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Interaction of a dielectric waveguide mode with a resonant scatterer:
Scattering properties, propelling force, and torque
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A system of a resonant scatterer described as a two-level atom coupled to a circular dielectric waveguide is
studied. The system is characterized by the scattering properties of a guided mode (guided transmission and
reflection, bulk radiation) and optomechanical properties (propelling force and torque on the scatterer). The
results are based on a self-consistent solution of the scattering problem using the Green’s functions and cover
the cases of scatterers inside and outside waveguides. It is shown that while a scatterer with a fixed dipole
orientation gives rise to scattering spectra described by Lorentzian line shapes, an isotropic scatterer can produce
non-Lorentzian line shapes. The parameters defining the line shape are analyzed. The complicated line shapes are
likely to arise in the coherent characterization of an emerging class of photonic devices based on photon emitters
coupled to well-confined modes of dielectric waveguides. It is obtained that the propelling force and axial torque
on the scatterer at resonance can be directly expressed in terms of the spontaneous emission coupling factor (β)
of the system. The balances of the linear and angular momentum in the system are discussed. Numerical results
are presented for strongly confined guided modes which allow efficient mode scattering and conversion of the
linear and angular mode momentum to the force and torque, respectively.
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I. INTRODUCTION

Small resonant elements (metal and high-index dielectric
particles, molecules, atoms, impurities, quantum dots) located
near or inside a waveguide can greatly scatter an incident
guided mode. The pronounced scattering is somewhat surpris-
ing given the deeply subwavelength size of the scatterer and
takes place for strongly confined modes with the transverse
size comparable to the wavelength. What is more important,
however, is that the scattered waves can stay inside the waveg-
uide, rather than leave it. This creates realistic opportunities
for optomechanical manipulation of resonant elements and for
realizing various optical processing functions.

Initially, the interest in such coupled structures was due to
the possibility of launching single photons from small emitters
directly to waveguides. Currently, such structures are expected
to find much broader applications as building blocks of com-
plex systems as required, for example, for quantum networks.
This stimulated the investigation of structures made of various
emitters and waveguides: single organic molecules in glass
capillary [1], single molecules near an on-chip waveguide [2],
color centers in diamond coupled to nanowaveguides [3,4],
atoms near optical nanofibers [5], quantum dots in photonic
nanowires [6], and quantum dots coupled to photonic crystal
waveguides [7]. The scattering of a guided mode on a single
atom is attractive for obtaining strong nonlinearities [8,9],
which can lead to the creation of a single-photon transistor
[10]. Particles inside waveguides can also be used for optical
modulation [11,12].

One of the current challenges in this developing technology
is a reliable characterization of the interaction between the

emitter and the waveguide. In the single mode regime, the
interaction is typically described using two basic parameters:
the fraction of the power emitted into the guided mode (β
factor) and the enhancement of the emission rate into the
guided mode compared to that in the bulk material (Purcell
factor). There are several experimental methods for such char-
acterization. One can measure the β factor by comparing the
decay rate of an emitter coupled to the waveguide mode to that
without the coupling [7]. One can also extract the coupling
efficiency using extinction spectroscopy for a molecule inside
a waveguide [1] or inside the cavity formed by an interrupted
waveguide [13]. There are experimental measurements of the
alignment-dependent decay rate of an atomic dipole near an
optical nanofiber which partially agree with theoretical pre-
dictions [14].

The strong optical interaction between resonant particles
and guided modes offers the possibility not only to manipulate
light but also to move scatterers themselves by the optical
forces. Often, the experiments show rather weak propulsion
efficiency due to the lack of any resonant enhancement, for
example, the propulsion of atoms inside hollow-core fibers
[15] or particles by guided modes [16–18]. The resonant en-
hancement was obtained for large particles with whispering
gallery mode (WGM) resonances, the excitation of which
produces giant propelling forces with magnitudes comparable
to the incident guided momentum [19,20]. If the propulsion
by guided light is not desired, the longitudinal trapping can
be achieved by using counterpropagating waves. Besides the
force, guided light can create a torque on an atom near an
optical nanofiber [21]. The interaction of guided modes with
atoms can be used as a probe of the guided light angular
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FIG. 1. Scattering of a guided mode by a particle (a) inside or
(b) outside a dielectric wire with radius R and permittivity ε2 sur-
rounded by a medium with ε1.

momentum and helicity [22]. Various metamaterial structures
can also be used for creating optical torque [23–25] or optical
pulling forces [26].

In this paper, we study the system of a resonant scatterer
coupled to a circular dielectric waveguide. Both the opti-
cal and optomechanical properties are investigated with the
purpose of creating a thorough understanding of the manifes-
tation of the optical interaction in this system. We analyze
the transformation of the incident power into newly created
guided and bulk waves as well as the transformation of the
incident linear and angular momentum into the force and
torque, respectively. The scattering problem is solved self-
consistently using the Green’s function formalism. The key
parameters of an emitter-waveguide system are the β factor
and the Purcell factor. The β factor becomes rather large if
the guided mode is well confined. This usually requires the
use of high index waveguides, the modes of which have large
axial electric fields. These factors define not only the emission
properties but also the coherent scattering of a guided mode,
which can be used for extracting these factors. However, the
extraction procedure is simple only for the case of a specific
orientation of the dipole transition. It is shown that for an
isotropic scatterer complicated line shapes are likely to arise
due to coherent superposition of the waves excited by the
orthogonal components of the scatterer polarization. The force
acting on the scatterer is analyzed using several approaches,
which give identical results. A simple formula expressing the
force in terms of the β factor is obtained. A similar analysis is
performed for the axial torque and its value is also expressed
in terms of the β factor.

This paper is organized as follows. Section II de-
fines the problem and presents theoretical approaches to
calculate the fields, force, and torque. Section III initially
analyzes the efficiency of dipole emission into guided modes
and overall modification of the emission rate, then it analyzes
the scattering properties, force, and torque. Section IV gives
conclusions.

II. SCATTERING PROBLEM AND ITS SOLUTION

A. Problem formulation and solution procedure

We consider the interaction of a mode guided by a dielec-
tric waveguide (wire) with radius R and a resonant scatterer
(particle) located at x = x0 either inside (x0 < R) or outside
(x0 > R) – see Fig. 1. The permittivity of the wire is ε2 and
that of the surrounding medium is ε1. The scatterer is assumed
to be much smaller than the wavelength and described by
some polarizability χ0(ω). The scattering of the guided mode
leads to the creation of various guided modes propagating in

the ±z directions and bulk waves leaving the wire. We are
interested in finding the scattering properties as well as the
propelling force and axial torque on the scatterer. We will
analyze both x0 < R and x0 > R in order to get a full picture of
the interaction. Certainly, for x0 < R the force and torque on
the scatterer will not result in its motion unless the dielectric
is liquid. While the theoretical approach presented below is
general, the interest lies primarily in a resonant scatterer and
single mode guiding regime.

The solution is obtained in two steps. The first step is solv-
ing the problem of radiation emission by a point polarization
source interacting with a waveguide. This allows relating the
guided and bulk waves as well as the local field to the source
polarization. The second step is adopting a specific model for
the scatterer and finding its actual polarization using the cal-
culated local field. The knowledge of the actual polarization
immediately gives the amplitudes of the excited guided waves
(and hence the transmission and reflection) as well as the bulk
radiation. One can also use a slightly different approach. By
solving the emission problem one can parametrize the results
in terms of the β factor and the Purcell factor. This allows
expressing the transmission, reflection, and bulk scattering in
terms of these electromagnetic parameters and of the parame-
ters of the scatterer. Both approaches are discussed.

We will use the Gaussian units. All true fields are assumed
to vary sinusoidally at an angular frequency ω and are written
in terms of complex amplitudes such as

E(r, t ) = E(r)e−iωt + E∗(r)e+iωt . (1)

This definition affects the formulas for the time-averaged en-
ergy, power, momentum, and force expressed in terms of the
complex amplitudes of the field or polarization.

B. Properties of guided modes and their scattering

The incident wave is a guided mode of the wire. Qua-
sicircularly polarized modes behave as einϕ , where n is the
azimuthal number and ϕ is the azimuthal angle. The lowest, or
fundamental, modes have n = ±1 and the regime in which no
other modes can exist is referred to as the single mode regime.
The presence of a point scatterer at x = x0 breaks the angular
symmetry and, in general, leads to the excitation of guided
waves with angular numbers which can differ from that of the
incident. For example, the incidence of the n = +1 mode on
a point scatterer leads to the excitation of the n = −1 mode.
The intermode conversion can be avoided if the incident mode
has quasilinear polarization, which is obtained by combining
the n = +1 and −1 modes, and the scatterer polarization is
coupled to one of the quasilinearly polarized modes only. For
simplicity, we will refer to the modes as circular or linear
without using the prefix quasi. The linear modes have the fol-
lowing angular dependence for the electric-field components:

x polarized, {Eρ, Eϕ, Ez} ∼ {cos ϕ, sin ϕ, cos ϕ}; (2a)

y polarized, {Eρ, Eϕ, Ez} ∼ {sin ϕ, cos ϕ, sin ϕ}. (2b)

At ϕ = 0, where the scatterer is located (see Fig. 1), the elec-
tric field of the y-polarized mode has only the ϕ component;
the electric field of the x-polarized mode has only ρ and z
components. If no intermode conversion takes place for the
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linear modes, one can conveniently study the interaction of
each of them with the scatterer separately. Specific conditions
on the scatterer to avoid the intermode conversion are dis-
cussed in Secs. II C and II D.

Let us discuss the properties of guided modes which are
relevant for characterizing the scattering as well as for find-
ing the force and torque. A guided mode at some frequency
ω can be characterized by its wave number hg > 0 so that
its complex fields behave as e±ihgz−iωt , where the ± signs
describe the propagation in the ±z directions. The phase ve-
locity is vph = ω/hg = c/nph and the group velocity is vgr =
∂ω/∂hg = c/ngr, where nph is the phase index and ngr is the
group index.

The propagation of a guided electromagnetic mode is as-
sociated with the storage of energy, linear momentum, and
angular momentum as well as with the flow of the correspond-
ing quantities. We can define the stored quantities per unit
length (linear densities): energy W , linear momentum G, and
angular momentum J . We can also define the corresponding
fluxes through a plane perpendicular to the waveguide axis:
the energy flux (power) P, linear momentum flux M, and
angular momentum flux J . We can express these quantities
(averaged over time) in terms of the complex amplitudes [see
also Eq. (1)].

The z and ϕ components of the Poynting vector are

Sz = c

2π
Re[EρH∗

ϕ − EϕH∗
ρ ], (3a)

Sϕ = c

2π
Re[EzH

∗
ρ − EρH∗

z ]. (3b)

Defining the cross-sectional integration as∫
dσ =

∫ ∞

0
ρdρ

∫ 2π

0
dϕ (4)

and using (3) we express the energy W , linear momentum G,
and angular momentum J :

W =
∫

dσ
1

4π

(
ε|E|2 + |H|2), (5a)

G = 1

c2

∫
dσ εSz, (5b)

J = 1

c2

∫
dσ ρεSϕ, (5c)

where ε is the radially dependent permittivity. We assume
that ε1,2 are dispersionless but the results can be directly
generalized to account for dispersion. Note that the linear
momentum in Eq. (5b) [and similarly the angular momentum
in Eq. (5c)] is the so-called pseudomomentum (or Minkowski
momentum) [27–29] (see also Sec. II F 1).

Using the Poynting vector (3a) for the power P and the
stress tensor for the linear M and angular J momentum flux
we obtain

P =
∫

dσ Sz, (6a)

M = −
∫

dσ Tzz, (6b)

J = −
∫

dσ
ρ

2π
Re[εEϕE∗

z + HϕH∗
z ], (6c)

where Tzz is the stress tensor component

Tzz = 1

4π
[2ε|Ez|2 + 2|Hz|2 − ε|E|2 − |H|2] (7)

and the expression for J was simplified using the angular
symmetry.

The fluxes P, M, and J are related to the corresponding
stored quantities W , G, and J by

P

W = M

G = J

J = vgr = c

ngr
. (8)

The energy W and linear momentum G (and their fluxes P and
M) are related by

G
W = M

P
= 1

vph
= nph

c
. (9)

The angular momentum for linearly polarized modes is zero.
For a circularly polarized mode with azimuthal number n, the
energy W and angular momentum J (and their fluxes P and
J) are related by

J
W = J

P
= n

ω
. (10)

Relation (10) for the angular momentum in the Minkowski
formulation can be considered as a classical analog of quan-
tization of the circularly polarized angular momentum of
a guided photon [22,30]. Relations (8)–(10) were verified
numerically in the present paper. The linear and angular mo-
mentum fluxes can be used to find the force and torque on the
scatterer as discussed in Sec. II F.

C. Dipole emission and local field

Let us find the fields produced by a pointlike source located
at x0 on the x axis (see Fig. 1):

P(r, ω) = p(ω)δ(ρ − x0)δ(ϕ)δ(z)/ρ. (11)

It is convenient to represent this pointlike polarization (or cor-
responding current) as a superposition of surface polarizations
of cylindrical surfaces with ρ = x0 using the following two
expansions:

δ(ϕ) = 1

2π

∞∑
n=−∞

einϕ, δ(z) = 1

2π

+∞∫
−∞

dh eihz. (12)

Similar expansions are applied to all electromagnetic field
components. For example, for Ez(ρ, ϕ, z) we can write

Ez(ρ, ϕ, z) =
∞∑

n=−∞
En

z (ρ, z)einϕ, (13)

En
z (ρ, z) =

+∞∫
−∞

dh Ẽn
z (ρ, h)eihz. (14)

Each spatial component of P(r, ω) specified by h and n excites
fields in the uniform regions defined by ε1 and ε2. These
fields can be written using the cylindrical functions with some
unknown coefficients. The coefficients can be calculated by
matching the fields by the boundary conditions. The radiated
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fields are then calculated by taking the inverse Fourier trans-
form, Eq. (14), and adding all n components, Eq. (13). The
integration path in Eq. (14) includes poles that correspond to
the excitation of guided waves. The details of the integration
can be found, for example, in Ref. [31].

The integration in the complex plane allows finding the
electric field at any location, or the Green’s function. In par-
ticular, one can calculate the field at the source location. The
local field can be used to find the emitted power and the actual
polarization p(ω) in Eq. (11) from the scatterer polarizability.
The local field induced by the scatterer can be written as a sum
of two components:

Eind = Esf + Eint, (15)

where Esf is the field that would be created by the scatterer
in the uniform medium defined by the local permittivity and
Eint is the additional field due to the interaction with the wire
boundaries.

The self-induced field in Eq. (15) is

Esf = G(0)p, (16)

where G(0) is the Green’s function for the uniform medium
with permittivity equal to that at the source location. We
only need the imaginary part of G(0) to describe the intrinsic
radiative damping:

Im G(0) = gv

√
ε, gv = 2

3 k3, (17)

where ε is the permittivity at the dipole location and k = ω/c.
The dipole in vacuum emits the power

Pv = 2ωgv|p|2, (18)

which will be used for normalizing powers later.
The ith vector component of the interaction field in Eq. (15)

can be written using the tensor form of the Green’s function
G(1)

i j as

E int
i =

∑
j

G(1)
i j p j, i, j = ρ, ϕ, z. (19)

Here and in formulas later the subscript index i should not
be confused with the imaginary unit i. Due to symmetry of
the problem, only the diagonal components G(1)

ii are nonzeros.
This means that for a dipole oriented along one of the basis
directions (defined by the local basis vectors ρ̂, ϕ̂, ẑ) the
polarization will have the same components as the electric
field of the incident guided mode. As a result, there will be no
intermode conversion between the linearly polarized modes
with angular dependencies given by Eq. (2).

Using the radiated fields one can find the power emitted
into the bulk and guided modes by the polarization source
(11). In particular, for the guided power one can use the
reciprocity theorem to find the power carried by a specific
mode propagating in the ±z direction:

P±
g = −iω(p∗ · E±

g ), (20)

where E±
g is the field of the excited mode at the source

location. This field can be evaluated directly by taking the
corresponding residue. Note that expression (20) is always
real.

The total emitted power is

Ptot = 2ω Im(p∗ · Eind ). (21)

Assuming that the dipole is oriented along one of the basis
directions, Ptot can be written using (16)–(19) as

Ptot

Pv

= √
ε + Im G(1)

ii

gv

. (22)

The knowledge of the power emitted into the guided waves
Pg = P+

g + P−
g and the total emitted power Ptot = Pg + Pb,

which consists of the guided Pg and bulk Pb powers, allows
finding the β factor

β = Pg

Ptot
(23)

and the Purcell factor

FP = Pg√
εPv

= β
Ptot√
εPv

, (24)

where ε is the permittivity of the medium surrounding the
dipole source (ε1 for x0 > R or ε2 for x0 < R) and

√
εPv is

the power that would be emitted in a uniform dielectric with
permittivity ε.

D. Two-level scatterer

1. General formulas for polarizability

In order to find the polarization amplitude p(ω) in Eq. (11)
we need to consider a specific model for the scatterer. Here
we adopt the quantum-mechanical two-level model (atom)
in which the scatterer is described by the following wave
function:

|�〉 = A(t )|0〉 + B(t )|1〉, (25)

where |0〉 is the ground state, |1〉 is the excited state, and A(t )
and B(t ) are time-varying coefficients. Using (25) one can
express the expectation value for the dipole moment:

〈�|d̂|�〉 = A∗Bd + c.c. = p(t ) + c.c., (26)

where p(t ) = dA∗(t )B(t ) is the complex polarization and d =
〈0|d̂|1〉 is the transition dipole moment. The Schrödinger
equation for |�〉 is obtained using the interaction part of
the Hamiltonian d̂Es(t ), where Es(t ) is the true field at the
scatterer. Differentiating p(t ) and using the Schrödinger equa-
tion we obtain

dp
dt

= −iω0p + i
d(d∗ · Es)

h̄
(|A|2 − |B|2), (27)

where ω0 is the frequency difference between the states. In the
linear regime, |A| ≈ 1 and |B| 	 |A|, Eq. (27) reduces to

dp
dt

= −iω0p + i
d(d∗ · Es)

h̄
. (28)

For the electric field at the scatterer location

Es(t ) = Ee−iωt + c.c., (29)

we obtain in the rotating-wave approximation the following
polarization:

p = − d(d∗ · E)

h̄(ω − ω0)
. (30)
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The complex amplitude in Eq. (30)

E = Einc + Eind (31)

includes the field of the incident guided mode Einc and the
field induced by the scatterer Eind. Let us now consider several
specific cases which are of main interest in practice.

2. Scatterer oriented along a basis direction

Let us take a scatterer with the dipole moment along one
of ρ̂, ϕ̂, or ẑ. Substituting the electric fields (16) and (19) into
the expression for the polarization (30) one obtains

pi = − |d|2
h̄(ω − ω0)

[
E inc

i + (
G(0) + G(1)

ii

)
pi

]
, (32)

where i = ρ, ϕ, z and we used the condition G(1)
i j = 0 if i 
= j.

Using Eq. (32) we express pi in terms of the incident field E inc
i

only:

pi = χiE
inc
i , (33)

where the polarizability is

χi(ω) = − γv

gv (ω − ω0 − δi + iγi)
. (34)

The subscript i here denotes the orientation of the transition
dipole moment. The frequency shift δi and radiative decay γi

in (34) are given by

δi

γv

= −Re G(1)
ii

gv

,
γi

γv

= Ptot

Pv

= √
ε + Im G(1)

ii

gv

, (35)

where γv = gv|d|2/h̄ is the decay rate for the polarization
amplitude in vacuum. Note that we neglected the contribution
of the self-field to the frequency shift. Equations (35) show
that the normalized changes of the resonant frequency and
linewidth depend only on the electromagnetic environment,
that is, the Green’s functions evaluated at the resonance, and
not on the dipole moment.

3. Isotropic scatterer

An isotropic scatterer can be represented as an atom which
has three possible transitions with the dipole moments ori-
ented along the three basis directions. This means that, in
general, the induced polarization is

p = ρ̂χρE inc
ρ + ϕ̂χϕE inc

ϕ + ẑχzE
inc
z , (36)

where the responses χi are independent from each other and
defined by Eqs. (34) and (35). The model of an isotropic
scatterer is also applicable to Mie resonances in high-index
microspheres [32].

4. Scatterer oriented along an arbitrary direction

Let us now take a scatterer with an arbitrary orientation of
its dipole moment. To find the response, we use Eq. (30) and
write equations for each polarization component. The solution
of the linear system of coupled equations can be written in the
vector form as

p = − d(d∗ · Einc)

h̄(ω − ω0 − δ + iγ )
. (37)

The frequency shift and radiative decay in Eq. (37) are

δ

γv

= − 1

gv

∑
i=ρ,ϕ,z

n2
i Re G(1)

ii , (38a)

γ

γv

= √
ε + 1

gv

∑
i=ρ,ϕ,z

n2
i Im G(1)

ii , (38b)

where ni are the projections of the unit vector n̂ which defines
the dipole direction d = n̂d . Equations (37) and (38) gener-
alize Eqs. (34) and (35) for an arbitrary scatterer orientation
defined by n̂. The polarization in Eq. (37) can be oriented not
only along the components of the incident field Einc but also
in other directions. In general, this leads to the conversion
between the linearly polarized modes (2), in other words,
the incidence of a linearly polarized guided mode results in
two transmitted and two reflected modes. However, when the
dipole moment has only ρ and z components, it still interacts
only with the x-polarized mode.

E. Transmission, reflection, and bulk scattering

1. Excitation of guided waves

The derived formulas for the self-consistent polarization
(33)–(35) in combination with the solution of the dipole emis-
sion problem are sufficient to find the required transmission,
reflection, and bulk scattering (see Sec. II A). However, simple
analytical formulas can be derived in the single mode regime,
which is realized when a linearly polarized mode is incident
on the scatterer [see Eq. (2)]. The analytical formulas for the
transmission, reflection, and bulk scattering will be expressed
in terms of two parameters which can be obtained by studying
the dipole emission only: the fraction of emission into the
guided modes β and the enhancement of the total emission
γ /γv .

Let us first find the amplitudes of the guided waves excited
by the point source (11). Since the Green’s function gives the
self-consistent polarization, one can calculate the amplitudes
of the excited guided waves. We take the incident guided wave
as

Einc(r) = A0E+(ρ, ϕ)eihgz (39)

and the excited waves as

E±
g (r) = A±E±(ρ, ϕ)e±ihgz, (40)

where hg > 0 is the wave number, E±(ρ, ϕ) are the spatial
distributions for the ±z guided waves, A0 is the amplitude of
the incident wave, and A± are the amplitudes of the excited
waves. We choose E− = (E+)∗. To find A± we can write the
power generated by the polarization p using two ways. First,
we can represent it as

P±
g = P1|A±|2, (41)

where P1 is the power for |A±| = 1. The power P1 can be con-
sidered as some normalization for the modal profiles E±(ρ, ϕ)
and can be included directly into their definition. Second, we
can use Eq. (20) to write

P±
g = −iωA±(p∗ · E±), (42)
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where the value of the modal field E± is evaluated at the
scatterer location. Equating (41) and (42) we obtain the am-
plitudes

A± = iω

P1
p · E∓. (43)

The power of the guided waves excited by p becomes

P±
g = ω2

P1
|p · E∓|2. (44)

The knowledge of the excited amplitudes (43) can also be
used to find the emission in a waveguide of finite length. If
the emitter is far away from the ends, their presence does
not modify the emission into the bulk waves which rather
quickly leave the waveguide. The ends form a cavity for the
guided modes and the emission into the cavity modes can be
calculated by considering multiple reflections of the excited
guided modes from the ends [31]. The reflection coefficients
for the guided modes can be calculated numerically [33].
In principle, some leaky modes can also travel rather large
distances [31] and their role can also be included using their
reflectivities as well. If the ends are close to the emitter, one
can resort to finding the Green’s function for the emitter inside
the finite-length cylinder [34].

We can now use the self-consistent polarization to express
the amplitudes of the excited waves (43) in terms of the
amplitude of the incident wave.

2. Scatterer oriented along a basis direction

For a scatterer oriented along one of ρ̂, ϕ̂, or ẑ we obtain
from Eqs. (33) and (34) the following polarization:

p j = − γvA0E+
j

gv (ω − ω0 − δ j + iγ j )
, j = ρ, ϕ, z. (45)

Substituting (45) into (43) gives

A+
j

A0
= −i

β jγ j

ω − ω0 − δ j + iγ j
,

A−
j

A0
= A+

j

A0
· E

+
j

E−
j

. (46)

In (46) we introduced the decay rate β jγ j for the dipole due
to the emission into the guided modes:

β jγ j = 2P+
g

Ptot

Ptot

Pv

γv = ωγv|E+
j |2

P1gv

, (47)

where we used (18) and (44).
The transmission T = |1 + A+/A0|2, the reflection R =

|A−/A0|2, and the power S = Pb/P0 scattered into bulk waves
can now be written using A±

j given by (46) as

T = 1 − β j (2 − β j )L j (ω), (48a)

R = β2
j L j (ω), (48b)

S = 2β j (1 − β j )L j (ω), (48c)

where

L j (ω) = γ 2
j

(ω − ω0 − δ j )2 + γ 2
j

(49)

is the Lorentzian line-shape factor for the given dipole orien-
tation. Its value at the shifted resonance is L j (ω0 + δ j ) = 1.

Thus, according to Eq. (48), all scattering properties for a
specific dipole orientation along a basis vector are defined
by the corresponding β j factor and the radiative decay rate
γ j . The radiative decay γ j can be written as a product of
two factors: the enhancement of power emission γ j/γv , which
depends only on the electromagnetic interaction, and the ra-
diative decay rate in vacuum γv , which depends on the dipole
moment.

The values of T , R, and S [see Eq. (48)] at resonance can
be obtained using a simpler way with some prior knowledge
at hand. Indeed, the incident mode with amplitude A0 induces
scatterer polarization which in turn excites new guided waves
with amplitudes A±

j (with j = ρ, ϕ, or z denoting the orien-
tation of the transition dipole moment) propagating in the ±z
directions and bulk radiation. The power balance yields

|A0|2 = |A0 + A+
j |2 + |A−

j |2 + (|A+
j |2 + |A−

j |2)
1 − β j

β j
,

where the last term relates the bulk radiation to the excited
waves. If A+

j /A0 is real at resonance [see Eq. (46)] and |A+
j | =

|A−
j | [see Eq. (43)], the balance equation gives A+

j /A0 = −β,
from which the resonant values are T = (1 − β j )2, R = β2

j ,
and S = 2β j (1 − β j ), in agreement with Eq. (48).

3. Isotropic scatterer

For an isotropic scatterer the polarization p has three in-
dependent terms [see Eq. (36)], describing each component
separately. The polarization excites guided modes propagat-
ing in the ±z directions. The transmitted signal is the sum
of the initial wave and the wave generated by the scatterer
polarization. Each polarization component contributes to the
excitation. The amplitude A+ of the excited +z wave can be
written as a sum A+ = A+

ρ + A+
ϕ + A+

z , where A+
j is the am-

plitude excited by p j and defined by Eq. (46). Note that each
contribution has different parameters: δ j , γ j , and β j . While
the line shape which corresponds to any single component is
Lorentzian, their superposition can produce a complicated line
shape analyzed in Sec. III C.

F. Optomechanical properties

1. Propelling force and linear momentum flux

There are several ways to find the propelling force on the
scatterer and we consider here three of them. The first way
is to apply the Lorentz formula with both the electric and
magnetic parts for the force on a dipole:

Fz = px
∂Ez

∂x
+ py

∂Ez

∂y
+ pz

∂Ez

∂z
+ 1

c
( jxBy − jyBx ) (50)

where E and B are the true fields at the dipole location. Using
the complex fields and expressing Bx,y in terms of the spatial
derivatives of E from the Maxwell equations we obtain the
time-averaged force:

Fz = 2 Re

[
p∗

x

∂Ex

∂z
+ p∗

y

∂Ey

∂z
+ p∗

z

∂Ez

∂z

]
. (51)

Similar formulas were also used in Ref. [35]. The electric
field in Eq. (51) includes the incident field as well as the
field created due to the interaction with the wire. However, the
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symmetry of the Green’s function in the considered geometry
allows some simplification of Eq. (51). In particular, for the
dipole orientation along any of the basis directions the force
is

Fz = 2hg

∣∣E inc
j

∣∣2
Imχ j, j = ρ, ϕ, z. (52)

Equation (52) also works in multimode regimes.
The second way is to use the difference between the lin-

ear electromagnetic momentum flux along the z direction of
the incident wave and all scattered waves. In general, the
momentum flux of the scattered bulk waves can have some
component along the z direction. However, a dipole oriented
along any of the basis directions emits bulk waves symmetri-
cally in the +z and −z directions. Therefore, the z component
of the momentum flux of bulk waves equals zero. In the single
mode regime, this allows finding the propelling force from the
following difference:

Fz = M0 − M0(T − R) = M0(1 − T + R), (53)

where M0 is the incident momentum flux, which can be cal-
culated in several ways as discussed in Sec. II B; T is the
transmission; and R is the reflection coefficient for a given
dipole orientation [see Eqs. (48)].

The third way is to simplify Eq. (53) further using the
analytical results for R and T in the single mode regime given
by Eqs. (48). Substituting Eqs. (48) into (53) gives

Fz

M0
= 2β jL j (ω). (54)

Thus, the force can be directly calculated using the β factor
in the single mode regime. It follows from Eq. (54) that the
resonant propulsion is Fz = 2M0β j . The largest possible value
Fz = 2M0 is achieved in the ultimate coupling limit β j = 1,
when the incident mode is fully reflected.

The calculation of the force requires using the pseudomo-
mentum (due to Minkowski), rather than the electromagnetic
momentum (due to Abraham). This was previously verified
for the forces on arbitrary size circular scatterers created by
the incident surface wave of a metal boundary [36], by a
guided mode of a metal layer [37] or a dielectric waveguide
[38].

2. Torque and angular momentum flux

The torque on the scatterer can be found using the ap-
proaches similar to that for the force. The first way is to
calculate the ϕ component of the force and then use it to find
the z component of the torque:

Tz = x0Fϕ, Fϕ = 2Re

[
p∗

j

∂E inc
j

∂ϕ

]
. (55)

The second way is to use the difference between the angu-
lar momentum flux of the incident wave along the z direction
and all scattered waves. Note that the scattering of a linearly
polarized wave does not create any torque. The scattering
of the circularly polarized n = +1 wave produces the trans-
mitted and reflected n = ±1 waves. The z component of the
angular momentum of the bulk waves vanishes because of the
symmetry of the emission created by the dipole oriented along

the basis directions. The torque becomes

Tz = J0(1 − Tn=+1 + Tn=−1 − Rn=+1 + Rn=−1)

= J0(1 − Tn=+1 + Tn=−1), (56)

where J0 is the incident angular momentum flux discussed in
Sec. II B, Tn=±1 and Rn=±1 are the powers (normalized to the
incident) of the transmitted and reflected n = ±1 modes, and
Rn=+1 = Rn=−1 due to symmetry.

The third way is to simplify Eq. (56) by expressing the
transmissions Tn=±1 in terms of β j . The incidence of the n =
+1 mode with amplitude A0 gives rise to two n = +1 waves
with amplitudes A±

n=+1 and two n = −1 waves with ampli-
tudes A±

n=−1. Similar to the balance considered in Sec. II E 2,
we express the bulk radiation in terms of the guided ampli-
tudes and use |A+

n=+1| = |A−
n=+1| = |A+

n=−1| = |A−
n=−1|:

|A0|2 = |A0 + A+
n=+1|2 + 3|A+

n=+1| + 4|A+
n=+1|2

1 − β j

β j
.

If A+
n=+1/A0 is real at resonance, the balance equation gives

A+
n=+1/A0 = −β j/2. Substituting Tn=+1 = (1 − β j/2)2 and

Tn=−1 = β2
j /4 into Eq. (56) and accounting for the Lorentzian

profile we obtain

Tz

J0
= β jL j (ω). (57)

Similar to the force given by Eq. (54), the angular momentum
transferred to the resonant scatterer is directly proportional to
β j . Unlike the force, the resonant torque is only Tz = J0β j due
to the intermode conversion.

III. RESULTS AND ANALYSIS

A. Dipole source: Emitted power, coupling efficiency, and
frequency shifts

Let us first analyze the emission properties of a point
source as described in Sec. II C. We consider a wire with ε2 =
6 (typical for semiconductors) in air with ε1 = 1. The single
mode regime is realized for kR < 1.075. For the characteriza-
tion of resonant scattering later it is sufficient to evaluate the
emission properties at the resonant, or operating, frequency
since γv 	 ω0. For the operating point we chose kR = 0.9 for
which the phase index for the guided mode is nph = 1.293,
and the group index is ngr = 3.000. The numerical results
presented in the text typically contain three to four significant
digits to allow a more accurate verification or benchmarking
by the interested reader. The fraction of mode energy per
unit length localized inside the wire is 0.689. The fraction of
guided power inside is 0.576. Thus, the choice of the operating
point provides the single mode guiding regime with good
mode confinement.

Figure 2(a) shows the coupling efficiency β j = Pg/Ptot ,
where Pg = P+

g + P−
g is the power emitted into the guided

modes in both ±z directions and Ptot is the total emitted
power for a j-polarized ( j = ρ, ϕ, z) source. Note that the
guided power can be viewed either as the power of the linear
mode coupled to the corresponding dipole or the total power
of the n = ±1 circular modes. When the source is outside,
x0 > R, then all β j typically decrease due to the evanescent
decay of the guided field. However, βϕ has a rather weak
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FIG. 2. Power emitted by a dipole oriented along ρ, ϕ, and z
into the guided modes (a) normalized to the total emitted power
Pg/Ptot = β j and (b) normalized to the power emitted in vacuum
Pg/Pv as functions of its location.

local maximum slightly away from the surface. Depending
on dipole orientation, β j can reach its global maximum ei-
ther near the boundary, x0 = R (βz = 0.474), or at the center,
x0 = 0 (βρ,ϕ = 0.818). At x0 = 0, the guided powers for the
ρ- and ϕ-polarized sources are equal while there is no guided
emission for the z-polarized source since the axial electric
field of the guided modes vanishes.

Figure 2(b) shows the power emission into the guided
mode normalized to the power that would be emitted in
vacuum Pg/Pv . This quantity is directly proportional to the
Purcell factor [see Eq. (24)], except here the enhancement
relative to vacuum is used, which is more convenient for
analyzing the cases x0/R < 1 and x0/R > 1 simultaneously.
To find the conventional FP one can simply divide the plot-
ted quantity Pg/Pv by ε2 at x0 < R. The ρ-polarized dipole
gives the largest enhancement Pg/Pv = 3.75 just outside the
wire, and the largest suppression Pg/Pv = 0.104 just inside
the wire. The value of the jump agrees with the dielectric
screening factor (ε2/ε1)2 = 36. In contrast, the enhancement
factors Pg/Pv for the ϕ-polarized and z-polarized dipoles
are continuous at the boundary x0 = R. The z-polarized
dipole also gives a rather significant enhancement at the
boundary Pg/Pv = 1.72.

The field emitted by the dipole source near the wire bound-
ary acts on the dipole itself. If the dipole is not a fixed
source but rather a resonant scatterer, this field changes its
resonant frequency and the emitted power (see Sec. II D 2).
The frequency shift [see Fig. 3(a)] at x0 = 0 can be positive
or negative depending on polarization. The shift appears di-
vergent when the scatterer approaches the boundary. This is
qualitatively similar to an emitter near a plane boundary in the
quasistatic limit where the frequency shift ≈1/d3, where d is
the distance to the boundary [39,40]. Near the curved interface
the divergence has a different scaling. However, in practice
other effects will influence the frequency shifts at very small
distances.
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FIG. 3. Normalized (a) frequency shift δi/γv = −Re G(1)
ii /gv and

(b) power enhancement γi/γv = Ptot/Pv = √
ε + Im G(1)

ii /gv as func-
tions of the dipole location x0/R for its orientation along ρ, ϕ, and z
directions.

Figure 3(b) shows the enhancement of the emitted power
γi/γv = Ptot/Pv as compared to that in vacuum for var-
ious dipole orientations. The same results were obtained
by calculating the total emitted power (guided and bulk)
and the Green’s function at the source location. While
the enhancement factor is usually Ptot/Pv > 1, for the ρ-
polarized dipole we observe a significant suppression of
emission Ptot/Pv < 1 in the range 0.58 < x0/R < 1. Far away
from the wire, the enhancement approaches Ptot/Pv = 1 but
shows some very weak oscillations around this value for all
polarizations.

The power emitted by the dipole source polarized tan-
gentially, along ϕ or z, to the wire surface is continuous at
x0 = R. For the ρ-polarized source, the power curve jumps
as the source crosses the interface. Note that the power
emitted into the guided mode also jumps but the βρ factor
is continuous (βρ = 0.564) [see Fig. 2(a)]. The maximum
emission enhancement is very large, Ptot/Pv = 6.66, and
corresponds to the ρ-polarized source located just outside the
wire. In contrast, the emission is greatly suppressed, Ptot/Pv =
0.185, for the ρ-polarized dipole just inside the wire. Sim-
ilar to that for the guided waves, the value of the jump in
the total emission agrees with the dielectric screening factor
(ε2/ε1)2 = 36. For x0 > R the emitted power decreases with
distance from the wire for all dipole orientations.

B. Scatterer oriented along a basis direction

Let us now turn to studying the interaction of a guided
mode with a polarizable scatterer which has its dipole mo-
ment oriented along one of the three basis directions ρ, ϕ,
or z. To avoid the intermode scattering and to enable the
interaction we use the x-polarized mode for the ρ- and z-
oriented dipoles and the y-polarized mode for the ϕ-oriented
dipole.
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FIG. 4. Guided mode transmission T , reflection R, and scattering
S into bulk waves as functions of the β factor for the scatterer at
resonance in the single mode regime.

As discussed in Sec. II A, the solution of the emission
problem gives the scattered fields (guided and bulk) from the
polarizability (34) after the local field is calculated. While
this approach is quite general, the use of the β and γ /γv

factors, also calculated from the emission problem, allows
using the simple analytical results presented in Sec. II E 2.
Both approaches were implemented and their numerical re-
sults matched. This verifies the numerical results as well as
the analytical results given by Eqs. (48).

The general dependences of transmission, reflection, and
bulk scattering on the β factor in the single mode regime at
resonance are described by Eqs. (48) at L = 1 and shown
in Fig. 4. The transmission decreases with increasing β,
while the reflection increases. The scattering into bulk waves
reaches its maximum at β = 0.5. It is quite remarkable that
for large values of β � 0.8 the transmission practically dis-
appears and all incident power goes into reflection and bulk
scattering. One can compare this with other situations of trans-
mission through resonant structures. For example, a plane
wave incident on a thin resonant film (with plasma or atomic
resonance) will be fully reflected at exact resonance. A guided
wave coupled to a WGM resonator will be mostly scattered
[36,38].

Figure 5 shows the transmission spectrum for various ori-
entations of the scatterer. In all cases the spectrum has a single
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FIG. 5. Transmission spectrum for a linearly polarized guided
mode when the dipole scatterer is located at x0/R = 0.8 and oriented
along the ρ, ϕ, or z direction. The incident mode is x polarized for the
ρ- and z-oriented dipoles, and y polarized for the ϕ-oriented ones.
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FIG. 6. Transmission T , reflection R, scattering into bulk waves
S, and propulsion Fz/M0 at resonance (ω = ω0 + δi) as functions of
the scatterer position for three possible orientations: (a) ρ oriented,
(b) ϕ oriented, and (c) z oriented. The incident mode is (a, c) x
polarized and (b) y polarized.

Lorentzian dip described by Eq. (48a) with corresponding
values of β j , γ j , and δ j , with j = ρ, ϕ, z, which can be
obtained from Figs. 2 and 3. The transmission dip for the
ρ-oriented scatterer is narrowest and deepest among the three
orientations. This corresponds to the lowest total emission
[see Fig. 3(b)] and the largest fraction of the emission into
the guided mode [see Fig. 2(a)].

Since all scattering characteristics have the Lorentzian fre-
quency dependence, let us look at their values at resonance,
where L = 1. Figure 6 shows the dependence of transmission,
reflection, bulk scattering, and propulsion as functions of the
scatterer location x0. The propelling force normalized to the
momentum flux Fz/M0 in Fig. 6 was calculated using the three
ways described in Sec. II F 1 and the results matched. At
x0 = 0 the transmission is very low, T = 0.0331, for the ρ-
and ϕ-polarized scatterers, while T = 1 for the z-polarized
scatterer. When the scatterer is far away from the wire x0/R �
1, then T → 1, R → 0, and S → 0 for all orientations. The
lowest transmission is obtained for the ρ-polarized scatterer.
The low transmission corresponds to large propelling force
Fz/M0. This also follows from the analytical formulas [see
Eqs. (48a) and (54)]. The largest force Fz/M0 = 1.63 is ob-
tained for the ρ- and ϕ-polarized scatterers at the center x0 =
0. For the z-polarized scatterer the largest force Fz/M0 = 0.92
is at x0 = R. The propulsion decreases substantially at large
distances x0/R � 3 from the wire.
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FIG. 7. Transmission spectrum for the x- and y-polarized inci-
dent guided modes in the case of an isotropic scatterer at various
locations x0/R. The labels ρ and z near the dips in frame (b) denote
the polarization components responsible for their formation.

C. Isotropic scatterer

1. Scattering with frequency shifts

Let us now study how the transmission changes if the
scatterer is isotropic, namely, it can be represented as three
dipoles oriented along ρ̂, ϕ̂, and ẑ. If the incident mode is y
polarized [see Fig. 7(a)], the transmission spectrum has one
Lorentzian dip because only the ϕ component of the scatterer
polarization is excited. The most pronounced dip is observed
for the scatterer at the center. The minimal value of transmis-
sion can be evaluated from T = (1 − βϕ )2 [see Eq. (48a)].
Taking βϕ from Fig. 3, we obtain βϕ = 0.818, T = 0.0331
for x0 = 0 and βϕ = 0.751, T = 0.062 for x0/R = 0.2. The
dip is shifted slightly to the red (to lower frequencies) for
x0/R < 0.6, in agreement with the shifts in Fig. 3(a). As the
scatterer moves beyond x0/R = 0.6 the dip becomes more
shallow and shifts to the blue (to higher frequencies). When
the scatterer is moved outside of the wire, the rather shallow
transmission deep switches to the lower frequency side, again
in full agreement with Fig. 3(a). It is essential that the trans-
mission is always characterized by the Lorentzian line shape.

Figure 7(b) shows the transmission spectrum for the x-
polarized mode. In contrast to the y-polarized mode in
Fig. 7(a), the x-polarized mode excites the ρ- and z-
polarization components, and the transmission, in general,
shows two dips with different depths and widths. When the
scatterer is near the center, x0/R = 0.2, the transmission dip
reaches almost zero and is slightly shifted to the red. For x0 →
0, the field at the scatterer location has Eρ 
= 0, Ez = 0 and
the transmission is equal to that in the y-polarized case, T =
0.0331. As the scatterer is moved further from the center, the
transmission dip shows some noticeable deviations from the
Lorentzian line shape due to the growth of the contributions
from the z-polarized dipole. When the displacement becomes
significant, x0/R = 0.8, the transmission spectrum develops
two separated dips. This unusual behavior is due to the pres-
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FIG. 8. Transmission T , reflection R, scattering into bulk waves
S, and propulsion Fz/M0 for the x-polarized mode incident on an
isotropic scatterer at resonance ω = ω0. The shift of the resonant
frequency is neglected, δρ = δz = 0.

ence of two response functions χρ and χz, characterized by
δρ,z and γρ,z (see Fig. 3). As x0 approaches R, γρ decreases
(the corresponding dip becomes narrower), while γz increases
(the corresponding dip becomes wider). Furthermore, since
|δρ | > |δz| the frequency shifts differ. This means that the
transmission spectrum should develop two dips and the dip
with the larger blueshift should be narrower. This is indeed
observed in Fig. 7(b). As the scatterer moves just outside the
wire, γρ jumps to a higher value and the corresponding dip
broadens. A further increase of x0, x0/R → ∞, leads to a
merger and disappearance of the two dips.

2. Scattering without frequency shifts

In the previous section it was shown that for a typical
strongly guided mode, which has several field components
with comparable values, the transmission spectrum becomes
quite complicated, showing multiple different dips for a res-
onant isotropic scatterer. These results are based on the
two-level model (see Sec. II D). Real emitters have more than
two levels and, therefore, it may not be a realistic model to de-
scribe all properties [41]. The inadmissibility of the two-level
model treating frequency shifts near interfaces is highlighted
in Ref. [42], where significantly smaller shifts are estimated.
Indeed, experimental measurements can give frequency shifts
significantly smaller or even of different signs [43]. Since it is
expected that the two-level model may significantly overesti-
mate the shifts near interfaces, let us assume that the shifts are
negligible and study the effects of the broadening alone, for
which the two-level model is adequate.

The scattering of the y-polarized mode reduces to the case
in which the dipole is oriented along the ϕ direction [see
Fig. 6(b)]. The transmission spectrum is described by Fig. 7(a)
but without the frequency shifts.

For the x-polarized mode (see Fig. 8), two polarization
components are excited coherently and, therefore, the char-
acteristics will differ from that for a dipole oriented along one
of these directions. An interesting feature of Fig. 8 is that the
transmission is very low for any location of the scatterer inside
the wire, x0/R < 1, and even outside for 1 < x0/R � 1.3.
Such a large range of x0/R with small transmission does not
take place for a scatterer with a specific orientation. Using the
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results of Secs. II D 3 and II E 2, the resonant transmission
can be written as

T = (1 − βr − βz )2. (58)

Since 0 < βρ,z < 1, then T < 1. Interestingly, we can obtain
T = 0 when βr + βz = 1. This condition is met at x0/R =
0.274 and 1.055. The addition of βr and βz explains the small
transmission in a wide range of x0/R since while each of βρ,z

changes significantly their sum has much smaller variation
0.8 < βr + βz < 1.2 for 0 < x0/R < 1.3. The reflection drops
very rapidly with increasing displacement of the scatterer
from the center and is practically zero when it is outside the
wire. The resonant reflection can be written as

R = (βr − βz )2. (59)

While βr and βz are added for transmission (58), for reflection
(59) they are subtracted and we also have R < 1. The sub-
traction comes from Eq. (46) and the π/2 phase difference
between the E+

ρ and E+
z components. The propelling force

for an isotropic scatterer reaches maximum at the center. In
finding the force using the momentum balance for an isotropic
scatterer one needs to account for the z component of the
bulk radiation which becomes nonzero, unlike in the case of a
scatterer oriented along one of the basis directions.

The transmission spectra for the x-polarized mode shown
in Fig. 7(b) will also be drastically changed if the frequency
shift is absent, which is equivalent to setting δi = 0 in Eq. (46).
Figure 9(a) compares the transmission spectrum for the y- and
x-polarized modes for a displaced scatterer. While for the y-
polarized mode the transmission dip is Lorentzian, for the x-
polarized mode it clearly has a non-Lorentzian line shape.

To understand how the transmission line shape is formed,
Figs. 9(b) and 9(c) show the contributions into the trans-
mitted wave from different components of the polarization.
For the y-polarized mode [see Fig. 9(b)], the only nonzero
polarization component pϕ excites the +z propagating wave
with amplitude A+

ϕ . This gives the Lorentzian line shape for
the transmitted wave in Fig. 9(a). For the x-polarized mode
[see Fig. 9(c)], the two polarization components pρ and pz

excite +z waves with amplitudes A+
ρ and A+

z , respectively.
The spectra of these amplitudes have significantly different
magnitudes and widths. The superposition of these two com-
ponents gives a very narrow transmission dip with very long
tails in Fig. 9(a). This transmission line shape cannot be
fitted with one or two Lorentzian shapes (49). Instead, the
fitting requires taking a coherent superposition of the complex
amplitudes.

It is also important to emphasize that the non-Lorentzian
spectra are obtained here due to the presence of several tran-
sitions. For the x-polarized mode incident on an isotropic
scatterer, two polarizations components pρ and pz are excited,
resulting in a non-Lorentzian spectrum as discussed above.
However, one can also excite two polarization components if
the scatterer has only one transition with its dipole moment in
the ρ-z plane (see Sec. II D 4). In the latter case, as seen from
Eq. (37), the spectra will be Lorentzian but will depend on the
dipole orientation.
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FIG. 9. (a) Transmission spectrum for the linearly y- and x-
polarized modes for a displaced x0/R = 0.8 isotropic scatterer at
δi = 0. (b) Amplitude A+

ϕ of the scattered guided mode in the +z
direction excited by the ϕ component of the scatterer polarization
induced by the incident y-polarized mode. (c) Amplitudes A+

ρ,z of
the scattered guided modes in the +z direction excited by the ρ and
z components of the scatterer polarization induced by the incident
x-polarized mode.

D. Torque on the scatterer

Since the incidence of linearly polarized modes considered
in the previous sections does not produce any torque on the
scatterer, here we consider the incidence of the circularly
polarized n = +1 mode on a scatterer orientated along one of
the basis directions. To find the torque no new calculations are
required because, according to Eq. (57), one can use directly
the corresponding β factors. The dependence of Tz/J0 on
the scatterer location at resonance for different orientations
coincides with the β factors shown in Fig. 2(a). It was verified
numerically that all three methods of calculating the torque
described in Sec. II F 2 give the same result: using the force
in Eqs. (55), angular momentum fluxes in Eq. (56), and β

factors in Eq. (57). The torque is maximum when the scatterer
approaches the wire axis and is oriented perpendicularly to the
propagation direction z. The torque on the z-oriented dipole
is zero at x0/R → 0 but increases as it moves from the axis.
When the dipole is outside of the wire, the torque decreases
for all three orientations.

IV. CONCLUSION

To conclude, the scattering of a dielectric wire mode on
a resonant scatterer was investigated. The resonant scatterer
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was modeled as a two-level atom that interacts with the field
through a dipolelike transition. The single mode regime was
investigated in detail. The use of a dielectric wire made of
a semiconductor material allows one to obtain well-confined
modes even when the diameter is only a fraction of the
operating wavelength. This in turn enables a very efficient in-
teraction of the guided mode with a resonant scatterer located
either inside the wire or in its proximity outside.

For a scatterer oriented along a basis direction, all scatter-
ing characteristics (transmission, reflection, and bulk scatter-
ing) have Lorentzian line shapes, which can be parametrized
by their values at resonance, frequency shifts, and widths [see
Eqs. (48)]. The parameters of the spectra can be obtained
directly from the properties of dipole emission. Without po-
larization dephasing, the resonance values of transmission,
reflection, and bulk scattering depend only on the relative
power emitted into the guided mode and the widths depend on
the total emission rate. The dependence of power emission on
the location and polarization of the dipole was also analyzed.

For an isotropic scatterer, which can be modeled as a
coherent superposition of three orthogonal transitions, the
scattering characteristics become more complicated if the β

factors for the basis orientations are comparable. First, if
the frequency shifts for each orientation are significantly dif-
ferent, one can observe multipeak characteristics. Near the
waveguide interface the frequency shifts diverge. In practice,
the correct calculation of the frequency shifts requires go-
ing beyond the two-level model. Second, if the frequency

shifts are negligible, the characteristics develop strongly non-
Lorentzian line shapes due to the coherent superposition of
scattered guided waves produced by the different polariza-
tion components. Extracting the interaction parameters from
such complicated spectra requires the use of the complex
amplitudes of the scattered waves described by Eq. (46),
which may be quite difficult in practice. An isotropic scat-
terer also allows us to obtain a much lower transmission as
compared to a single-transition scatterer due to the effective
addition of the corresponding β factors. The presence of
several transitions, in addition to varying the scatterer loca-
tion or modal fields, can be used to control the scattering
characteristics.

Similar to the scattering characteristics, the propelling
force and axial torque on the scatterer have Lorentzian line
shapes for any basis orientations of the scatterer. Simple for-
mulas for the resonant force and torque were derived [see
Eqs. (54) and (57)]. According to these formulas, the resonant
force and torque can be directly obtained from the β factors. It
was also shown that finding the force and torque requires the
use of the Minkowski form for the electromagnetic linear and
angular momentum.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and
Higher Education of the Russian Federation (075-15-2020-
927).

[1] S. Faez, P. Türschmann, H. R. Haakh, S. Götzinger, and
V. Sandoghdar, Coherent Interaction of Light and Single
Molecules in a Dielectric Nanoguide, Phys. Rev. Lett. 113,
213601 (2014).

[2] P. Türschmann, N. Rotenberg, J. Renger, I. Harder, O. Lohse, T.
Utikal, S. Götzinger, and V. Sandoghdar, Chip-based all-optical
control of single molecules coherently coupled to a nanoguide,
Nano Lett. 17, 4941 (2017).

[3] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J.
Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A.
Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec,
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