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Rotating optical vortex clusters in competing cubic-quintic media
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We put forward a rich variety of optical vortex structures nested in a localized beam envelope supported by
cubic-quintic media confined in a rotating harmonic trap. The globally linked vortex cluster comprises an even
number of vortices with topological charges equaling 1 and −1 alternately. In the nonrotating frame, single-
charged vortices reside evenly on a ring. Yet, the system rotation induces the Coriolis force, which in turn leads
to a strong asymmetry of the vortex cluster. With the increase of rotation frequency, vortex clusters with a
different number of vortices transform into rotating nonlinear states with different symmetries. Meanwhile, the
beam envelope is deformed obviously. Nonrotating vortex clusters are stable provided that their power exceeds
a certain critical value. Unstable rotating states are very robust and survive over thousands of diffraction lengths.
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I. INTRODUCTION

The generation, propagation, and interaction of vortices
in nonlinear systems have been studied in diverse areas of
physics, for example, nonlinear optics [1,2], Bose-Einstein
condensates (BECs) [3], hydrodynamics, cavities, and elec-
tron beams [4], etc. Optical vortices are unique objects
carrying a nonzero angular momentum expressed by a non-
trivial phase distribution around a phase singularity [2]. They
share many properties with the vortices observed in other sys-
tems, for instance, superfluids and BECs [5,6]. Applications
of vortex solitons have been found in many fields, such as
optical trapping, microscopy, and quantum information, etc.,
to name a few [7].

In Kerr or saturable nonlinear media, azimuthal symmetry-
breaking instability usually breaks vortex soliton into several
fragments. As has been revealed competing nonlinearity,
such as a combination of χ (2) and χ (3) nonlinearity [8] and
cubic-quintic [9] nonlinearity, can suppress the azimuthal
instability effectively. Effective alternatives are confined sys-
tems, such as graded-index optical fibers [10], nonlinear
photonic crystals with defects [11], linear and nonlinear op-
tical lattices [12–15], and optical lattices with defects [16].
Experimentally, robust nonlinear vortex modes were observed
in cubic-quintic and saturable media [17–19]. For a review of
early works, see [2,20–22] and references therein.

Besides single vortex, vortex-antivortex pairs and
quadrupoles nested in a localized beam field were reported
[23,24]. However, only vortex-antivortex pairs can stably
evolve in a narrow parameter region. Very different vortex
solitons, rotating vortex clusters, were proposed in media
with inhomogeneous defocusing nonlinearity whose strength
grows to the periphery at a rate faster than rD, where D is
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the dimension of space [25]. Rotating twin-vortex solitons
[26] and vortex breathers [27] were discussed in nonlocal
nonlinear media. Surface solitons can rotate stably at the edge
of the guiding structures consisting of several concentric rings
[28]. Truncated rotating square waveguide arrays support new
types of localized modes in both linear and nonlinear cases
[29]. Ultrashort light bullets were found in strongly twisted
waveguide arrays [30]. Robust rotating azimuthons excited
by superpositions of Bessel beams were studied in dissipative
Kerr media [31]. The rotation may stabilize in somewhat
unstable solitons.

In BECs, vortex clusters have been studied in parabolic
traps [32–35]. Multisolitons and azimuthons were numer-
ically solved by a numerical relaxation procedure with a
stabilizing factor [34]. Stable three-dimensional nonrotat-
ing and rotating (azimuthon) multipole solitons were also
obtained numerically by the same method [35]. Vortex repli-
cation was reported in BECs trapped in double-well potentials
[36]. Metastable rotating vortex clusters were revealed in
the form of quantum droplets carrying multiple singly quan-
tized vortices held in a parabolic potential modeled by the
Gross-Pitaevskii equation augmented with Lee-Huang-Yang
corrections [37]. Very recently, we predicted an interesting
type of two-dimensional and three-dimensional stable quan-
tum droplets persistently rotating in an anharmonic potential.
Through rotation, crescentlike droplets bridge fundamental
droplets and vortex droplets with different topological charges
[38].

Despite the above progress, the properties of rotating op-
tical vortex clusters have not been explored in homogeneous
nonlinear medium. The goal of this paper is to draw a full
picture of the dynamics of rotating vortex clusters (rotat-
ing complex solitons) in optical media with a homogeneous
nonlinearity. We investigate the existence, stability, and prop-
agation dynamics of the rotating complex solitons, as well
as the impact of the Coriolis force on their properties. Our
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prediction may provide a helpful hint for the experimental
creation of elusive self-sustained complex vortex states in
nonlinear optics and BECs.

II. THEORETICAL MODEL

Our analysis starts from considering light propagation
along the z axis of a competing cubic-quintic medium. Dy-
namics of the beam in an external potential is governed by a
two-dimensional nonlinear Schrödinger equation:

i
∂�

∂z
= −1

2

(
∂2�

∂x2
+ ∂2�

∂y2

)
+ V � − |�|2� + |�|4�, (1)

where the scaling invariances of the system have been used
to bring the equation into this dimensionless form. Potential
V (x, y) = ω2r2/2 stands for a harmonic trapping with r =√

x2 + y2 and ω being the trapping frequency. To find rotating
vortex clusters, we use coordinate frame [x′ = x cos(�z) +
y sin(�z), y′ = y cos(�z) − x sin(�z)] that rotates around the
z axis with a rotation frequency (angular velocity) �, where
Eq. (1) acquires the following form:
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We omitted the primes in the rotating coordinate system
Eq. (2). The Coriolis term induced by the rotation is expressed
by −�Lz� with Lz = −i(x∂/∂y − y∂/∂x). The rotation fre-
quency � > 0 corresponds to the counterclockwise rotation.
The beam evolution is characterized by the power (energy
flow) U = ∫∫ |�(x, y)|2dxdy and the angular momentum L =∫∫

�∗Lz�dxdy.
The stationary solution of Eq. (2) in the rotating frame can

be solved by assuming �(x, y, z) = ψ (x, y) exp(ibz), where b
is a real propagation constant and ψ = ψr + iψi is the profile
of a soliton with real part ψr and imaginary part ψi. The
field modulus is defined as |ψ | =

√
ψ2

r + ψ2
i and the phase

structure is determined by the relation θ = arctan(ψi/ψr ).
Substitution of the expression into Eq. (2) yields a coupled
partial differential equation, from which soliton solutions
can be solved numerically by using the Newton-conjugate
gradient method [39]. The basic idea is to use Newton it-
erations, coupled with conjugate-gradient iterations to solve
the resulting linear Newton-correction equation. It can con-
verge for both the nonlinear ground states and excited states.
Typical examples show that the Newton-conjugate gradient
method converges much faster than the other existing iteration
methods, often by orders of magnitude. For details of this
numerical method, see pages 381–389 in Ref. [39].

Since single-charged vortex solitons in cubic-quintic media
are stable only for b ∈ [0.145, 0.1813] [40,41], we introduce a
weakly harmonic potential to extend the stability region. The
external potential enlarges the existence domain of vortices
simultaneously. For the sake of definiteness and illustration,
we set ω = 0.02 throughout this paper. The nonlinear mode
in the absence of an external potential has a characteristic
flat-top shape when its power is relatively large. The trapping
frequency is sufficiently weak to keep the nonlinear state at
a power close to its (free) equilibrium value. Meanwhile, the
harmonic potential confines the light field around its center,

(a)

(f)(e)(d)

(c)(b)

FIG. 1. (a) and (b) Field moduli of nonrotating vortex dipoles at
b = 0.0643 and bcut = 0.1307, respectively. (c) Nonrotating vortex
quadrupole at bcut = 0.1267. (d) and (e) Rotating vortex dipoles at
� = 0.002 and 0.0095, respectively. (f) Phase distribution corre-
sponding to (e). b = 0.0643 in (d) and (f), U = 1500 in (a), and
x, y ∈ [−35, 35] in all the panels.

which makes it possible to form vortex clusters. Indeed, in a
system without an external potential, one cannot find nonlin-
ear modes containing vortices with pivot positions deviating
from the center of the field envelope.

To obtain the stationary solutions of vortex clusters, we
guess the initial nonlinear modes in the form,

ψ (x, y) = A exp(−r4/w4)
n∑

k=1

exp
[
i(−1)k arctan

y − yk

x − xk

]
,

(3)
where A exp(−r4/w4) is a super-Gaussian background light
field, the even integer n is the total number of single-
charged vortices, k is a sequence number, (−1)k denotes
the topological charge of vortices with alternate signs for
the neighboring vortices, xk = r0 cos(θk ) and yk = r0 sin(θk )
[θk = 2(k − 1)π/n] are the positions of vortex pivots, r0 is
the radius of a ring on which the centers of vortices reside, and
φk = arctan y−yk

x−xk
is the angular coordinates around the vortex

pivots at (xk, yk ).

III. NUMERICAL RESULTS AND DISCUSSION

Before unveiling the vortex clusters containing multiple
single-charged vortices, it is beneficial to understand the prop-
erties of vortex dipoles first. In the nonrotating regime (� =
0), a vortex dipole contains two vortices with opposite topo-
logical charges (m1 = −m2 = 1) residing symmetrically with
respect to the origin at x, y = 0 [Fig. 1(a)]. With the growth
of propagation constant b, the right vortex moves toward the
origin (the left one is always symmetric with the right one).
As b approaches its upper cutoff bcut = 0.1307, though the
twin vortices are still symmetric about the origin, the beam en-
velope shrinks and becomes deformed obviously [Fig. 1(b)].
Concretely, it is squeezed along two mutually perpendicular
directions with different rates, which makes the envelope no
longer radially symmetric, in sharp contrast to vortex dipoles
in inhomogeneous defocusing media [25].

The Coriolis force emerges when the system rotates around
the z axis. It plays an important role in the motion of vortices.
The opposite winding numbers of the neighboring vortices
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(a)

(c) (d)

(b)

FIG. 2. (a) Dependence of power U on b for nonrotating vortex
dipoles and quadrupoles. (b) Variation of positions of the vortex piv-
ots versus b for nonrotating vortex dipoles and quadrupoles. (c) U (�)
curves for rotating vortex dipoles at b = 0.0973 (solid), quadrupoles
at b = 0.0934 (dash-dotted), and octopoles at b = 0.0868 (dotted);
U (� = 0) = 1000 for all curves. (d) Variation of positions of the
vortex pivots versus � for rotating vortex dipoles at b = 0.0643,
U (� = 0) = 1500. Dashed line denotes x = 0.

indicate that the directions of the azimuthally internal currents
of neighboring embedded vortices are opposite. When � is
fixed, the Coriolis force “felt” by m = 1 vortices is different
from that “felt” by m = −1 vortices. For instance, the rotation
makes the left vortex (m = −1) in the vortex dipole move
toward the origin and the right vortex (m = 1) move toward
the periphery [Figs. 1(d) and 1(e)]. Thus, the Coriolis force
induced by the rotation destroys the symmetry of m = ±1
vortices at � = 0 [Fig. 1(a)]. In this process, the distance
between two vortices varies slightly. At �cut = 0.0095, even
if we neglect the sign of m, the phase of the right vortex is still
not symmetric with that of the left one [Fig. 1(f)].

The power of nonrotating vortex dipoles decreases with
b [Fig. 2(a)]. The nonzero threshold power at bcut = 0.1307
implies that such modes are purely nonlinear states and can-
not bifurcate out from the eigenmodes of the corresponding
linear system. As b decreases, the beam envelope expands
and a giant flat-top beam with nested vortices forms at high
power [Fig. 1(a)]. The distance between the two vortices in
the nonrotating vortex dipole decreases monotonically with
the growth of b [Fig. 2(b)].

The power of vortex dipoles at fixed b decreases monoton-
ically with the growth of � [Fig. 2(c)]. There is a cutoff value
�cut above which no stationary solutions of rotating vortex
dipoles can be found [see, e.g., Figs. 2(c) and 4(d)]. At �cut,
the left vortex reaches the origin and the right one moves
outside of the beam envelope [Fig. 1(e)]. Unlike the right
vortex in Fig. 1(e) at �cut, the two vortices in the nonrotating

FIG. 3. Field moduli of vortex clusters. (a) and (d) Vortex
quadrupoles at b = 0.0611. (b) and (e) Vortex sextupoles at b =
0.0584. (c) and (f) Vortex octopoles at b = 0.0560. � = 0.0089,
0.0066, and 0.002 in (d),(e), and (f), respectively. � = 0,U = 1500
in (a)–(c) and x, y ∈ [−35, 35] in all the panels.

vortex dipole at bcut are still surrounded by the beam envelope
[Fig. 1(b)].

Of particular interest is the process of the variation of
the positions of vortex pivots versus rotation frequency
[Fig. 2(d)]. When � is below 0.0038, the two vortices move
rapidly toward positive infinity and the distance between them
is invariant. While the right vortex resides on a fixed position
x+ ≈ 17.2 in the region � ∈ [0.0038, 0.0066], the left vortex
still moves slowly toward the origin. For � > 0.0066, the
linear velocity of the right vortex is faster than that of the

(a)

(c)

(d)

(b)

FIG. 4. The variation of the positions of the vortex pivots versus
� for vortex quadrupoles (a) and octopoles (b). U (� = 0) = 1500
and 1000 is shown in (a). The x+, y+ in (a) denote the position of the
right and upper vortices. The x1+, x2+ in (b) represent the positions
of the right and upper-right vortices. (c) Instability growth rate Re(λ)
versus b for nonrotating vortex clusters. (d) Existence domains of
vortex dipoles and quadrupoles on the (b − �) plane.
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left vortex. Eventually, the left vortex approaches the origin
and the right one reaches the edge of the beam envelope. The
unequal linear velocities of the two vortices and the nonuni-
formly linear velocities of a single vortex may be related to
the nonlinear variation of vortex dipole power on the rotation
frequency � [Fig. 2(c)].

The symmetry of vortex clusters containing more vortices
can be analyzed by the group theory briefly. The rotational
symmetry of nonlinear modes is usually determined by the
form of the external potential [42]. The harmonic potential
adopted here shows perfect continuous rotational symmetry
since V (r) has no dependence on the azimuth angle φ. The
symmetry group of V (r) is thus O(2) and has no influence on
the symmetry of nonlinear states. Yet, considering the fact that
an even number of vortices with alternating winding numbers
resides on a ring, the rotational symmetry group of vortex
clusters containing n vortices is determined by the discrete
point-symmetry group Cn/2,v . This corresponds to discrete
rotations of the azimuth angle εn = 4π/n with respect to a
rotation axis perpendicular to the (x, y) plane and intersecting
it at the origin as well as to specular reflections with respect to
a number of planes containing the rotation axis [43]. The re-
lation ψ (r, φ + εn) = ψ (r, φ) holds for both nonrotating and
rotating vortex clusters containing an even number of vortices
(Fig. 3).

The variation of positions of vortex pivots and the dis-
tribution of the field envelope in nonrotating vortex clusters
containing more vortices are similar to those of vortex dipoles.
For vortex quadrupoles at � = 0, four vortices with alternat-
ing charges reside evenly on a ring [Fig. 3(a)]. The beam
envelope exhibits a radial symmetry when b is small. Yet, as
b approaches to bcut = 0.1267, the field envelope of the vor-
tex quadrupole is squeezed along two mutually perpendicular
directions at the same rate. The shrinkage makes the envelope
no longer radially symmetric and it becomes a squarelike
one [Fig. 1(c)]. Similarly, when b → bcut, the envelopes of
the vortex sextupole and octopole become a regular hexagon
and a regular octagon, respectively. This is in sharp contrast
to the vortex quadrupole and sextupole in inhomogeneous
nonlinearity [25], where the beam envelope is always radially
symmetric.

Unlike the vortex dipole, the counterclockwise rotation
(� > 0) of the vortex quadrupole results in the four vortices
moving toward the origin. The m = −1 vortices on the y axis
move slower than the m = 1 vortices on the x axis [Figs. 3(a)
and 3(d)]. The vortex quadrupole at � = −0.0089 can be
obtained by rotating the vortex quadrupole at � = 0.0089
shown in Fig. 3(d) by π/2. It manifests the fact that the effect
of counterclockwise rotation on m = ∓1 vortices is the same
as that of the clockwise rotation on m = ±1 vortices.

The rearrangement of vortices due to rotation changes the
symmetry of the field envelope simultaneously. While rotating
vortex quadrupoles remain symmetric about the x and y axes
[Figs. 3(d)], rotating vortex sextupoles are only symmetric
about the x axis [Fig. 3(e)]. Near �cut, the vortices reside in
a regular triangle for vortex sextupoles and a regular square
for vortex octopoles [Fig. 3(f)]. The envelope is deformed
more severely near the corners of the regular polygons. This
property provides a possibility for the realization of beam
reshaping in a rotating regime by appropriately placing

different numbers of single-charged vortices in a flat-top
beam.

In vortex quadrupoles, while the vortices on the x axis
move to the origin with the growth of �, the vortices on the
y axis move toward the periphery first and turn back to the
origin when the rotational frequency exceeds a certain value
�cr [Fig. 4(a)]. For � > �cr, the moving speed of vortices
on the x axis is the same as that of the vortices on the y
axis. Given the symmetry of vortex octopoles, one only needs
to monitor the variation of positions of the right vortex and
upper-right vortex [Fig. 4(b)]. While the right vortex holds a
uniform motion toward the origin, the upper-right vortex is
almost static at small � and moves along a 45% direction for
large �.

The stability of rotating vortex clusters can be
analyzed by solving the perturbed solutions of Eq. (2)
in the form �(x, y, z) = [ψ (x, y) + u(x, y) exp(λz) +
v∗(x, y) exp(λ∗z)] exp(ibz), where u and v 	 1 are
infinitesimal perturbations and λ is the growth rate of
the instability. Linearization of Eq. (2) around stationary
solutions yields an eigenvalue problem [44]:

i

[
M1 M2

−M∗
2 −M∗

1

][
u
v

]
= λ

[
u
v

]
, (4)

where M1 = (∂2/∂x2 + ∂2/∂y2)/2 − ω2(x2 + y2)/2 − b +
2|ψ |2 − 3|ψ |4 − i�(x∂/∂y − y∂/∂x), M2 = ψ2(1 − 2|ψ |2),
and ∗ denotes complex conjugate. The instability growth
rate λ in Eq. (4) was solved numerically using a Fourier
collocation method [39]. Solitons are stable only when all
positive real parts of the eigenvalues λ equal zero.

Figure 4(c) shows the dependence of the instability growth
rate on propagation constant b for nonrotating vortex clusters.
Vortex dipoles are completely stable. Vortex clusters with n �
4 are stable provided that the condition b < bcr or U > Ucr is
satisfied. The stability region shrinks with the growth of the
number of vortices n.

However, with the increase of �, a weak instability occurs
for vortex clusters containing four or more vortices, which
may be linked with the dependence of power on � [Fig. 2(c)].
While the power of vortex dipoles decreases with �, the
power of vortex clusters with more vortices increases. The
principle of minimum energy implies that the rotating state
with increasing power suffers instability. Strictly speaking,
rotating vortex clusters with four or more vortices are unsta-
ble. Nevertheless, the instability growth rate is very small and
grows very slowly with �, which allows vortex clusters to
survive for a very long propagation distance. This indicates
that even unstable rotating states can be seen as stable objects
in practice, as we will show in Fig. 5. The allowed maximal �

for vortex dipoles increases slowly with the growth of b first
and drops down abruptly when b > 0.12. The largest �cut of
vortex quadrupoles appears at moderate power [Fig. 4(d)].

The stability analysis results are verified by exhaustively
numerical propagation simulations of Eq. (1) using split-step
Fourier algorithm. Typical examples are shown in Fig. 5.
Rotating vortex dipoles are completely stable in their entire
existence domain. All vortex clusters rotate counterclockwise
when � > 0. The rotational periodicity of vortex clusters
estimated by the relation T = 2π/� precisely predicts the
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(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

FIG. 5. Stable (a) and unstable (b)–(d) propagation examples of
vortex clusters. b = 0.0643, � = 0.008 in (a), b = 0.12, � = 0.005
in (b), b = 0.0584, � = 0.0066 in (c), b = 0.0560, � = 0.0097 in
(d). (x, y) ∈ [−35, 35] in (a), (c), (d) and [−25, 25] in (b).

propagation dynamics of the rotating vortex clusters. For ex-
ample, the periodicity for vortex quadrupoles with � = 0.005
shown in Fig. 5(b) is ∼1256. The initial input of Fig. 5(c)
is shown in Fig. 3(e). The vortices in the vortex sextupole
begin to merge at z = 1600. Though vortex clusters are un-
stable in certain parameter ranges of b and �, their instability
growth rates are very small which allows them to survive for a
very long distance (thousands of diffraction lengths), greatly

exceeding the present experimentally feasible sample lengths.
Such unstable nonlinear states can be regarded as dynamically
stable objects.

IV. CONCLUSIONS

In summary, we studied the propagation dynamics of ro-
tating vortex clusters in a system modeled by the nonlinear
Schrödinger equation with a cubic-quintic nonlinearity and a
harmonic trapping potential. Various families of stationary so-
lutions, including vortex dipoles, quadrupoles, sextupoles, and
octopoles were derived in nonrotating and rotating regimes.
For nonrotating modes, while vortices keep their symmetry
with the decrease of propagation constant, the envelope loses
its radial symmetry as b → bcut. For vortex clusters with a
radially symmetric envelope, the increase of � shifts the
positions of vortices and destroys the symmetry of both the
envelope and the vortices. Nonrotating vortex clusters are
stable in a very broad region. The unstable rotating states
can survive over a very long propagation distance without
obvious deformations. The findings can be generalized to the
investigation of vortex clusters in media with χ (2) − χ (3) non-
linearity modulated by parabolic or other radially symmetric
potentials. In addition, our results are relevant for matter-wave
solitons or quantum droplets trapped in a harmonic potential.
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