solitons in periodic lattices.

II. NUMERICAL SOLUTION FOR
FUNDAMENTAL SOLITONS

The steady-state solutions (fundamental soliton) of the
model (3) are calculated by the squared operator method
(SOM) [52,53]. The SOM is outlined as follows.

Inserting the ansatz u = U (x, y)exp(iμz) into Eq. (3), the
suboperators

F0 = −μ + U 2 − V (x, y),

F1 = −μ + 3U 2 − V (x, y) (8)

are obtained, where U (x, y) is a real-value function and μ is
the propagation constant (eigenvalue). Using F0 and F1, the
operators L0 and L1 and the acceleration operators M0 and
M1 are calculated as

L0U = 1

2
�U + F0U, M0 = F−1

(F (L0U )

K2 + c

)
,

L1U = 1

2
�M0 + F1M0, M1 = F−1

(F (L1U )

K2 + c

)
, (9)

where F denotes the Fourier transformation, K = (kx, ky) are
wave numbers, K2 = k2

x + k2
y , and c is a positive real number.

The L0U = 0 is the general form of the model (3) and L1 is
the linearized operator of L0U around the solution U [53].
Once the M1 operator has been obtained, U is calculated by
the iteration

Un+1 = Un − M1�t, (10)

where �t is an auxiliary time-step parameter. The iteration of
Un starts from a Gaussian initial condition and proceeds until
the error E =

√
‖Un+1 − Un‖2 < 10−8. It has been shown that

if convenient c and �t parameters are selected heuristically,
the SOM algorithm converges to a steady-state solution (soli-
ton) for a wide range of nonlinear evolution equations [52].

Unless specified otherwise, in this study, the parameters are
fixed to be

(V0, c,�t ) = (12.5, 3, 0.2). (11)

The potential depth V0 is chosen as 12.5 to compare the
results of this study with previous research [3,24]. In Fig. 2
fundamental lattice solitons are obtained for these fixed values
on a local minimum of a periodic lattice [Fig. 2(a)], near
the vacancy defect [Fig. 2(b)], and near the edge dislocation
[Fig. 2(c)] when K = 3 (the lattice period is 2π/3). It can
be seen from Fig. 2 that the solitons are generated on local
minima of lattices. Note that in Figs. 2(ci) and 2(cii) the initial
condition of the SOM algorithm is located around the center
(0,0) of the lattice with an edge dislocation and the solution

FIG. 2. (ai)–(ci) The 3D view and contour plot of the funda-
mental solitons superimposed (a) on the local minimum (π/3, 0) of
the periodic lattice, (b) near the vacancy defect (0,0), and (c) near
the edge dislocation (0, 1.41), for (a) μ = −1, (b) μ = −1.3, and
(c) μ = −1.4. In all cases K = 3 and the other parameters are given
in (11). These solitons are calculated in the [−15, 15]2 domain and a
small part of this domain ([−5, 5]2) is displayed for visibility.

moves to the closest local minimum during the iteration. From
the previous studies in [5,20,23], it is known that although
solitons can exist on local maxima of square lattices, they
cannot stay stable for the NLSE with a defocusing external
potential. Therefore, in this study, solitons located around the
minima of the lattices will be examined.

III. POWER AND STABILITY ANALYSIS

After obtaining the fundamental solitons, their stability
is examined by the linear eigenvalue spectra and nonlinear
evolution of the solitons.

The linear spectrum is calculated by linearization of the
model near the fundamental soliton. To do that the fundamen-
tal soliton u0 is perturbed by

U = eiμz[u0(x, y) + R(x, y)eλz + I∗(x, y)eλ∗z], (12)

where R, I � 1 are infinitesimal perturbations. Substituting U
into Eq. (3) and neglecting small terms of second order, the
linearized system is obtained,

LV = λV, (13)

where

L = i

(L11 L12

L21 L22

)
, V =

(
R

I

)

and the components of L are

L11 = L22 = 0,

L12 = 1
2� − μ + u2 − V,

L21 = 1
2� − μ + 3u2 − V. (14)

The Fourier collocation method is utilized to compute the
eigenvalues of L numerically [52]. If there is any eigenvalue
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FIG. 3. (ai)–(ci) Power-eigenvalue (P-μ) diagrams and (aii)–(cii) linear stability domains of μ for fundamental solitons on (a) periodic
lattices, (b) square lattices with a vacancy defect, and (c) square lattices with an edge dislocation when the lattice frequency K is varied. In
(aii)–(cii) solid lines and dotted lines show linearly stable and unstable domains, respectively.

with a positive real part, the soliton will be considered as
linearly unstable.

The power (P = ∫∫ ∞
−∞ |u|2dx dy) and stability dynamics

of solitons have a strong relation. In [54] Vakhitov and
Kolokolov demonstrated that the linear (spectral) stability of
solitons is possible if their power grows with increasing prop-
agation constant μ, i.e.,

dP/dμ > 0. (15)

Furthermore, in [55] it was shown that a necessary condition
for the collapse in the 2D NLSE is that the power exceeds a
critical value (Pc ≈ 11.7/2 = 5.85).

In this regard, the power-eigenvalue diagrams of gap soli-
tons are displayed in Figs. 3(ai)–3(ci) for various values
of the lattice period. Note that this analysis shows the ex-
istence (gap) domain of solitons for μ when fundamental
solitons are obtained on the minimum of the periodic lattice
[Fig. 3(a)], near the vacancy defect [Fig. 3(b)], and near the
edge dislocation [Fig. 3(c)]. It can be seen that the power
of fundamental solitons is less than the critical power Pc

for each case of the lattices. The power of periodic lattice
solitons decreases and the domains of existence are extended
with increased lattice period (from 2π/5 to 2π/3). The slope
condition (15) is satisfied by periodic lattice solitons when
K = 3 and 4 [see Fig. 3(ai)]. The power of vacancy de-
fect solitons decreases while the lattice period increases and
the power increases with increased propagation constant [see
Fig. 3(aii)]. Thus, the Vakhitov-Kolokolov (VK) stability cri-

terion is satisfied everywhere in the domain of existence for
the vacancy defect solitons. For the fundamental solitons near
the edge dislocation, the power is reduced and the domain
of existence is extended with increased lattice period (from
2π/5 to 2π/3) and the slope condition (15) is satisfied only
when K = 3 and μ ∈ [−1.46,−1.33] and when K = 5 and
μ ∈ [−1.96,−1.91] [see Fig. 3(a3)]. It should be noted that
these results are consistent with the previous studies [3,24], in
which K is fixed to be 2π . Further, linear stability spectra of
gap solitons are examined for each point on power curves,
and linear (in)stability intervals of μ are shown for varied
lattice periods in Figs. 3(aii)–3(cii). Solid and dotted lines
show linearly stable and unstable domains, respectively. The
results in Fig. 3(aii) show that as the lattice period is increased
(from 2π/5 to 2π/3) both the domain of existence and linear
stability interval of solitons are extended. Conversely, the lin-
ear stability interval of vacancy defect solitons is extended by
decreasing the lattice period [see Fig. 3(bii)]. The domain of
existence for the solitons near the edge dislocation is extended
with higher lattice period, whereas linear stability of soli-
tons is provided only if μ ∈ [−1.96,−1.91] with the smallest
lattice period 2π/5 [see Fig. 3(cii)]. Thus linear stability of
solitons around the vacancy defect and edge dislocation can
be improved with a reduced lattice period. In contrast, a
higher lattice period supports the stability of periodic lattice
solitons.

It is noteworthy that fundamental solitons on the periodic
lattice are linearly stable for all their existence domain if
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FIG. 4. (ai)–(ci) Power-eigenvalue (P-μ) diagrams and (aii)–(cii) linear stability domains of μ for vacancy defect solitons when the depth
of defect (a) ε = 2, (b) ε = 5, and (c) ε = 10 with varied lattice frequency K .

K < 4.27 and vacancy defect solitons are linearly stable on
their entire existence domain if K > 4.14 for the considered
parameter regime. The solitons near the edge dislocation are
linearly unstable over their entire existence domain if K <

4.65. It is also observed that although the power-eigenvalue
(P-μ) curves of vacancy defect solitons intersect at point m
(where P = 4.253 and μ = −1.285) for three families of so-
lutions [see Fig. 3(bi)], the solitons obtained are not identical.
The peak amplitudes of the solitons are 1.123 for K = 3,
1.397 for K = 4, and 1.642 for K = 5.

Furthermore, to see the impact of the depth of the va-
cancy defect [which is denoted by ε in Eq. (4)] on soliton
dynamics, the power-eigenvalue diagrams [Figs. 4(ai)–4(ci)]
and stability domains [Figs. 4(aii)–4(cii)] of gap solitons are
examined in Fig. 4 for large values of ε (2, 5, and 10) with
varied K . In Figs. 4(ai)–4(ci) it can be seen that the power
of solitons decreases as ε increases (from 2 to 10) and in
Figs. 4(aii)–4(cii) it is shown that the domain of existence is
extended with larger ε and the solitons are stable on all their
existence domain for varied lattice periods (K = 3, 4, 5) when
ε = 2 [see Fig. 4(aii)], ε = 5 [see Fig. 4(bii)], and ε = 10 [see
Fig. 4(cii)]. It can also be observed that if the depth of the
vacancy defect is large enough and the lattice period (2π/K)
is less than an upper limit, the solitons can be stable on all their
existence domains. In particular, the lattice solitons are stable
on their entire existence domain for K � 5 when ε � 0.4,
for K � 4 when ε � 1.13, and for K � 3 when ε � 1.84.
These results reveal that the strong (deeper) vacancy defect
in a square lattice improves both the existence and stability

intervals of fundamental solitons around the defect for larger
lattice periods.

To test the nonlinear stability, the nonlinear evolution of the
solitons is examined through direct simulation of the govern-
ing equation (3). The finite-difference method is applied for
the spatial domain and the solution is advanced in the z di-
rection with a fourth-order Runge-Kutta method. The starting
point of the evolution is chosen to be a steady-state solution
that is calculated by the SOM and it is perturbed with 1%
random noise in amplitude.

The stability of fundamental solitons, which correspond
to the points s in Figs. 3(aii)–3(cii), are examined in Fig. 5
by linear stability spectra (first column), nonlinear evolution
of peak amplitudes (second column), a 3D view of the fun-
damental soliton at z = 0 (third column), and the evolved
soliton at z = 500 (fourth column). The fundamental solitons
are obtained on the local minimum of the periodic lattice when
μ = −1.4 and K = 4 [Fig. 5(a)], around the vacancy defect
when μ = −1.5 and K = 4 [Fig. 5(b)], and near the edge
dislocation when μ = −1.92 and K = 5 [Fig. 5(c)]. Figure 5
shows that the spectrum of the solitons is purely imaginary
in each case, the peak amplitude of the evolved solutions
fluctuate relatively little, and the form of evolved solitons
is preserved during the evolution. Thus, these solitons are
considered to be stable.

To investigate the impact of the lattice period, the same
stability analysis is repeated in Fig. 6 for the solitons that
correspond to the points u in Figs. 3(aii)–3(cii). The funda-
mental solitons are obtained on the local minimum of the
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FIG. 5. Linear spectra (first column), nonlinear evolution of the peak amplitude (second column), and 3D view of the soliton before
evolution (at z = 0) (third column) and after evolution (at z = 500) (fourth column) for the stable solitons that are shown by the points s in
Figs. 3(aii)–3(cii). The fundamental solitons are obtained (a) on the periodic lattice when μ = −1.4 and K = 4, (b) around the vacancy defect
when μ = −1.5 and K = 4, and (c) near the edge dislocation when μ = −1.92 and K = 5.

periodic lattice when μ = −1.5 and K = 5 [Fig. 6(a)], around
the vacancy defect when μ = −1.2 and K = 5 [Fig. 6(b)],
and near the edge dislocation when μ = −1.5 and K = 3
[Fig. 6(c)].

As can be seen from Fig. 6, the linear stability spectra of
the solitons (first column) include eigenvalues with a positive
real part and peak amplitudes of the evolved solitons (second
column) blow up after a short propagation distance for the
soliton on the periodic lattice [Fig. 6(a)] and around the va-
cancy defect [Fig. 6(b)]. The solitons near the edge dislocation
decay just after z = 40 and the soliton profile breaks up after
evolution [Fig. 6(c)]. These results indicate that the increased
lattice period has an adverse effect on the stability of defect
solitons.

The stability analysis performed shows that the linear spec-
tra and nonlinear evolution of solitons are consistent for the
considered lattices in each case and the (in)stability of the
examined solitons obeys the VK stability criterion.

IV. CONCLUSION

Fundamental solitons were obtained numerically in a pe-
riodic lattice, around a vacancy defect, and near an edge
dislocation for varied lattice periods (2π/K). The stability
dynamics of these solitons has been studied by the linear
spectra and nonlinear evolution of the peak amplitudes. The

existence and stability domain of solitons were determined for
the propagation constant μ when the lattice period is varied.
It has been observed that the domain of existence is extended
with increasing lattice period for the periodic lattice and the
square lattice with an edge dislocation.

The stability analysis showed that the stability of solitons
around the vacancy defect and near the edge dislocation can
be improved with decreasing lattice period. Conversely, a
higher lattice period supports the stability of periodic lattice
solitons. Moreover, the numerical results revealed that there
is a threshold value of the lattice period (2π/4.14) below
which all vacancy defect solitons are linearly stable for the
considered parameter regime. A similar lattice period thresh-
old (2π/4.27), above which the solitons are collapse-free, was
determined for the periodic lattice solitons.

Furthermore, it has been demonstrated that when the depth
of the vacancy defect ε is large enough and the lattice period
2π/K is less than a threshold value, the solitons can be stable
on all their existence domains. Thus, the stability of solitons
around the vacancy defect can be improved by a deeper va-
cancy defect for larger lattice periods.

In conclusion, it has been observed that stable solitons can
be obtained for a wide range of parameters on both periodic
and defective lattices and it has been demonstrated that the
variation of the lattice period can be applied as a collapse
arrest mechanism for lattice solitons.
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FIG. 6. Linear spectra (first column), nonlinear evolution of the peak amplitude (second column), and 3D view of the soliton before
evolution (at z = 0) (third column) and after evolution (at z = 100) (fourth column) for the unstable solitons that are shown by the points u in
Figs. 3(aii)–3(cii). The fundamental solitons are obtained (a) on the periodic lattice when μ = −1.5 and K = 5, (b) around the vacancy defect
when μ = −1.2 and K = 3, and (c) near the edge dislocation when μ = −1.5 and K = 3.
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