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Vortex creation, annihilation, and nonlinear dynamics in atomic vapors
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We exploit techniques for generating vortices and controlling their interactions in an optical beam in a
nonlinear atomic vapor. A precise control of the vortex positions allows us to observe strong interactions leading
to vortex dynamics involving annihilations. With this improved controlled nonlinear system, we get closer to
the pure hydrodynamic regime than in previous experiments while a wavefront sensor offers us a direct access
to the fluid’s density and velocity. Finally, we developed a relative phase shift method which mimics a time
evolution process without changing nonlinear parameters. These observations are an important step toward the
experimental implementation of a two-dimensional turbulent state.
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I. INTRODUCTION

Fluidlike properties of light in nonlinear Kerr media is
an interesting and rapidly developing subject of research. In
particular, they were investigated in photorefractive crystals
[1,2] and thermo-optic media [3,4]. In the present paper, we
will discuss light propagation in atomic vapors which was
proven an effective alternative platform for fluids of light
studies. In the past, this experimental platform was used to
implement vortex creation [5,6], photon pre-condensation [7],
and to measure the Bogoliubov dispersion relation [8,9].

There has been a vast amount of studies devoted to vor-
tex interactions and turbulence, yet their theory is far from
being complete. In the context of optical fluids, there have
been significant advances in studying turbulence theoretically
[10,11] and numerically [12–14]. Furthermore, with optical
vortices having quantized circulations, optical turbulence is
similar to turbulence in superfluids (e.g., liquid Helium) and
Bose-Einstein condensates [15,16].

Optical turbulence was previously implemented in one-
dimensional (1D) systems in liquid crystals [17,18] and
optical fibers [19]. However, no experimental implementation
of two-dimensional (2D) optical turbulence has been done so
far, which is related to experimental challenges of minimizing
the dissipation to nonlinearity ratio and finding optimal ex-
perimental setups in which a large number of vortices could
be created and maintained in the system for a sufficiently large
period of effective time so that random hydrodynamic motion
of vortices could lead to universal turbulent statistics.

An interesting mechanism of vortex generation is the so-
called snake instability. The snake instability of 1D solitons
was first discovered in the context of 2D dispersive compress-
ible fluids arising in plasma context [20]; it was further studied
in [21] and later generalized to nonlinear defocusing media in
[22]. In the context of defocusing nonlinear optics (and Bose-
Einstein condensates) solitons are dark (the light intensity is
less inside the soliton than in the ambient medium). In the
case of optical media with saturation-type nonlinearity, such

soliton solutions were treated theoretically in [23,24]. In this
context, the snake instability is known to be a precursor to
generation of two-dimensional dark solitons [25] and vortex
nucleation [26]. The nucleation of vortices via the snake in-
stability [27] and their subsequent dynamics [28] have also
been studied in polaritons. Dark solitons and their instability
in two-dimensional condensates leading to the creation of
vortices were recently studied numerically in [14,29]. In the
latter paper, trains of multiple dark solitons were created in
a Josephson-Junction setup where two cavities with initially
unequal densities are separated by a potential barrier. This was
shown to be an ideal setup for generating turbulence because
the instability of multiple solitons leads to the creation of a
large number of well-sustained vortices.

In the present paper, we study strongly nonlinear multiple-
vortex generation of optical vortices in atomic vapors and
their interactions through timelike evolution. The techniques
demonstrated in this work could be scaled up to systems
with large numbers of randomly moving strongly nonlinear
vortices with hydrodynamic properties thereby implementing
turbulent states. The strategy to achieve these results are based
on a proper choice of the nonlinear parameters and the ini-
tial configuration of the incident beam, providing a robust
and efficient mechanism for vortex generation. We devel-
oped a specific method precisely controlling evolution time
of processes occurring in our fluid which is equivalent to the
Taylor’s frozen turbulence hypothesis [30], and which allows
us to observe more evolved vortex creations and interactions
at shorter effective times.

This work reports on experiments using the snake in-
stability and similar mechanisms to create vortices with
hydrodynamic properties. It can be viewed as a stepping
stone to building future experiments on 2D optical turbulence.
Initial efforts on optical vortices created as a result of the
development of instability of dark soliton stripes were pre-
viously reported in atomic Rubidium experiment [6] and in
photorefractive crystals [31]. The novel features exploited in
the present paper include the following.
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(1) In contrast to a holographic technique [4,32,33], we use
a lateral shearing interferometer [34–36]: a 2D grating creates
several identical replicas of the incoming wave front that
interfere with each other. A real-time analysis in the Fourier
space gives us access to the local intensity profile and phase
gradients of the observed wave front. This lateral shearing in-
terferometry technique has been used for studying aberrations
in regimes of short wavelengths [34,35] or intense beams and
in the context of adaptative optics and ophthalmology. In the
context of vortices in nonlinear media, this imaging of the
output field at the exit facet of the nonlinear medium allows
us to accurately identify optical vortices and track their pre-
cise location without using regular interferometers requiring a
reference beam, a scanning process, and a post-analysis.

(2) A better control of beam’s initial conditions. Using
specific geometries to optimize vortex nucleation leading to
an acceleration of vortex creation process and even to con-
trolled vortex interactions. On another hand, increasing the
background beam size and shortening the nonlinear length
(e.g., compared to [6]) reduces the impact of dispersion on
the vortex motion. As presented in our previous study [37],
we can approximate the background on which the vortices rest
as flat, thereby minimizing the impact of the local refraction
index fluctuations onto the vortex motions. This allows us to
assume that the hydrodynamic motion of vortices is the main
observed process.

II. MODEL AND EXPERIMENTAL SETUP

The system studied here consists of a (2+1) dimension
optical field propagating along z through a nonlinear medium.
In the paraxial approximation, the slowly varying complex
amplitude ψ (r, z) of the laser field can be described by the
nonlinear Schrödinger equation:

i
∂ψ

∂z
=

(
− α

2
∇2

r − k0�n − i
η

2

)
ψ, (1)

where r = (x, y) is the coordinate in the transverse to the
beam plane, z ≈ tc (where t is time and c the speed of light)
is the distance along the beam, α = 1/k0 is the kinetic energy
(dispersion) parameter, k0 = 2π/λ0 corresponds to the wave
vector of the laser beam (λ0 being its wavelength in vacuum),
and the beam intensity is I = n0ε0c|ψ (r, z)|2/2, with n0 being
the linear index of refraction and ε0 the vacuum permittivity.
Further, �n is the nonlinear refractive index and the param-
eter η, proportional to the inverse of the absorption length,
quantifies the linear absorption rate of the medium.

In our experiment, the nonlinear refractive index is given
by a saturating nonlinearity model:

�n ∝ δ

1 + 4δ2/�2

I/Isat

1 + 4δ2/�2 + I/Isat
, (2)

where δ is the detuning between the laser and the atomic
resonance with respect to the 87Rb D2 transition 5S1/2(F =
2) − 5P3/2(F = 1, 2, 3), � = 2π × 6.06 MHz is its natural
line width, and Isat is the saturation intensity. For negative
nonlinear refractive index (�n < 0), the medium will have a
defocusing response that corresponds to an effective repulsive
photon-photon interaction. Two typical lengths in the system
are important: the nonlinear length scale zNL = 1/(k0|�n|)

FIG. 1. Experimental scheme: Successive images show how the
system evolves from the engineered initial condition after propagat-
ing along the renormalized effective time t ∝ z/zNL.

corresponding to the effective time scale of the propagation
and the healing length � = √

zNL/(2k0), corresponding to the
minimal length scale for density variation in the transverse
plane.

Using the Madelung transformation ψ (r, z) =√
ρ(r, z) exp(iφ(r, z)), we can write a system of

hydrodynamical equations for the electric field:

∂zρ + ∇r · (ρv) = −ηρ, (3)

∂zv + (v · ∇r )v = ∇rh. (4)

This formulation describes the laser beam as a fluid of density
ρ which flows at a velocity v = 1

k0
∇φ in the transverse to the

beam propagation plane. Here, the fluid’s specific enthalpy is
defined as

h(ρ) = �n(ρ) + 1

2k2
0

∇2√ρ√
ρ

, (5)

where the second term is called “quantum enthalpy” arising
from quantum pressure (since this term is absent in the classi-
cal fluid equations). Our fluid of light can be characterized by

the speed of sound in the medium cs =
√

ρ ∂ (−�n)
∂ρ

.

The optical field is composed of a Gaussian background
beam (with waist wG = 1.1 mm and power PG = 800 mW)
overlapped with an elliptical Gaussian beam (with dimensions
wx = 730 μm and wy = 140 μm) having an equal central
intensity as the background beam. For destructive interference
(relative phase ϕ = π ) we obtain close to zero intensity in the
middle of the elliptical beam (as in the first image on Fig. 1).

This field propagates along the z axis into a cylindrical
cell of length L = 7cm and diameter 2.5 cm filled with a
natural isotopic mixture of 85Rb and 87Rb. Such a vapor be-
haves like a nonlinear medium whose strength can be tuned
experimentally. The nonlinear medium has a finite size, and
reducing zNL through �n mimics an increase of the effective
propagated time. The nonlinearity is measured using the non-
linear phase shift �NL = L/zNL. It can be adjusted through the
beam intensity I , the detuning δ, or the atomic density of the
vapor ρat (tunable with the vapor temperature) [38]. Typical
experimental parameters are the background intensity I = 4 ×
105 W/m2, the atomic density of ρat ≈ 2 × 1019 atoms/m3 (at
a temperature of T ≈ 120 ◦C), and the laser detuning scanned
from −10 GHz to −1 GHz. The temperature measurement
method is explained in the Appendix.
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FIG. 2. Experimental observation of vortex creation by increas-
ing the relative angle in the xz plane between beams (a) θ = 0,
(b) 4.4 × 10−4 rad, (c) 5.2 × 10−4 rad, and (d) is a zoomed vortex
pair with fluid density (colormap) and velocity (vectors, normalized
by cs shown as the white arrow).

By progressively increasing the nonlinearity using the de-
tuning (i.e., reducing zNL), we observe the fluid evolution after
different effective times at the output facet as shown in Fig. 1.
A Phasics wave-front sensor captures the near field at the
output of the medium ([34–36]). This offers the possibility
to measure the intensity and phase of the field directly, which
gives the optical fluid density and velocity in our experiment.

III. INITIAL VELOCITY

Due to the action of the refractive index when entering the
nonlinear medium, the initially elliptical dark stripe decays
into a symmetric set of dark solitons on which snakelike
bendings appear. Similar soliton trains appear as a result of
decay of initial density discontinuities, e.g., in the Josephson
junction setup [14]. As we can see Fig. 2(a), the bending pat-
tern is concave because the initial light intensity is not strictly
in one dimension: The reference beam intensity and the dark
stripe depletion are larger at the beam center. Such transverse
bending and amplitude modulation serve as an initial seed for
the snaking instability which distorts the soliton stripes further
leading to their breakup [21]. At δ = −1 GHz corresponding
to |�n| = 8.8 × 10−5 (at the end of the nonlinear medium in
the central part of the beam) the system evolves far enough
to observe well-developed snake instability bendings. These
parameters correspond to a nonlinear phase shift �NL = 50.

As shown in Fig. 2(a), in a simple configuration snake
instabilities do not have the necessary evolution time to break
into vortices. However, increasing the relative initial veloc-
ity between the background and the dark stripe results in
an acceleration of the snake instability growth and leads to
vortex nucleation. Such a relative transverse velocity can be
expressed as v = r/t ≈ θc where the angle between the back-
ground and the elliptical beam in the xz plane is approximated
by θ ≈ r/z at small angles. Results of this method are pre-
sented on Figs. 2(b) and 2(c). An increase of θ accelerates
the snake instability process and allows us to observe vortex
creation for the same nonlinear strength as before. The snake
instability causes the soliton to break up into a pair of vortices

from v/c = θ = 5.2 × 10−4 rad. Beyond θ = 8.7 × 10−4 rad,
too many fluctuations are created making the observation of
snake instability decay unclear. It is possible to approximate
the speed of sound as cs ≈ c

√
�n which gives in our case

cs/c ≈ 9.4 × 10−3. Therefore, regarding the breakup velocity
v/c, an additional initial velocity between 5% and 10% of cs

is enough to observe vortex nucleation. This low (compared to
speed of sound) velocity, which is necessary to reach a vortex
generation regime, is a good indicator that the subsequent
vortex dynamics occurs as in a nearly incompressible fluid.
Figure 2(d) shows the measurement of the phase gradient (i.e.,
fluid’s velocity) close to the vortices. The velocity circulation
around each intensity minimum confirms these minima con-
tain vortices. A snake instability always leads to breaking up
into a pair of oppositely charged vortices in order to conserve
the total topological charge of the system to be zero. We
also observe an augmentation of the fluid’s velocity between
the vortices. Taking into account the residual absorption, the
healing length of the medium around vortices is estimated as
� ≈ 50 μm. The core diameter of the vortices (at 0.9 of the
surrounding fluid density) is around 2� = 100 μm and the
center to center distance between vortices is 100 μm.

Detailed numerical simulations indicate that the saturation
and nonlocality, which potentially could drastically reduce
vortex nucleation, are negligible in our regime. Due to the
geometry of our configuration, the vortices move away from
each other and do not interact. Different initial conditions
suitable for vortex creation need to be used in order to observe
vortex interaction processes. We therefore shift the elliptical
beam along the z axis (propagation axis) to give the beam a
curvature when entering the medium which corresponds to an
additional phase gradient (fluid velocity) over several wave-
lengths. In this convergent configuration (radius of curvature
is around R = −0.5 m), the extra velocity pushes vortices to-
ward the center due to its specific phase gradient distribution.
This specific case leads to the creation of four vortex pairs vis-
ible in Fig. 3(a). Sign of topological charges is conventionally
defined depending on the winding direction as follows: + for
anticlockwise and − for clockwise velocity. As in the previous
case, each pair is composed of oppositely charged vortices
(i.e., the topological charges of the vortices in the center of
the structure are also opposite). Vortices move closer to each
other (represented by arrows) due to the specific convergent
configuration giving an initial velocity in this direction.

Then, they collide as shown in Fig. 3(b) and annihilate,
leading to radiative loss [39]. Figures 3(c) and 3(d) highlight
the emergence of this loss as sound waves visible around
vortices in the Supplemental Material [40]. After the vortex
annihilation, vortices form new pairs and the initial velocity
disappears: After frame (d), the remaining vortices will move
away from the center due to the nonhydrodynamic motion
related to the overall beam expansion.

IV. RELATIVE PHASE SCANNING

The experiment presented in Fig. 3 has been done at fixed
nonlinearity and therefore at fixed effective time. The evolu-
tion depicted in this figure solely arises from a relative phase
scanning between the elliptical and the background beam.
Small dephasings (0.9π < ϕ < 1.1π ) were sufficient to
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FIG. 3. Experimental observation of creation and interaction of
vortices. We are using an initial convergent elliptical beam which is
shifted by a phase ϕ relative to the background beam (a)–(d) ϕ =
0.96π, 1π, 1.05π, 1.10π , respectively.

observe the whole process, from the snake instabilities decay-
ing into vortices to the vortex interactions and annihilation.
An analogy can be made between this method and Taylor’s
frozen turbulence hypothesis [30]. Namely, considering tur-
bulence velocity fluctuations to be small compared to the
mean flow velocity, one can approximate the time evolution
of the system as its translation in the mean flow direction.
In our case, scanning the relative phase changes the added
velocity amplitude which remains oriented toward the center
and therefore a given velocity amplitude corresponds to a
specific effective time. We observe “timelike” dynamics of
the instability and subsequent vortex motion and interaction
by changing the relative phase between the two beams in the
initial condition. The small change of phase is only timelike
when the velocity of the fluid in the initial condition is parallel
or antiparallel to the direction of motion of the soliton, that is,
perpendicular to the long axis of the elliptical beam. For a lim-
ited range of values of the relative phase, the desired direction
of the velocity is maintained with only the magnitude being
altered. The subsequent timelike dynamics can be understood
by considering the translational motion of a 1D soliton which
can be approximated to be of the form f (x − vst ). In this case
vs can rescale t . As in one dimension there is no instability,
this change only affects the position of the soliton. In our case
the decay of the soliton is related to the transverse density
variations of the background beam through which the soliton
has propagated.

Figure 4 presents results of numerical simulations obtained
with the converging elliptical beam as an initial condition.
Upper plots correspond to a usual evolution where the sys-
tem evolves in time while the lower ones are equivalent
to measurements shown in Fig. 3. In addition to the good
agreement between experiment and simulation when scanning
the relative phase, we stress that such an agreement between

FIG. 4. Numerical simulations of the converging configuration
(R = −0.5 m). (a) and (b) Corresponding to a propagation along the
time axis, respectively, z/zNL = 35 and z/zNL = 70 while (c) and
(d) have the same effective time of propagation z/zNL = 50 but
relative phase is, respectively, 0.97π and 1.05π .

the two numerical setups justifies the mapping between time
evolution and phase scanning. The modification of the relative
phase induces small changes in the phase gradient which
can be understood as a precise tuning of the initial velocity
modulus. By keeping the nonlinearity fixed (therefore the
evolution time) and controlling initial velocity modulus, the
system will finish its propagation at different moments of the
evolution of vortices. Using the time evolution only, one needs
to scan the nonlinearity from z/zNL = 35–70 to observe the
whole process while a phase scanning protocol only requires
z/zNL = 50. Fixing the nonlinearity during the evolution pro-
cess has many advantages. In particular changing z/zNL has a
non-negligible impact on the beam’s dispersion.

The mean fluid density is also reduced during the time
evolution while it remains constant when scanning the relative
phase: This gives the possibility to study vortex dynamics
with fixed zNL and � during the whole process. It allows us
to study effective time evolution while fixing the nonlinearity
at a lower value. All these points make it a powerful tool to
study vortex processes.

Finally, we have studied the diverging configuration
through experiment and numerical simulations. Oppositely to
the previous case, the radius of curvature is now R = 0.5 m.
The relative phase is scanned in the same direction as for the
converging case presented in Fig. 3 (from ϕ < π to ϕ > π ).
We observe in Fig. 5 that the system starts with two pairs of
vortices and progressively evolves into four pairs of vortices.
In fact, we are in a situation where the evolution goes in the
opposite direction compared to the converging case. Consid-
ering the initial phase distribution which is opposite in these
two cases, the evolution of the phase gradient (initial velocity)
in each case for a same relative phase is also opposite.
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FIG. 5. Experiment (a) and (b) versus numerical simulation
(c) and (d) of the diverging case R = 0.5 m. Evolution is done by
scanning the relative phase: (a) and (c) and (b) and (d) correspond,
respectively, to ϕ = 0.95π and 1.08π .

Therefore, scanning the relative phase in the same direction
but in the diverging case (Fig. 5) will progressively reduce the
initial velocity instead of increasing it as we saw in Fig. 3.
This gives an impression of a backward process.

V. CONCLUSIONS

Our experimental techniques have allowed us to create and
observe the nonlinear dynamics and annihilation of strongly
interacting vortices. The vortices were created via a snake
instability of solitons arising from an initial elliptical dark
stripe. The use of a wave-front sensor has greatly simplified
the vortex observation and characterization by allowing us
to observe the wave front in situ. Accelerating the dynamics
allowed us to greatly reduce the needed nonlinearity. Specific
initial conditions on the dark stripe such as giving a curvature
to wave front of the soliton leads to vortex interactions and
annihilations. We have also developed a method based on the
relative phase shift between the fluid and the soliton which is
equivalent to an effective time shift. This way, it is possible
to observe vortex dynamics without changing any parameter
of the nonlinear medium improving the interpretability of the

FIG. 6. Transmission of the laser beam through the cell as a
function of the detuning δ of the laser. From the transmission profile
a fit to the data allows us to deduce the temperature of the gas. For
this particular curve, we find T = 110◦C.

results. Numerical simulations have confirmed these results.
The techniques developed and tested in this work are scalable
to bigger experiments and are aimed to produce and control
systems with a greater number of vortices engaged in chaotic
interactions of hydrodynamic type. Thus, our work gives ad-
ditional tools to control and study optical vortex interactions
and all phenomena related to it such as fully developed 2D
turbulence in optical fluids. An initial density jump like the
one in the Josephson junctions setup [14] is another promising
setup for creating turbulence in future experiments.
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APPENDIX: EVALUATION OF THE TEMPERATURE OF
THE ATOMIC VAPOR

To extract atomic gas temperature, we measure the trans-
mission profile of a weak laser beam after propagation through
the vapor as a function of the laser detuning. Fitting this data
(as shown in Fig. 6) with a numerical simulation taking into
account atomic lines of both isotopes, rubidium vapor pres-
sure as a function of the temperature [41–43], and the Doppler
broadening, we can deduce the atomic density and therefore
link it to the gas temperature using the vapor pressure [44] and
ideal gas law.
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