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Manipulating photonic signals by a multipurpose quantum junction
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We address a prototype integrated quantum circuit model system: a multifunctional quantum junction compris-
ing three-level atomic nodes that couple two waveguides. We consider nodes with the � scheme of the allowed
optical transitions, one of which is driven by an external classical electromagnetic field. We demonstrate that the
latter field can be used to control the mode of the device operation: studying the dynamics of optical pulses, we
show that the proposed integrated junction can operate as a controlled router or a switch, a 1/4 splitter, a delay
line, or a storage node. The system offers also a possibility of intrinsic parallelism of quantum operations and
can provide useful guidelines for making possible future quantum circuitry building blocks more scalable and
integrated.
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I. INTRODUCTION

The operation of modern networks relies on the func-
tionality of rather complex key devices, such as switches,
routers, repeaters or amplifiers, etc. The functionality of these
devices is provided by combinations of elementary oper-
ations performed by much more basic elements, such as
delay lines, memory cells, and simple routing nodes. Network
technology and devices are well developed for the classical
electronic networks, while they are still in an active research
phase in the field of the quantum ones. In a quantum net-
work, photons are believed to be the natural candidates for
carrying information with high fidelity as flying qubits in
long-distance communications over quantum channels [1–7].
Therefore, considerable effort has been put into studies of
photon transport in waveguides coupled to quantum emit-
ters [8–11]. These emitters can be coupled to the quantum
channels not only to inject information carriers but also to
manipulate and route them, controlling pathways of signals
in the network. Routing is one of the most important opera-
tions in a network, for which reason various implementations
of quantum routers has been proposed [12–28]. However,
it would be advantageous if a single device could provide
multiple fundamental functionalities: operating as a router, a
delay line, a splitter, or an information storage node. Below we
report on a prototype of such a multipurpose device: a quan-
tum junction comprising three-level systems coupling two
waveguides.

II. MODEL

Our proposed prototype setup comprises two waveg-
uides, which are symmetrically coupled by an N sequential
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three-level system, as shown schematically in Fig. 1. In an
optical system, such waveguides can be the coupled-resonator
waveguides (CRW), i.e., one-dimensional arrays of optical
cavities (see, for example, Ref. [29] and references therein).
Several experimental realizations of CRWs have been re-
ported [29–33], in particular, large-scale ultrahigh-Q coupled
nanocavity arrays based on photonic crystals [30]. CRWs
have been successfully modeled by a simple discrete tight-
binding bosonic model [9,10,12–17,34,35], which we use
in what follows. The two waveguides (labeled A and B)
are modeled as one-dimensional arrays of sites described by
bosonic operators a†

n and b†
n, which create a photon with the

energy h̄ω0 at the nth site of the corresponding waveguide.
Adjacent sites are coupled by the nearest-neighbor interac-
tion constant ξ . For simplicity, we consider identical sites
and identical three-level systems. We assume also that the
latter are atoms with the � scheme of the energy levels
comprising the ground |gj〉, the excited |e j〉, and the third
state |s j〉 (where j labels the atom, j = 1 . . . N). Energies
of these states are Eg, Ee, and Es, respectively. The dipole-
allowed transitions |g j〉 ↔ |e j〉 are coupled to the modes a†

j

and b†
j of the neighboring waveguide sites by the coupling

constant g. Other allowed transitions |s j〉 ↔ |e j〉 are driven by
an external classical control field which has the frequency ωc

and the Rabi frequency �. Transitions |g j〉 ↔ |s j〉 are dipole
forbidden.

Within the rotating-wave approximation and in the
rotating frame described by the partial Hamiltonian
[35]

HR = h̄ω0

∑
n

(â†
nân + b̂†

nb̂n)

+ h̄ω0

∑
j

(|e j〉〈e j | + |s j〉〈s j |) − h̄ ωc

∑
j

|s j〉〈s j |,
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which incorporates all high-frequency components, the
Hamiltonian of the system reads as

H = −ξ
∑

n

[â†
nân+1 + b̂†

nb̂n+1 + H.c.]

+
∑

j

[�e|e j〉〈e j | + (�e − �s)|s j〉〈s j |]

+
∑

j

[g |e j〉〈g j |(â j + b̂ j ) + h̄�|e j〉〈s j | + H.c.], (1)

where �e = Ee − Eg − h̄ω0 and �s = Ee − Es − h̄ωc are the
detunings of the photon energies from the two allowed tran-
sition energies [36]. Hereafter, we consider the resonant case
�e = �s = 0; we also set h̄ω0 as the reference energy level,
the coupling constant ξ as the energy unit, and h̄ = 1. Each
standalone waveguide supports plane-wave modes with the
dispersion relation E (k) = −2 cos k, where k ∈ [0, π ].

To study the dynamics of a wave packet defined as |�〉 =∑
n [αna†

n|gn, 0〉 + βnb†
n|gn, 0〉] + ∑

j [u j |e j, 0〉 + v j |s j, 0〉],
with |0〉 being the vacuum state of the waveguides, we use the
time-dependent Schrödinger equation with the Hamiltonian
(1) written for the amplitudes αn, βn, u j , and v j :

α̇n = i (αn+1 + αn−1) − i gδn j u j,

β̇n = i (βn+1 + βn−1) − i gδn j u j,

u̇ j = −i � v j − i g (α j + β j ),

v̇ j = −i � u j, (2)

where δn j is the Kronecker symbol, j = 1 . . . N , n =
−N0 . . . N0 + N , and N0 is the number of sites in each of
the left and right channels (branches) of the waveguides. For
further reference, we label regions of the system as follows:
left channels AL and BL (with n = −N0 + 1 . . . 0), the central
region C (with n, j = 1 . . . N), and right channels AR and BR

(with n = N + 1 . . . N0 + N). We define also probabilities to
find the wave packet in different channels and at the atomic
states:

PAL,AR =
∑

n∈AL,R

|αn|2,

PBL,BR =
∑

n∈BL,R

|βn|2,

PC =
∑

j

|u j |2 + |v j |2. (3)

We solve the system (2) numerically using the following
normalized Gaussian wave packet as the initial condition:

αn = 1√
σ

√
π

e− (n−n0 )2

2σ2 +i k0n
,

βn = u j = v j = 0, (4)

where σ , k0 > 0, and n0 are the width, the wave vector, and the
initial position of the center of the wave packet, respectively.
Such a wave packet is propagating from left to right in the
AL channel. We always choose n0 = −[N0 − 3σ ], so that the
amplitude of the wave packet at the connected region C is
negligible at t = 0.

FIG. 1. Schematics of the system comprising two channels A and
B which are coupled by N three-level � atoms. The diagram of the
atomic energy levels and transitions is shown in the inset (see text for
details). The left, coupled, and right regions of the system are labeled
by letters L, C, and R, respectively. Also shown schematically is
an incident wave packet propagating from left to right in the input
branch AL; the packet can be partially reflected back and partially
transmitted into the output branches AR, BL, and BR. All branches
have the same number of sites N0.

Hereafter, we consider the system with N0 = 1000, N =
12, and g = 0.5. Such a system was studied in Ref. [35], where
it was demonstrated that it has promising scattering properties
in the stationary regime for certain sets of parameters. Below,
we address the dynamics of wave packets for the most relevant
parameter sets.

III. ROUTING EFFECTS

First, we investigate the system in the regime of controlled
routing: we show that a wave packet incoming from the left
input channel AL can be routed into one of the two right output
channels, AR or BR, which can be selected by the control field
�. To this end, we analyze the stationary spectra of the trans-
mission into the two right output channels, TAR and TBR, for
two different values of the control field: � = 0 and � = 0.85
(see Ref. [35] for details of their calculation); the spectra are
shown in panels (a) and (b) of Fig. 2, respectively. These
spectra have useful features in the vicinity of E0 ≈ 0.48, i.e.,
the high and low values of the transmission probabilities into
the output channel AR or BR can be swapped when the control
field is switched from � = 0 to � = 0.85 or vice versa. Then,
almost the whole wave packet can be routed into one or the
other output channel under the following conditions: (i) the
incoming wave packet is properly centered at E0 ≈ 0.48 and
(ii) its width in the energy space �E is smaller than the width
of the transmission features (≈0.1).

To demonstrate the feasibility of such routing, we con-
sider the dynamics of the wave packet centered at k0 =
arccos (−E0/2) ≈ 1.33 and having the width �E = 0.02 in
the energy space (which is much smaller than the width of
the above-mentioned spectral features). The corresponding
wave-packet width in the real space σ can be estimated as σ =
2 sin k0/�E ≈ 100. The dynamics of such a wave packet for
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FIG. 2. Left column: stationary spectra of the transmission TAR into the AR channel (solid red line) and TBR into the BR channel (dashed
blue line). Vertical gray line and shaded areas indicate, respectively, the center position and the width of the initial wave packet used in the
dynamics calculation. Middle column: the spatiotemporal map of the wave-packet probability density |�|2; here the waveguide regions are
ordered in the following sequence: AL, C, AR, BL, C, BR. Right column: the probabilities PAL (dotted red line), PAR (solid red line), PBL (blue
crosses), and PBR (dashed blue line).

� = 0 and � = 0.85 is presented in panels (c) and (d) of
Fig. 2, respectively. These panels show the spatiotemporal
maps of the wave-packet probability density |�|2, manifesting
efficient routing. Panels (e) and (f) of Fig. 2 demonstrate the
efficiency of the routing at a more quantitative level: they
show the dynamics of the integrated probabilities PAR and PBR,
whose asymptotic values are swapped between approximately
0.985 and 0.015 when the classical field switches between
� = 0 and � = 0.85. Thus the incident wave packet can be
routed almost completely into one or the other right output
channel selected by the control field �.

To get an insight into the routing mechanism we follow
the method used in Ref. [35] to address the same system in
the stationary case. Below we present some results which are
essential for the explanation of the routing effect (see the latter
reference for details). First, we introduce amplitudes in two
independent virtual channels: ±

n = αn ± βn. As can be seen
from Eq. (2), only the symmetric (+) channel is coupled to the
atoms, so the amplitudes +

n account for the scattering and a
wave would propagate within the section of the channel with
atoms (1 � n � N) with the renormalized wave vector

k+ = arccos

(
−E

2
+ 2 g2 E

E2 − �2

)
. (5)

Thus the section with atoms plays a role of an effective
potential quantum well or barrier in the symmetric channel.
Contrary to that, the antisymmetric channel is decoupled from
the atomic states and there is no scattering on atoms in the
channel. Amplitudes −

n describe therefore a completely free
propagation of a wave with the unperturbed wave vector

k− = k = arccos
(
−E

2

)
. (6)

The transmission coefficient in the symmetric channel is
given by the following expression [35]:

t+ = e−ikN sin k sin k+
sin k sin k+ cos (k+N ) + i (cos k cos k+ − 1) sin (k+N )

.

As it can be seen from the latter result, if the phases acquired
by the wave functions �± during their propagation through
the section with atoms satisfy

k+N = πn+, k−N = πn−, n± ∈ Z, (7)

the transmission coefficient in the symmetric channel be-
comes t+ = ±1 and a wave propagates without reflection.
Note that the first condition in Eq. (7) is the condition of the
resonant transmission through the virtual energy levels of the
effective quantum well or barrier. Both conditions can be met
by selecting appropriately the energy E and the field �.

If the incoming wave is propagating forward (from left
to right) in the channel AL and the resonance conditions (7)
are met, then ±

0 = α0 ± β0 = α0 because the amplitude in
the BL channel β0 = 0 (no waves propagate initially in this
channel and there are no reflected waves either). Moreover,
one can obtain the wave functions in the virtual channels
after the scattering (for n > N): ±

n ∝ ±
0 eik±N = α0eiπn± .

Reconstructing wave functions in the real channels we obtain

αn ∝ eiπn+ + eiπn− ,

βn ∝ eiπn+ − eiπn− ,

from which result it becomes clear that if n± have the same
parity, then αn 	= 0 and βn = 0 and the transmitted wave re-
mains in the channel A, while if n± are of different parity
the wave is routed completely into the channel B: αn = 0 and
βn 	= 0.
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Therefore, the routing effect is determined completely by
the constructive or destructive interference of wave functions
propagating in virtual channels with and without scattering,
which is in a complete analogy with the Fano effect. The im-
portant difference from all previous simpler cases is that there
are several output channels in our system, so the outcome of
the interference is more complex. The outcome can also be
controlled by the field �, using which an output channel can
be selected, in particular.

In the case of a propagating wave packet the above reason-
ing remains valid if the resonance conditions (7) are satisfied
approximately within the energy width of the wave packet;
then the packet can be routed almost completely as we have
demonstrated.

IV. PULSE SPLITTING

Second, we address the system in the 1/4-splitting regime.
As was demonstrated recently [35], the stationary transmis-
sion and reflection spectra of the considered system have
wide flat subbands in the vicinity of E = ±�. Within these
subbands, the probabilities of scattering into the four possible
channels (AL, AR, BL, and BR) are all approximately equal
to 1/4 [see panel (g) of Fig. 2 where these characteristics are
shown for � = 0.5]. Therefore, a propagating wave packet
can be split into four approximately equal parts if it is properly
centered at E ≈ ±� and its energy width is less than the
width of the flat subband(s), which is on the order of 2g = 1
in our case. The dynamics of such a wave packet with the
same parameters as above was calculated for � = 0.5. The
results are presented in panels (h) and (i) of Fig. 2, which show
an even splitting of the incident wave packet. In particular,
panel (i) shows that the asymptotic values of all probabilities
are equal, PAL,AR = PBL,BR = 0.25, indicating that the incident
wave packet is split in four equal parts.

To understand the mechanism of such an even splitting,
we plot in Fig. 3(a) the dynamics of the probability densities
|u j |2 and |v j |2, which shows clearly that only the states of the
leftmost atom (with j = 1) are excited during the pulse scat-
tering, suggesting that the whole extended junction operates
as a point scattering defect. For comparison, Fig. 3(b) shows
the dynamics in the routing mode in which all atoms of the
junction are excited. The former finding confirms our earlier
stationary result [35]: within the 1/4-scattering flat bands, the
entire junction acts as a very high quantum-mechanical bar-
rier. The latter can be seen from Eq. (5): when |E − �| 
 g2

the wave vector k+ becomes imaginary and large: |k+| � 1. In
this case the wave-function amplitude in the symmetric chan-
nel decays exponentially under the barrier (in the section with
atoms): +

n ∝ e−|k+|(n−1) for 1 � n � N . Because the atomic
states are coupled to the symmetric channel, the wave function
at the atoms also decays exponentially and becomes negligi-
ble already at the second atom. Note that the wave function
on the sites adjacent to the atoms is not small due to the
contribution of the antisymmetric channel: αn ≈ −βn ≈ −

n
for n > 1. Thus the whole atomic section acts as an effective
isotropic point scatterer and splits the incoming wave packet
into approximately four equal parts. On the other hand, in
the single-photon regime, such a system can be used as a
quantum random number generator (some proposals of such

FIG. 3. Dynamics of the probability densities at the atomic states
|e j〉 and |s j〉 depicted in pairs: {|uj |2, |v j |2} ( j = 1 . . . 12). The re-
sults are calculated for the splitting mode (upper panel) and the
controlled routing mode (lower panel). All parameters are the same
as for the lower and the middle row of Fig. 2, respectively.

devices can be found in Refs. [37,38]): each mutually ex-
clusive single-photon detection in either of the four channels
would give a two-bit random number. Moreover, given that the
1/4-scattering band is wide, several photons with different,
yet experimentally distinguishable, energies (within the band)
can be sent in parallel to generate a higher bit depth random
number.

V. PULSE DELAY AND STORAGE

Next, to address the delay and storage properties of the
quantum junction, we simulate the propagation of the wave
packet with σ = 100 and k0 = π/2. Figure 4 presents results
of such calculations for � = 0.12 in the upper row and those
for � = 0.08 in the lower row. The left column of Fig. 4 dis-
plays the spatiotemporal map of the wave-packet probability
density |�|2, while the middle column shows the dynamics of
probabilities PAL,AR, PBL,BR, and PC . These plots demonstrate
that, when the wave packet (incoming from the AL channel)
reaches the junction, it is partially scattered into the two right
output channels AR and BR. As a result, two almost identi-
cal primary scattered pulses start propagating freely in the
output channels [these pulses are labeled by p in Figs. 4(a)
and 4(b)]. Each of these two pulses carries about 1/4 of the
probability; the remaining 1/2 of the probability is stored in
the atomic states as can be seen from panel (c) of Fig. 4 for
400 � t � 500 (see the green dash-dotted line). Panels (a)
and (c) of Fig. 4 show also that two secondary pulses start
propagating in the two right output channels after some delay
[those pulses are labeled by s in Fig. 4(a)]. Those secondary
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FIG. 4. Left column: the spatiotemporal map of the wave-packet probability density |�|2. The primary and secondary pulses are labeled
by p and s, respectively. The middle column shows the probabilities PAL (dotted red line), PAR (solid red line), PBL (blue crosses), PBR (dashed
blue line), and PC (green dash-dotted line). Right column: the dynamics of the probability densities at the states |e j〉 and |s j〉 depicted in pairs
{|uj |2, |v j |2} ( j = 1 . . . 12).

pulses are broadened with respect to the primary ones but they
also carry about 1/4 of the probability each [see Fig. 4(c)].

To get an insight in the mechanisms of the secondary pulse
formation and delay we plot in the right column of Fig. 4
the spatiotemporal maps of the probability densities |u j |2 and
|v j |2 at the atomic states |e j〉 and |s j〉, respectively. The two
maps show that the incident pulse is forming the secondary
one, which is propagating in the junction over the atomic |s j〉
states (note that |uj |2 = 0). While such a secondary pulse
is propagating in the junction, it has a considerably smaller
group velocity than those pulses propagating freely in the
input-output channels. The group velocity is small because
the |s j〉 states are coupled indirectly via the waveguide states
and the excited |e j〉 states. The |s j〉 and |e j〉 states are coupled
by the field � and, therefore, it is natural to expect that
the smaller group velocity depends on the magnitude of the
control field � which determines this coupling.

After some algebra, the stationary Hamiltonian in the right-
hand side of Eq. (1) can be diagonalized and group velocities
can be obtained for the states that are close to the center of the
band (k = π/2, E = 0). There are two types of eigenfunc-
tions with zero energy. One type is free propagating waves
decoupled from the atoms and having the group velocity
vg = 2 [which is the same as that of the plane waves with
the dispersion relation E (k) = −2 cos k]. On the other hand,
there are eigenstates that have the following structure in the
section with atoms ( j = 1 . . . N):

α j = −1 − �2

g2
, β j = 1, u j = 0, v j = �

g
. (8)

Given that u j = 0, these states are decoupled from the
“bright” excited states |e j〉, while they have a contribution of
the “dark” states |s j〉; such states are analogous to the dark
polaritonic states discussed in Ref. [39]. The corresponding
group velocity

vg = 2 �2

2 g2 + �2
(9)

is reduced considerably with respect to that of the free prop-
agation if �/g 
 1. Therefore, the part of the wave packet,
which is stored in these dark states can be delayed compared
to its free propagating counterpart. Such a delay has also
been predicted from the analysis of phases of the stationary
transmission coefficients [40].

Panels (e) and (f) of Fig. 4 confirm the above reasoning,
showing that the group velocity decreases with the coupling
field (note the difference in the slopes of the spatiotemporal
dynamics). When the slow secondary pulse reaches the right
extreme of the junction, it scatters into the two right output
channels, forming two almost identical broadened secondary
pulses which propagate freely with the group velocity vg = 2
in AR and BR channels following the primary pulses. Because
of the above-mentioned difference in the group velocities, the
secondary pulse is delayed with respect to the primary one.
As we have argued, this delay can be tuned by the classi-
cal field �, which suggests a mechanism of the pulse delay
control.

Note also that, when the incident pulse has already scat-
tered into the output channels in the form of the primary
pulses, the secondary pulse can still be propagating in the
junction over its atomic states |s j〉. If the control field � is
switched off at such a moment, the secondary pulse can be
“frozen” or stored in the atomic states |s j〉 because they would
be completely decoupled from the states |e j〉 and the rest
of the system. Within our idealized model (which neglects
dissipation completely), such storage has an unlimited time:
the stored part of the wave function preserves its amplitudes
at the atomic states and relative phases. Then, if the external
field is switched back on, the stored pulse would be “released”
and continue its propagation, suggesting a pulse trapping or
storage control mechanism.

VI. DISSIPATION EFFECTS

Finally, we study the impact of dissipation on the operation
properties of our proposed device. Dissipation in the waveg-
uides would only gradually reduce the probability density of
the propagating pulses. Therefore, the latter effect is trivial
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FIG. 5. Dynamics of the probabilities PAL (dotted red line), PAR

(solid red line), PBL (blue crosses), PBR (dashed blue line), and PC

(green dash-dotted line) calculated for the same values of � as in
Fig. 4 and decay rates γe = γs = 0.001

and we neglect the corresponding dissipation for clarity. In
order to address the dissipation within the junction, we use
the standard method introducing the phenomenological decay
rates γe and γs of the atomic states |e j〉 and |s j〉, respec-
tively. This method has been used for similar systems (see
Refs. [10,14,41–43]). Within this approach the frequencies ωe

and ωs are substituted by ω′
e = ωe − iγe and ω′

s = ωs − iγs,
respectively. Hereafter we use γe = γs = 0.001, following
Refs. [14,41,44].

We found that the impact of the considered dissipation
on the controlled routing and 1/4-splitting properties was
negligible. For example, in the routing regime, the asymptotic
probability PBR decreases by only 1.5% for � = 0.85. In the
splitter regime, the asymptotic probabilities decrease only in
the left channels by about 0.4%. Therefore, both regimes are
robust to low dissipation.

Figure 5 displays the dynamics of probabilities PAR,AL ,
PBR,BL , and PC for the dissipative case. These results show
that the considered low decays in the atomic states do not
affect the propagation of the primary pulses at all because
the latter propagates freely in the output channels AR and
BR [35]. Each of these pulses carries about 0.25 of the total
probability: see solid red and dashed blue lines in Fig. 5 for
400 � t � 500 (which can be compared to their counterparts
in the nondissipative case shown in Fig. 4). On the other hand,
when the secondary pulse propagates in the quantum junction,
it propagates mostly over the atomic states |s j〉 [see panels (e)
and (f) of Fig. 4]. Due to the decay in these states, a part of
the probability dissipates, causing a corresponding decrease
of the integrated probabilities of the secondary pulses in AR

and BR channels. For example, for � = 0.12 the asymptotic
values of PAR and PBR decrease by approximately 0.1 each, as
compared with the nondissipative case. Such a decrease is in
good agreement with the simple estimate which assumes that
about 1 − exp(−γs τ ) of the probability is dissipated, where
τ is the secondary pulse delay time (τ ∼ 200 for � = 0.12).
Given that the group velocity of the secondary pulse in the
quantum junction decreases with the control field � [compare
panels (e) and (f) of Fig. 4], the effect of losses in the model is
more pronounced for smaller values of � due to the fact that
the pulse delay is longer and the pulse spends more time in the
decaying |s j〉 states. We note finally that the decay of the |e j〉
states is not as important because the amplitude of the wave
function on these states is negligible in the considered regime;
therefore, γe can be substantially larger without affecting the
properties of the device, as long as γs is small enough.

VII. CONCLUSIONS

In conclusion, we studied the dynamics of optical pulses
in the system of two waveguides coupled by the multipurpose
quantum junction comprising a set of three-level atoms with
the � scheme of the optical transitions, one of which is driven
by an external classical electromagnetic control field. We
demonstrate that photonic wave packets propagating in the
system can be controlled and manipulated in various ways.
In particular, an incident pulse can be routed into a selected
output channel or split into several parts, some of which can
be delayed by an amount of time determined by the control
field. The pulse can also be partially trapped or stored in the
junction and released afterward in a controlled way. Moreover,
the same physical device can perform all these operations
with high efficiency. The system’s operational regimes have
been shown to be robust in the presence of low dissipation
of the atomic states. Therefore, we argue that our proposed
model system can provide helpful guidelines for designing
the multifunctional junctions, making the future all-optical
circuitry building blocks more multipurpose and integrated.
Furthermore, since our model is simple and quite generic,
similar devices can be designed based not only on atomic but
also on other physical three-level systems, such as SQUIDs
(superconducting quantum interference devices). We believe
that the wide variety of operational regimes combined with
high operation efficiency makes our model design a promis-
ing prototype for applications in next-generation information
processing and communication technologies.

ACKNOWLEDGMENTS

Work in Madrid was supported by MINECO Grant No.
MAT2016-75955. M.A. and P.A. acknowledge financial sup-
port from DGIIP UTFSM and ANID FONDECYT Grants No.
1180914 and No. 1201876. M.A. also acknowledges support
from ANID Doctorado Nacional through Grant No. 21141185
and J. F. Marín for fruitful discussions. A.M. is grateful to V.
A. Malyshev for critical discussions.

[1] H. J. Kimble, Nature (London) 453, 1023 (2008). [2] T. E. Northup and R. Blatt, Nat. Photon. 8, 356 (2014).

043502-6

https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nphoton.2014.53


MANIPULATING PHOTONIC SIGNALS BY A … PHYSICAL REVIEW A 105, 043502 (2022)

[3] C. Monroe, Nature (London) 416, 238 (2002).
[4] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,

and J. L. O’Brien, Nature (London) 464, 45 (2010).
[5] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M.

Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe,
Nature (London) 484, 195 (2012).

[6] F. Flamini, N. Spagnolo, and F. Sciarrino, Rep. Prog. Phys. 82,
016001 (2018).

[7] J. L. O’Brien, A. Furusawa, and J. Vučković, Nat. Photon. 3,
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