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Dynamics of complex systems in Cauchy cavities
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We demonstrate a generalized invariance property: that the ratio between the intrinsic dynamics of complex
media and the perceived timescale of scattered intensity fluctuations depends only on macroscopic properties and
not on the detailed circumstances of geometry-dependent light-matter interaction. We show that the necessary
conditions can be established in a diffusive Cauchy cavity where the relation between these two timescales can
be controlled at will. This approach provides the flexible means to study the intrinsic dynamics of systems with
arbitrary geometry and in various conditions of interaction.

DOI: 10.1103/PhysRevA.105.043523

I. INTRODUCTION

Fluctuations of scattered intensity encode the time-varying
properties of complex media [1]. To extract the information,
inverse problems must rely on accurate description of the
process of light-matter interaction. For instance, the widely
used dynamic light-scattering procedure was designed for the
strict limit of deterministic single scattering [2]. When the
interaction enters a regime of multiple scattering, the dynamic
inverse problem can be approached using a diffusing wave
spectroscopy (DWS) methodology [3,4]. In this case, how-
ever, the constraint is that one requires additional information
about the path length s of light through the medium. What is
needed, practically, is the probability density function P(s)
of optical path lengths inside the medium, a quantity that
intimately depends on the experimental circumstances [5].
Because analytical solutions for P(s) exist only for certain
special cases, the approach has a limited applicability [5–9].

Certain invariance properties exist for extreme conditions
of interaction between monochromatic light and finite-size in-
homogeneous media [10]. For instance, according to Cauchy’s
mean-chord theorem [11,12], in the ballistic regime, the mean
path length 〈s〉 = ∫ ∞

0 P(s)sds of the scattered light is solely
determined by the volume and the effective surface of the
medium. A similar conclusion can be reached for a diffu-
sive regime: 〈s〉 depends on the size of the medium but not
on the microscopic characteristics of the interaction process
[10,13,14]. Importantly, these conclusions are valid only when
both the illumination and detection are homogeneous and
isotropic across the surface [10,13].

Here we will generalize this essential property to dynamic
regimes of interaction. We will also show how this fundamen-
tal invariance permits extracting the timescale of medium’s
dynamics irrespective of the specific experimental geometry
and the scattering regime. In other words, we will demonstrate
that time-varying properties can be obtained without detailed
knowledge of P(s).

*adogariu@creol.ucf.edu

II. THEORY

Let us consider light scattering from a complex system
of identical particles, which diffuse thermally with a Stokes-
Einstein diffusion coefficient D. A straightforward extension
can account for biased diffusion as well as the many-body col-
lective effects [15,16]. For an incident field with wave number
k0, the fluctuations of light have a microscopic characteristic
time τ0 = 1/(2Dk2

0 ). The goal of a generic experiment is to
retrieve τ0 from the measured field-field correlation function
g(τ ) = |〈E (0)E∗(τ )〉|/〈|E (0)|〉2, which is characterized by a
measured correlation time τm. The challenge is that these two
timescales are not necessarily the same. Their ratio τ0/τm de-
pends on the strength of light-matter interaction as quantified
by the reduced scattering coefficient μ′

s that defines different
scattering regimes [17], as suggested in Fig. 1.

When μ′
s is much smaller than the size of the medium, the

perceived characteristic time becomes τm = 1/(Dq2), where
q = 2k0sin(θ/2) is the corresponding transfer wave vector
as defined by the specific experimental geometry. In this
single-scattering regime, the macroscopic size and shape of
the medium are irrelevant and one can easily find that τ0/τm =
2 sin2(θ/2). This regime is denoted by the black dashed line in
Fig. 1, where τ0/τm is simply a geometry-dependent constant
[2].

With increasing μ′
s, we enter a regime of stronger light-

matter coupling where the relation between τ0 and τm becomes
rather complicated. Experimentally, due to the internal dy-
namics of the medium, random phases will accumulate at the
detector and contribute to the measured field-field correlation
[4]. It has been shown that the coupling between the intrinsic
dynamics τ0 and the measured field-field correlation is deter-
mined by the distribution of photon path lengths P(s) [5,18].
When τ � τ0, the measured field-field correlation function
turns out to be [5]

g(τ ) =
∫ ∞

0
P(s) exp

(
−sμ′

s

τ

τ0

)
ds. (1)

In general, a series of higher-order moments of P(s)
are necessary to describe g(τ ) in an intermediate regime of
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FIG. 1. Log-log representation of ratio between the microscopic
τ0 and perceived τm correlation times for different regimes of light-
matter interaction. In the single-scattering limit, τ0/τm is purely a
geometry-dependent constant (black dotted line). When the coupling
increases, τ0/τm depends strongly on μ′

s, the measurement geometry,
and also the macroscopic properties of the medium, as suggested
by the middle blue line. Analytical solutions may be found only
for limiting situations such as, for example, transmission through a
two-dimensional diffusive and infinitely extended slab (right orange
line). The left gray line depicts the ideal circumstances of the Cauchy
cavity discussed in this paper (see text for details).

interaction as shown in Fig. 2. However, in the limit τ �
τ0/(μ′

s〈s〉), the measured correlation time τm depends only
on the first moment 〈s〉 of P(s) (see Appendix A), and,
consequently, τ0/τm = μ′

s〈s〉. This means that, in the limit of
very short times, the outcome of the dynamic measurement is

FIG. 2. Measured field-field correlation function g(τ ) (green
line) in the strong-scattering regime of light-matter interaction de-
pends on both τ0 and the path-length distribution P(s). In the
short-time limit, τ � τ0/(μ′

s〈s〉), the perceived timescale τm is found
from the single-exponential decay of g(τ ) (black dashed line and also
the inset). Thus, τ0 can be extracted using solely the mean 〈s〉 without
having to know the explicit form of P(s) or its higher-order moments.

solely determined by 〈s〉 and knowledge of the entire P(s) is
not necessary.

In general, both 〈s〉 and P(s) depend on (i) the microscopic
characteristics of scattering events, (ii) the macroscopic prop-
erties of medium, and (iii) the measurement configuration.
This is why analytical solutions can only be found in certain
limiting situations such as, for instance, diffusive transmission
through a slab [19], which is denoted by the right orange line
in Fig. 1. We note that, even in this case, the solution accuracy
strongly depends on the applicability of the diffusion approx-
imation as well as the detailed boundary conditions [20–22].
For other geometries as suggested by the middle blue line in
Fig. 1, one must appeal to numerical approaches [23]. Alter-
natively, one could directly measure P(s) by time-of-flight or
broadband interferometric techniques [24,25], but this process
will still be geometry dependent. These are the reasons why
it remains a challenge to determine the ratio τ0/τm and, there-
fore, to extract the microscopic dynamic characteristic time τ0

in a general manner irrespective of the macroscopic properties
of the medium.

There are two possible ways to overcome this situation.
One can, for instance, try to enforce the single-scattering
regime, but this is often difficult to ensure in practice [26]. The
opposite approach would be to transfer the interaction into
a fully developed multiple-scattering regime in a manner in
which 〈s〉 can be easily determined. So far, this second alterna-
tive has not been examined for a finite amount of samples. In
the following we will show how to achieve it by appealing to
the so-called generalized Cauchy invariance property [13,14].

When radiation interacts diffusively with a bounded
medium, the mean path-length light is simply determined
by the overall volume V and surface area � of the medium
through which it propagates [13]:

〈s〉 = 4
V

�
. (2)

The caveat is that this assumes that the illumination and
detection is performed uniformly across the medium [27].
Practically, light must be injected and detected homoge-
neously with all possible wave vectors.

This apparently impossible situation can be realized by
embedding the dynamic medium into a disordered photonic
cavity in which light is injected through a single-mode fiber.
We will call this a Cauchy cavity (schematically depicted in
Fig. 1) because it homogenizes the field across the surface
of the dynamic medium under test ensuring therefore that
the conditions for the Cauchy invariance are satisfied. In ad-
dition, the highly reflective surface of such cavity increases
dramatically the averaged residence time of photons within
the medium, which, in turn, guarantees a diffusive regime of
light-matter interaction. Under these conditions, one finds that

τ0

τm

1

μ′
s

= 4
V

�
, (3)

which constitutes a generalization of the Cauchy invariant
property to dynamic media. The meaning of Eq. (3) is that, for
light diffusing in a Cauchy cavity, the product between the av-
eraged number of dynamic scattering events and the strength
of light-matter interaction depends only on the macroscopic
properties of the dynamic medium.
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FIG. 3. Comparison between measured mean path 〈s〉m and the
prediction 〈s〉t from Eq. (4) for dynamic media with similar micro-
scopic but different macroscopic properties (V/� : red circle, η: blue
square). The error bars are evaluated by propagating the fitting errors
from measurements of g(τ ) and indicate 95% statistical confidence.

In practice, the volume and surface are effective macro-
scopic parameters associated with both the physical dimen-
sions of the dynamic medium and the optical properties of
the Cauchy cavity. As we detail in Appendix B, the refractive
index contrast n at the physical boundary of the dynamic
medium and the possible cavity losses η can be accounted for
in a practical formulation for the averaged mean path:

〈s〉 = 4
Veff

�eff
= 4

V n2

�η
. (4)

Here, n2 is a refractive-index correction for the radiative
transfer equation solution in a medium subjected to the afore-
mentioned isotropic and homogeneous radiation condition
[27], while η extends the properties of the diffusive walks in
the bounded domains [28].

III. RESULTS AND DISCUSSION

The dynamic functionality of the Cauchy cavity is
demonstrated on colloidal media consisting of monodisperse
polystrene particles. Measurements were taken inside a disor-
dered cavity (diffusive integrating sphere) in which coherent
light (532 nm) was injected using a single mode fiber. A
separate nonpolarizing single-mode fiber collects the light
from inside the cavity and redirects it into two single-photon
detectors. A standard cross-correlation technique is used to
measure the temporal correlation function g(τ ). A detailed
description of the experiment is included in Appendix C.

We will first validate Eq. (4) using dynamic media with
different macroscopic properties. The media are suspensions
of particles with diameter of 1 μm and volume concentration
of 0.1%, which ensures that both the intrinsic timescale τ0

and the strength of light-matter interaction μ′
s are the same

for all samples. The results summarized in Fig. 3 correspond
to situations where the size of the dynamic medium changes
(red) or where the effective cavity surface is modified (blue)
by opening additional ports. The experimental value of the
mean-free path 〈s〉m = τ0/(μ′

sτm) is compared to 〈s〉t esti-

mated from Eq. (4) by adjusting either the geometry quantity
V/� (red circle) or the boundary conditions by tuning η (blue
square). The η is tuned by opening the number of ports of
the integrating sphere. As can be seen, the modified Cauchy
invariance of Eq. (4) describes very well the experimental data
across the entire range of macroscopic parameters.

There are two more notable observations. First, the ex-
periment summarized in Fig. 3 provides direct experimental
demonstration of the invariance property of optical paths in
diffusive systems with adjustable reflective and absorbing
boundaries [28]. Second, it demonstrates that one can tune
the macroscopic parameters of the systems (V, �, and η)
in a determinstic way to ensure a strong coupling between
light and matter, μ′

s〈s〉 � 1, and therefore create the cir-
cumstances where this invariance property can be applied.
This means that in a Cauchy cavity one can actually achieve
a regime of diffusive interaction for arbitarily complex
media.

The second series of tests involved weakly scattering media
consisiting of polystrene particles with 1−μm diameter and
volume fractions ρ ranging from 2.2 × 10−4% to 1%. The
samples were placed in identical transparent containers and
four different experiments were performed for each of them
both inside and outside the Cauchy cavity. The experimental
geometries and a summary of results are shown in Fig. 4. The
conditions of this measurement are such that V/� = 2.3 mm,

n = 1.33, and η ≈ 0.21 as described in Appendix C. The in-
trinsic dynamic time τ0 is calculated from the Stokes-Einstein
equation while μ′

s is obtained from the corresponding Mie
calculations [29].

As can be seen in Fig. 4(a), the results of the measure-
ments performed outside the cavity depend significantly on
the experimental conditions as expected. In practice, this com-
plicates significantly the procedure of inferring τ0 for a given
μ′

s as suggested already in Fig. 1. On the other hand, for mea-
surements taken inside the Cauchy cavity, a clear −1 slope
can be seen in the log-log representation for samples with
ρ > 0.01%. Moreover, this happens irrespective of the angle
at which the measurement is performed. It is evident that, in
this case, the mean path of diffusive photons 〈s〉 does not
depend neither on the microscopic scattering process nor on
the specific measurement geoemetry. We also note the higher
absolute values of the effective path length, which confirm
that inside the cavity light is considerably more diffusive.
For samples with ρ � 0.01%, the measurements are deviated
from the prediction of Eq. (4), due to the finite photon lifetime
within the system.

In Fig. 4(b), we plot the average path length for sam-
ples with ρ > 0.01%. One can clearly see that 〈s〉 remains
invariant with respect to the concentration of particles for
measurements taken inside the cavity, while it varies consider-
ably for the other experimental conditions. Most importantly,
the value of 〈s〉 corresponding to measurements inside the
Cauchy cavity are very well described by the prediction in
Eq. (4). We also note the accuracy of the index contrast and
cavity-loss corrections described in Eq. (4) and indicated by
the gray dashed line in Fig. 2(b).

Finally, we will show how this Cauchy cavity approach
can be used to retrieve the characteristic time of arbitrarily
complex dynamic media. To this end, we adjust the dynamic
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FIG. 4. (a) Ratio τ0/τm for different experimental geometries:
inside the disordered cavity at 45◦ (orange circle, top) and 135◦ (red
circle, top), outside the cavity at 45◦ (blue square, bottom) and 135◦

(green square, bottom), respectively. Samples are 1-μm-diameter
polystrene spheres in diameter, of different concentration ρ (x axis
at the bottom) and μ′

s (x axis on top). The gray line indicates the
prediction of τ0/τm = μ′

s〈s〉 with 〈s〉 from Eq. (4). (b) Values of mean
optical path length of light. Note the strong dependence of outside
cavity measurements (blue and green squares) on both experimental
geometry and scattering regime. On the other hand, the values of 〈s〉
measured inside the cavity (red and orange circles) are independent
of concentration and are very well described by Eq. (4). The error
bars indicate 95% statistical confidence.

time by tuning the particle size while keeping the same μ′
s

of all the samples. The measured diffusion coefficient Dm is
compared with the value D0 predicted by the Stokes-Einstein
equation and the results are summarized in Fig. 5. The rela-
tively larger error for the 3-μm-diameter particles is due to
significant hydrodynamic interactions in this case [30]. As
evident, the expected internal dynamics is recovered very well
in all cases even without knowing the actual P(s).

FIG. 5. Diffusion coefficient of colloidal media measured inside
the Cauchy cavity reproduces very well the predictions of Stokes-
Einstein relation. Inset: the ratio between the measured τm and the
intrinsic time τ0 for the media examined. The error bars indicate 95%
statistical confidence.

IV. CONCLUSION

We demonstrated a general framework for recovering the
characteristic timescale for dynamic media with arbitrarily
complex light-matter coupling. The approach relies on the fact
that, in strong light-scattering regime, the short-time limit of
the dynamics relates only to the first-order moment 〈s〉 of the
optical path length of light. In general, 〈s〉 is difficult to obtain
either analytically or experimentally, but we have established
that a general invariance property for diffusive light can be
invoked to mitigate this limitation. We experimentally demon-
strated that the necessary conditions of strong light-matter
interaction are created when measurements are taken inside
a disordered cavity with highly reflected boundary conditions,
which we called a Cauchy cavity. Besides, we have provided
experimental evidence that the Cauchy invariance property
for diffusive light can be extended to bounded domains with
reflective and absorbing boundaries.

We have also shown that the range of measured charac-
teristic times within the Cauchy cavity can be adjusted at
will either geometrically or optically, such that the validity of
the diffusive approximation for light propagation is ensured
even for weakly scattering media. Moreover, if desired, the
approach described here can also be extended to subdiffu-
sive regimes of light propagation, τ0/(μ′

s〈s〉) < τ � τ0, in the
zero to intermediate Knudsen number limit [31]. A short-path
statistic argument can be used to generalize Eq. (4) as 〈sn〉 ≈
αn(μ′

s)n−1, where αn is a purely geometric quantity [31,32]. A
corresponding measured correlation time can then be obtained
from g(τ ) and used to retrieve τ0. Similar approach might
also be developed for absorbing random media, where the
invariance property breaks [33].

In closing, we would like to discuss several possible appli-
cations of the Cauchy cavity. As a proof of concept, we have
confirmed that accurate characteristics of thermal dynamics
can be retrieved irrespective of macroscopic properties of the
medium or the strength of light scattering. This opens up new
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opportunities for studying dynamic processes in situations in
which noninvasive testing would otherwise be prohibited.

For example, the interaction of light with biological sys-
tems such as cellular systems often falls in intermediate
regimes which are neither weakly scattering nor strongly dif-
fusive [34–37]. In these circumstances, measurements within
a Cauchy cavity would still benefit from the noninvasiveness
provided by elastic scattering of soft radiation to recover the
relevant dynamic scales.

In addition, fundamental processes of anomalous diffusion
with different origins (hydrodynamics, many-body interac-
tions, long-range influences, etc.), are usually examined at
mesoscales where the strength of coupling between the ma-
terial system and the probing light is difficult to control
[16,38,39]. Here too a Cauchy cavity would provide access
to a broad range of timescales for systems with comparable
macroscopic sizes. Similarly, in practical situations where the
internal structure of complex media changes in time [40–43],
our approach would permit a continuous observation of their
multiscale intrinsic dynamics even if, during this evolution,
the optical regime of interaction changes.

Finally, often the dynamics of complex media varies in
response to external influences [44,45]. In many situations,
this is accompanied by structural modifications that change
the overall circumstances in which the matter scatters light
[46,47]. Taking advantage of the ability to uniformize the
conditions of interaction one could, for instance, explore the
properties of active media in response to various stimuli or
even examine the strong coupling between complex media
and external fields [48,49].

APPENDIX A: CHARACTERISTIC TIME
IN THE SHORT-TIME LIMIT

Following the DWS theory, in multiple-scattering regime,
the field-field correlation function g(τ ) is given as follows [5]:

g(τ ) =
∫ ∞

0
P(s) exp

(
− s

l∗
τ

τ0

)
ds. (A1)

As mentioned before, P(s) is the probability distribution of
photon path length, while τ0 = 1/(2k2

0D) is the time donating
the dynamics of a single object. Note that this equation works
for the regime where τ � τ0 [5]. A generic routine to retrieve
τ0 is to perform fitting of g(τ ) within this range using the
knowledge of P(s). This means that detailed knowledge of
P(s) is necessary.

However, the same goal can also be achieved by using only
the short-time limit where τ � l∗

〈s〉τ0 [14]. In this case, one can
actually take the Taylor expansion of the correlation function
and obtain

g(τ ) ≈
∫ ∞

0
P(s)

[
1 − s

l∗
τ

τ0

]
ds

=
∫ ∞

0
P(s)ds − 1

l∗
τ

τ0

∫ ∞

0
P(s)sds

= 1 − 1

l∗
τ

τ0
〈s〉 ≈ exp

(
−〈s〉

l∗
τ

τ0

)
. (A2)

Equation (A2) suggests that, in this limit, the field-field
correlation function can be approximated by a single expo-

nential. Its characteristic time is only associated with the first
moment of the optical path length 〈s〉, instead of the detailed
P(s). Therefore, one can define the characteristic time τm of
the g(τ ) at the short-time limit as

τm = l∗

〈s〉τ0. (A3)

APPENDIX B: INVARIANCE PROPERTIES OF DIFFUSIVE
LIGHT IN BOUNDED DOMAINS

In this section, we will derive the invariance property for
diffusive light in a bounded domain with boundary conditions
[Eq. (4)]. This is necessary because the invariance prop-
erty has been rigorously derived only for diffusive walks in
bounded domains and taking into account the boundary con-
dition as well as the subdomain [28,50]. For diffusive light,
the boundary conditions with refractive index mismatch have
been examined before [14,27]. The goal of this section is to
extend the invariance property of diffusive walks to diffusive
light in bounded domains and associate it with the temporal
measurements inside the Cauchy cavity.

To start with, we consider the diffusion walks in three
dimensions inside a bounded complex system of volume V0, as
depicted in Fig. 6(a). The outer envelope of a bounded system
�0 can be considered as the sum of an absorbing component
with surface �0,abs and one reflective with surface �0,ref (with
unity reflectivity) to practically have �0 = �0,abs + �0,ref . As
this is a purely diffusive system, any diffusive walk would
eventually reach the absorbing portion of the boundary. We
assume that the diffusive walks starts only on the surface of
the absorbing boundary, with isotropic and uniform intensity.
It has been shown that, under such condition, we can obtained

FIG. 6. (a) Diffusive walks in bounded domains, with absorbing
�0,abs and reflective �0,ref boundaries. (b) Diffusive walks in the
subdomain of a bounded system. (c) The equivalent system in (b),
but with an absorbing boundary �abs and a corresponding reflective
boundary. (d) A similar system of (c), but with uniform partial
reflective boundary (η represents the loss of the boundary).
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the mean-path length of these diffusive walks as [50]

〈s〉�0,abs
= 4V0

�0,abs
. (B1)

Next, we consider a subdomain of volume V inside V0, as
illustrated in Fig. 6(b). In this case, if we consider the random
walks that start and end on the absorbing boundary, we will
obtain the mean path length of the diffusive walks inside the
subdomain V to be [28]

〈s〉�0,abs
= 4V

�0,abs
. (B2)

Now, to extend this conclusion to diffusive light inside a
bounded system, a correction regarding the volume must be
made to account for the mismatch to the isotropic and homo-
geneous radiation. This is due to the refractive index mismatch
of the layer between the subdomain V and other regime of V0,
which can be characterized by the refractive index contrast
n [14,27]. The n2 term comes from the correction over the
irradiance density between the mismatch layer, which is a
consequence of the stationary solution of the radiative transfer
equation [27,51]. Thus, we have

〈s〉�0,abs
= 4V n2

�0,abs
. (B3)

We would like to emphasize again that Eq. (B3) describes
the mean path length of photons inside V whose trajectories
start and end in the absorbing boundary �0,abs. However,
experimentally only diffusive walks inside the volume V will
contribute to the measured temporal correlation function. We
can approximate this by decreasing the size of bounded do-
main until V ≈ V0 and � ≈ �0, as shown in Fig. 6(c). This
will lead to

〈s〉�abs
= 4V n2

�abs
, (B4)

where �abs = � × �0,abs/�0.
Finally, one can define the loss at the boundary η =

�0,abs/�0 by assuming that the loss appears uniformly across
the surface of the subdomain. This means that instead of
applying an absorbing and reflected boundary, it is equivalent
to consider a system with boundaries of uniform but nonunity
reflectivity (R = 1−η). We note that this will not affect the
launching conditions for the diffusive random walk. The cor-
responding physical picture is shown in Fig. 6(d). Note that
this can be considered as an ergodic-type generalization of
the previous invariance property in bounded domains [28].
Therefore, it is easy to start from Eq. (B4) and obtain the
relation for the mean path length of diffusive light in such a
system:

〈s〉 = 4V n2

�η
, (B5)

which is Eq. (4).
We note that Eq. (B5) is obtained in three-dimensional dis-

ordered media. It can be generalized to other dimensionalities
by simply replacing the number 4 with other dimension-

dependent constant ηd [28]:

〈s〉 = ηd
V n2

�η
, (B6)

where ηd = √
π (d − 1)	[(d − 1)/2]/	(d/2) and d repre-

sents the dimensionality of the system.

APPENDIX C: METHODS

1. Experimental setup

A sketch of our experimental setup is shown in Fig. 7(a).
The light source is a green continuous wave laser (Spectra
Physics, Excelsior, 532 nm, 100 mW), which is coupled into a
single-mode fiber (Thorlabs, P1-460B-FC2) and directed into
an integrating sphere (Thorlabs, IS200-4, internal diameter
∼5 cm, 99% reflectivity), which serves as the disordered
cavity. For the detection, we use a fiber coupler (Thor-
labs, TN532R5F1) to split the light into two single-photon
detectors (PDM, MicroPhoton Devices). A time-correlated
single-photon counting correlator card (TimeHarp 260, Pico-
Quant) is used for measuring the temporal correlation function
g(τ ), which has the dynamic range from 10−7 to 10−1 s. We
note that the after-pulsing of such detectors can cause issues
when resolving the g(τ ) at very short times, which typically
happens around 10−5 s. This effect, however, can be mitigated
using the cross-correlation scheme of the measured signals
from two independent detectors, as shown in Fig. 7(b). The
total measurement time for each temporal correlation function
is 5 min. There are three main types of losses: the nonunity
reflection of the cavity surface, the colloidal absorption, and
the absorption of the sample. In all the experiments, the ab-
sorption of the diffusive surface (R = 0.99) and that of the
colloidal suspension are negligble. The loss is primarly due to
the absorption of the sample container. The total loss factor
of the system was measured to be η = 0.21 by comparing an
empty sample with reflective port plug, each during a total
measurement duration of 1 h. As shown in Fig. 3, additional
loss factor can be induced by opening more ports on the
integrating sphere. Each such port will add approximately
0.015 loss by calculating the ratio between its area and the
internal surface of the integrating sphere.

FIG. 7. (a) Sketch of the experimental setup. (b). An example
of after-pulsing at short-time limit of g(τ ) from performing auto-
correlation of the measured signal from two detectors (red and blue
curve for two separate detectors). The cross correlation of signals
from these two detectors eliminates the spurious after-pulsing effects
(black curve, bottom).

043523-6



DYNAMICS OF COMPLEX SYSTEMS IN CAUCHY … PHYSICAL REVIEW A 105, 043523 (2022)

FIG. 8. Comparison of measurements taken at different geometries over different range of concentrations ρ: inside (a) and outside (b) the
Cauchy cavity at 45◦; inside (c) and outside (d) the Cauchy cavity at 135◦. First column: the normalized field-field correlation function g(τ ).
Arrow indicates the increasing of concentrations ρ. Second column: β retrieved from the Siegert relation. Third column: count rates measured
by both detectors.

2. Data processing

For each measured g(τ ), the following process is used to
retrieve the characteristic time of the dynamics τc. First, we
normalize each g(τ ) from 0 to 1. Next, we select only g(τ ) ∈
[0.8, 1] to perform a single-exponential fitting, in which the
decay rate of the exponential function is τm. This ensures
the condition τ � τ0l∗/〈s〉 as discussed in the main text and
Appendix A.

APPENDIX D: EXPERIMENTAL DATA

1. Comparison of measurements taken inside
and outside the Cauchy cavity

We prepared dynamical systems using polystrene par-
ticles of 1-μm-diameter in water, with differnet volume
concentrations, ranging from 2.2 × 10−4% to 1%. The sample
container is identical transparent cylindrical bottles (dimen-
sions: ∼9 mm in diameter, ∼15 mm in height). We note
that the size of the samples must be much smaller than the
diameter of the integrating sphere to ensure the homogeneous
illumination condition. The sample container is placed at the
center of the sphere and fixed to the port plug of the integrating
sphere (Thorlabs, SM05CP2C). Each sample is placed inside
the integrating sphere for 3 min before taking the measure-
ment. Measurements inside and outside the Cauchy cavity are
taken for the same samples for comparison. The duration of
each measurement is 5 min. The illumination power from the
fiber is ∼20 mW. To have a fair comparison, for measurements
taken outside the Cauchy cavity, the source-sample distance
and sample-detector distance is kept to be 2.5 cm, which is
identical to the radius of the integrating sphere.

For each measurement, we were able to collect three
independent parameters: the correlation function g(τ ), the
contrast of the correlation function β, and the count rate
of the detectors. g(τ ) and β are connected through the
Siegert relation gI (τ ) = 1 + βg(τ ), where gI (τ ) represents
the intensity-intensity correlation function [2]. Typically, β

strongly depends on the experimental geometry. In our exper-
iment, it represents the effect of multiple-speckle integration
and two polarization states and might be used as an indicator
to determine whether diffusion approximation is valid. Exper-
imentally, β can be obtained from β = gI (τ → 0).

As mentioned before, we performed measurements at two
different detection angles (45◦ and 135◦). The results are
summarized in Fig. 8. The corresponding characteristic times
of the dynamics for each g(τ ) are shown in Fig. 4(a). There
are several observations to note here. First, due to the high
reflectivity of the sphere, the measurements taken inside the
cavity have higher count rates compared to outside measure-
ments. Besides, the count rates remain unchanged when ρ

changes, indicating that the technique is more robust and
does not require any adjustments for a specific measurement.
Also, the contrast β is constant (∼0.48) for both cases in the
diffusion regime (large ρ). One can clearly see that the Cauchy
cavity has dramatically decreased (by more than one order
of magnitude) the concentration limit for which the diffusion
approximation can be applied. We note that the value of β is
not unity mainly due to the use of nonpolarizing single-mode
fibers that support two polarized modes. Finally, the measure-
ments taken inside the cavity are not sensitive to the angle
of detection, while the measurements taken outside the cavity
vary greatly and in an unpredictable way when the angle of
detection changes. This phenomenon is observed for all three
descriptors, g(τ ), β, and the count rate.
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2. Retrieving particle sizes from complex systems

As a proof-of-concept experiment, we prepared samples
using polystrene particles of different diameter (from 200 nm
to 3 μm) in a transparent cylinderical container, with known
volume V and area �. The loss of the system is predetermined
by calibration measurements. Therefore, the mean paths of
photons 〈s〉 are calculated theoretically using Eq. (4). The l∗
of these samples was adjusted to be the same by varying the
concentration according to Mie calculations [29], which are
5 mm. The experimental data with corresponding fitting are
shown in Fig. 9. The retrieved τm using Eq. (2) as well as Dm

is shown in Fig. 5.

FIG. 9. (a) Experimentally measured g(τ ) of different size of par-
ticles. (b) Corresponding experimental fit using single-exponential
function.
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