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Anisotropic Kepler problem in a non–rotationally-symmetric Eaton lens
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In this paper, we prove that the anisotropic Kepler problem in two-body motion can be analogous to optical
non–rotationally-symmetric Eaton lens. According to the numerical calculation and simulation results, when the
mass ratio of anisotropic Kepler problem μ > 1, the corresponding non–rotationally-symmetric Eaton lens can
simulate and reproduce the periodic orbits and chaotic characteristics of anisotropic Kepler problem in geometric
optics and wave optics, respectively. In the extended study, when a beam is incident to the non–rotationally-
symmetric Eaton lens from air, different from the light properties in traditional Eaton lens, the deflected beam is
no longer along 180°, and may have scatterings in other directions, which are influenced by the incident direction
and mass ratio μ. The results provide a successful reference for the analogy between optical and mechanical
phenomena.
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I. INTRODUCTION

The anisotropic Kepler problem (AKP) originally comes
from quantum mechanics and it is a modified model of the
Kepler problem. The model can be used to describe the motion
of two bodies in the anisotropic configuration plane under the
interaction of universal gravitation described by Newton’s law
of universal gravitation. It was first proposed by Gutzwiller
[1] in 1973, who chose to study AKP because it was a chaotic
system, i.e., one without stable periodic orbits. It was widely
disseminated and considered one of the most suitable models
for studying the physics of semiconductors. The dynamics of
each system will be very irregular when the masses are not
equal in each direction of the Hamiltonian. Gutzwiller [2] sub-
sequently proved a one-to-one correspondence between a set
of trajectories of two-dimensional AKP and binary Bernoulli
sequences, which indicated that the system has strong chaotic
characteristics. Later, Broucke [3] changed the form of Hamil-
tonian in AKP, and found two periodic orbits of stability with
the periods of 3 and 5, respectively, under the condition that
the mass ratio μ was approximately equal to 1.5. However,
since periodic orbits disappear when the μ is greater than
1.748, Gutzwiller [4] believed that when μ is greater than 2,
particles do not have stable periodic orbits and chaos always
exists. Bai [5] also thought AKP is chaotic even for mass ratio
μ slightly larger than 1 because the perturbation would be very
large when a particle approached the origin. Contopoulos [6]
also obtained a similar conclusion by the calculation results
that the Lyapunov feature number of chaotic orbits were pos-
itive for various values of μ. In a follow-up study, Arribas [7]
proved the nonintegrability of planar and spatial anisotropy
Kepler problems by analyzing the properties of differential
Galois groups of variational equations around some particular
solutions. Abouelmagd [8] proved that the Kepler problem
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with weak anisotropy has two periodic orbits at each energy
level, and both of them bifurcated from the elliptical orbit
of the Kepler problem with high eccentricity. Anisotropic
mass tensor and interactions with gravity are common. For
example, the planar isosceles three-body problem, which can
be reduced to a natural Hamiltonian system [9,10], corre-
sponds to an anisotropic Kepler potential with two degrees of
freedom, standard kinetic energy, and additional radial terms.
At the same time, the rhombic charged tetrahedron problem
[11] also involves the AKP. Maciejewski [12] also proposed
that the anisotropic Kepler system can be realized through a
two-point mass system which move in perpendicular lines (or
planes). Therefore, it also reveals the possibility that AKP can
be realized in other fields.

The mechanical equation is very similar to the optical wave
equation. When the mass (potential) and refractive index sat-
isfy certain conditions, optics can correspond with theoretical
mechanics by analogy. The remarkable similarity between the
two disciplines can be demonstrated by matter wave cloaking
[13] and electromagnetic cloaking [14] based on transformed
coordinates. The conformal cloak for waves [15] based on the
Hooke and Kepler potentials also reveals that the intersection
of mechanics and optics can produce more magical phenom-
ena. AKP, considered as the suitable model for studying the
hard chaos, introduces anisotropic mass and non–rotationally-
symmetric potential, which corresponds to the new optical
refractive index and generates new phenomena that have not
been considered before.

There are many lenses with different functions in the op-
tics field. Their refractive index distribution can be divided
into two types: isotropic and anisotropic, and isotropic re-
fractive index lenses are mostly studied. Among them are a
special kind of isotropic lenses, known as absolute instru-
ments for their perfect imaging performance in geometric
optics [16–20]. The most famous absolute instruments are
Luneburg lens [21], Eaton lens [22,23], and Maxwell fisheye
lens [24,25]. Although the basic refractive index of traditional
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absolute lenses all have rotation symmetry, recent studies have
shown that when Luneburg lens breaks rotation symmetry
[26,27], Lissajous lens [26] or new Luneburg-Lissajous lens
[27] can still perform imaging or self-imaging under some
conditions, resulting in many interesting phenomena. Tradi-
tional Eaton lens has excellent self-focusing properties, in
which light propagates in perfect circles or ellipses. It can
be applied in a wide range, such as super-resolution imag-
ing [28], photonic crystal [29], and geodesic lens [30,31] to
achieve curved imaging.

In this paper, we find that the Schrödinger equation of the
Kepler potential is in agreement with the wave equation of
light in Eaton lens. In addition, when the rotation symmetry
of the Eaton lens is broken, the ray propagation trajectory
is equivalent to the particle’s trajectory of AKP after co-
ordinate transformation. Therefore, we observe light fields
and behaviors of rays with different μ in wave optics and
geometric optics. The results show that as μ increases, the
non–rotationally-symmetric Eaton lens (NSEL) loses its self-
focusing property, and the periodic orbits and chaos in AKP
can be found in the light fields and ray behaviors. In addition,
when a beam is incident into the NSEL from air, with the
increase of μ, the deflected angle of the beam incident from
the left side gradually increases, and strong scattering will
occur, while the deflected angle of the beam incident from the
upper side becomes smaller, and there is little scattering. The
results in the paper includes the analytical solutions calculated
by our theory and the simulation results from commercial
finite-element solver COMSOL MULTIPHYSICS.

II. THEORY

Initially, Gutzwiller [1] proposed the Hamiltonian in AKP:

H = p2
1

2m1
+ p2

2 + p2
3

2m2
− e2

κ

√
q2

1 + q2
2 + q2

3

. (1)

The original AKP was used to describe the gravitational
effects of surrounding lattices on the nucleus charge in Si
and Ge, where κ is dielectric constant of the lattices, e is
electric charge, qβ and pβ (β = 1, 2, 3) are the coordinates
and momenta of the particles on different axes, respectively.
The masses in different direction (m1, m2) are not equal, which
is the significant difference between the ordinary Kepler prob-
lem and anisotropic Kepler problem.

In Cartesian coordinates, the normalized Hamiltonian
(κ = e = 1) becomes

HG = 1

2

(
U 2

G

μG
+ V 2

G + W 2
G

vG

)
− 1√

x2
G + y2

G + z2
G

. (2)

Consider its representation in two dimensions, i.e.,

HG = 1

2

(
U 2

G

μG
+ V 2

G

vG

)
− 1√

x2
G + y2

G

. (3)

Here xG and yG are the normalized Cartesian coordinates,
UG = μGẋG,VG = vGẏG are the momentum. Among them,
μG and vG correspond to the m1 and m2, respectively, and
μGvG = 1. In this case, μG > 1, i.e., the x axis is along the

heavy direction of mass μG. Hence, the mass ratio of the parti-
cle is defined as μ = μG

vG
= μ2

G. In a way similar to Gutzwiller
[4], the eigenvalue of HG is −1/2.

Broucke [3] uses coordinate transformation

xB = μG
2/3xG, yB = μG

−1/3yG (4)

to reduce the mass factor under momentum, and get a new
Hamiltonian:

HB = 1

2

(
U 2

B + V 2
B

) − 1√
μBx2

B + y2
B

, (5)

where

HB = μG
1/3HG, (6)

μB = μG
−2. (7)

The basic difference between these two Hamiltonian ex-
pressions is that anisotropy of Eq. (2) is introduced in the
kinetic energy of the Hamiltonian, while anisotropy of Eq. (5)
is introduced in the potential of the Hamiltonian.

The mechanical expressions of the Hamiltonian equation
are

dr
dt

= ∂H

∂ p
,

d p
dt

= −∂H

∂r
, (8)

where r and p are position and momentum in Hamiltonian,
respectively. Substituting Eq. (5) into Eq. (8) in the Cartesian
coordinate system, we get

ẋB = UB, ẏB = VB, U̇B = −μBxB(
μBx2

B + y2
B

)3/2 ,

V̇B = −yB(
μBx2

B + y2
B

)3/2 . (9)

The trajectories of particles can be obtained by solving the
differential equations.

In optics for transverse electric (TE) mode, the electric field
points in the vertical direction (orthogonal to the plane). If
a planar medium with a two-dimensional gradient refractive
index n(x, y) is considered, its propagation process conforms
to the Helmholtz equation:(∇2

x + ∇2
y + n2k2

0

)
ψ = 0. (10)

It can be found that the optical propagation equation in real
space is very similar to the steady-state Schrödinger equation
in mechanics:(

∇2
x + ∇2

y + 2m

ћ
2 (E − Ep)

)
ψ = 0, (11)

where Ep represents potential, E represents energy, and m rep-
resents the mass of the particle. In combination with Eqs. (5)
and (11), we can obtain⎛
⎝∇2

x + ∇2
y + 2

h̄2

⎛
⎝ 1√

μBx2
B + y2

B

− μB
−1/6

2

⎞
⎠

⎞
⎠ψ = 0. (12)

Here we set h̄ = 1, k0 = 1. By comparing Eqs. (10) and
(12), we can obtain the optical refractive index corresponding
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FIG. 1. (a) The cross section of the potential Ep (x, y) in AKP. The green circles and yellow arrows around the center represent the particles
and the direction of motion, respectively. (b) The elliptic cross section of the optical index n(x, y) in NSEL. The red (upper) circle and yellow
lines around the center represent the light source and the ray trajectory, respectively. The trajectories in the two system are unclosed and chaotic.
(c) The schematic of the optical NSEL under the background of air. The pink ellipse around the center represents the boundary between NSEL
and air. The units of y-x coordinate axes are set as m.

to AKP:

n(x, y) =
√√√√ 2√

μBx2
B + y2

B

− μB
−1/6. (13)

It can be found that different energy levels of AKP corre-
spond to different refractive indexes.

When μB = 1,

n(x, y) =
√√√√ 2√

x2
B + y2

B

− 1, (14)

which is exactly the refractive index distribution of tradi-
tional Eaton lens, verifying the correspondence between the
isotropic Kepler problem and the optical Eaton lens. Hence,
when μB �= 1, AKP corresponds to the refractive index of
NSEL.

Similarly, the path of light rays can be determined by
optical Hamiltonian equations,

dr
dt

= ∂ω

∂k
,

dk
dt

= −∂ω

∂r
. (15)

where k = n(x, y)k0 is the wave vector of the ray and ω =
c

n(x,y) k is the angular frequency in optics.
Expanding Eq. (15), we can get
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(
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−1/6
B

√
μBx2 + y2
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(16)

The ray trajectories can be obtained by solving the differ-
ential equations.

It is worth noting that in the mechanical definition, for a
particle at position r , momentum p = h̄k and Hamiltonian
H = h̄ω. In order for the solutions of the two equations to be

equivalent, the initial momentum of the particle needs to sat-
isfy |p| = |

√
UB

2 + VB
2| = |k| = |n|. According to Eqs. (10)

and (11), the energy E of the mechanical AKP affects the
optical refractive index n, and the value of n also affects the
initial momentum of anisotropic particles corresponding to
the light rays. So, the difference of the energy level influences
the correspondence between the momentum of particles and
the wave vectors of rays.

III. RESULTS

In order to verify the relationship between the particle
trajectory in AKP and the ray trajectory in the NSEL, we set
a simple model as shown in Fig. 1 and select the same mass
ratio and initial motion parameters.

First of all, in the AKP, we choose a classic exam-
ple of mass ratio μ = 5 (μB= 0.2) in Gutzwiller’s book
[4], so the potential of the particles Ep = − 1√

0.2x2
B+y2

B

.

The initial values of position and momentum are set as
xB[0] = 1.4 m, yB[0] = 0.627 m, UB[0] = −0.72 m/ns, and
VB[0] = −0.65 m/ns . The analytical results of the particles’
trajectories calculated by Eq. (9) at times t = 0–25 (ns) and
t = 25–35 (ns) are shown in Figs. 2(a) and 2(d), respectively.
When t is small, the particle exhibits stability under the in-
teraction of gravity and moves along periodic orbits. When
t increases gradually, the chaos of particle is gradually re-
flected, and the trajectory begins to be disordered. This is
because when the mass ratio is greater than 2, the periodic
orbits of the particles will be destroyed with the increase of
time, resulting in hard chaos [4].

Similarly, when the mass ratio μ = 5, the refractive index
of the corresponding NSEL is n(x, y) =

√
2√

0.2x2
B+y2

B

− 51/6,

and the initial incident conditions are set as same as those
of the moving particles xB[0] = 1.4 m, yB[0] = 0.627 m,
kx[0] = −0.72 m–1, and ky[0] = −0.65 m–1 . The analytical

solutions calculated by Eq. (16) and simulation results of
ray trajectory at the different times are shown in Figs. 2(b),
2(c), and 2(d). By comparing the mechanical trajectory and
the ray trajectory, it can be found that when t is small, the
motion trajectory of the particles is completely consistent with
the ray trajectory in the light propagation, which verifies the
commonality of AKP and NSEL theory. When t gradually
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FIG. 2. (a) The analytical results of particles’ trajectories
at t = 0–25 ns in AKP. The initial values of motion are set
as xB[0] = 1.4 m, yB[0] = 0.627 m, UB[0] = −0.72 m/ns, and
VB[0] = −0.65 m/ns. (b) The analytical solutions and (c) simu-
lation results at t = 0–25 ns of ray trajectories in NSEL. The
initial incident conditions are set the same as those of the moving
particles:xB[0] = 1.4 m, yB[0] = 0.627 m, kx[0] = −0.72 m–1, and
ky[0] = −0.65 m–1 (d) The particles’ trajectories in AKP and ray
trajectories in NSEL at t = 25–35 ns. The units of y-x coordinate
axes are set as m. The orange stars and green circles in all sub-
graphs represent initial positions and end positions of trajectories,
respectively.

increases, influenced by chaos, particles and light rays will no
longer follow periodic trajectories. In addition, there are slight
differences among the simulation results of AKP, analytical
solutions, and simulation results of NSEL because of the weak
precision errors of software or calculations, which can be seen
in Fig. 2(d). All in all, we can further simulate the motion
phenomena and laws in classical AKP by NSEL.

It is well known that light in Eaton lenses has the property
of self-focusing [19], which corresponds to the closed-
trajectory property of Kepler’s problem. Periodic orbits and
chaos in AKP must correspond to the peculiar properties of
NSEL. In order to better explore the relevant laws, we in-
troduced the Poincaré cross section in AKP for observation.
The points of y = 0 m and v > 0 m/ns in the AKP trajectory
corresponding to the NSEL are selected as the intercept points
on the Poincaré cross section. When there is only one fixed
point or a few solitary points on the Poincaré cross section,
the trajectory is periodic; when there is a closed curve in the
Poincaré section, the trajectory is quasiperiodic; The trajec-
tory is thought as chaos when the Poincaré section consists
of patches of dense points with fractal structure. Similar to

Gutzwiller [4], we define X = x(1 + U 2
B

μB
), U = 2

π
tan−1( U 2

B√
μB

)
as the horizontal and vertical coordinates of Poincaré cross
section, respectively. In order to make equivalent the effect
of point source for wave optics (a line current source) by
geometrical optics, we select some special and representative
incident directions as reference when calculating geometric
optical trajectory and Poincaré cross section. In the compu-
tational simulation, the point sources are placed at (−1.5 m,
0) and (0, 1.5 m), respectively, and μ are set as 1, 1.1, 1.2,

and 2 (μB = 1, 0.91, 0.833 333, and 0.5). Different from the
ray trajectory calculation, we add perfect matching layers on
the boundary of the wave optical simulation regions. The
simulation results of wave optics, geometric optics, and ana-
lytical solutions of Poincaré cross section are shown in Figs. 3
and 4.

In Fig. 3, the point source is placed on the left side. When
μ = 1, the point source will form as self-focusing, and the
trajectories present ellipses, and only a few solitary points
exist in the corresponding Poincaré cross section. When μ

is slightly greater than 1 (taking μ = 1.1 as an example),
the rays are no longer along closed elliptic trajectories and
do not pass through the other side of the lens. The Poincaré
intercept points corresponding to the trajectories are evenly
distributed on both sides of the y axis and form some closed
curve (stability island from family 3 [6]). The light rays bi-
furcated from the elliptical orbits of the traditional Eaton lens,
which can be considered as quasiperiodic orbits with stability,
and there is slight scattering on the electric field. When μ

gradually increases (taking μ = 1.2 as an example), the light
field and rays of the left side and right side are approximately
symmetrically distributed, that is, the light from one side will
reach the other side. At this time, there are dense spots on
the Poincaré cross section while retaining the original island
of stability. When μ is large (taking μ = 2 as an example),
both the light field and the rays are very chaotic, and the
stability islands in Poincaré cross section constantly break up
and change into hyperbolic dense points.

As shown in Fig. 4, the point source is placed on the upper
side. When μ = 1, the point source has the same self-focusing
effect as Fig. 3. There are only a few solitary points in the cor-
responding Poincaré cross section. When μ is slightly greater
than 1 (taking μ = 1.1 as an example), the ray trajectories are
still quasiperiodic orbits with certain stability. But, different
from Fig. 3(h), the Poincaré intercepts are symmetric along
the origin and make up different stable islands. When μ con-
tinues to increase (taking μ = 1.2 as an example), although
there are different degrees of scatterings in other directions,
most of the electric field is distributed on the upper side.
At this time, the Poincaré cross section adds many dense
points while preserving the original island of stability. When
μ becomes large (taking μ = 2 as an example), the electric
field and rays are very chaotic, but most of them still distribute
on the upper side. The stability islands constantly split into
hyperbolic dense points, showing chaotic characteristics.

In traditional Eaton lens (μ = 1), the ray will follow an
elliptical trajectory. After the ray incidents from the point
(−1.5 m, 0), it will travel half the ellipse and undergo a sudden
change of direction (kx > 0 to kx < 0) as it arrives at the
x axis (y = 0) again. Similarly, after the ray incidents from
the point (0, 1.5 m), it also undergoes a sudden change of
direction ky < 0 to ky > 0) as it arrives at the y axis (x = 0)
again. Here we call the points with sudden change of direction
mutational points. According to Eq. (16), when x = 0, the
value of dky/dt is not influenced by μB. However, when
y = 0, the value of dkx/dt is almost linear with the value of
μB. Compared with the same condition in traditional Eaton
lens, there is a bigger change of direction at the mutational
points of the ray incident from the point (−1.5 m, 0) than of
the ray incident from the point (0, 1.5 m) in NSEL. Combining
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FIG. 3. The Ez component, the absolute value of the electric field, geometrical trajectories, and Poincaré cross section of different mass
ration μ = 1 (a)–(d); μ = 1.1 (e)–(h); μ = 1.2 (i)–(l); and μ = 2 (m)–(p) when a point source is placed at (−1.5 m, 0). The horizontal and

vertical coordinates of Poincaré cross section are set as X = x(1 + U 2
B

μB
), U = 2

π
tan−1(

U 2
B√
μB

). The square boxes of subgraphs are simulation
areas, and the layered boundaries in the first two columns of subgraphs are perfect matching layers. The units of y-x coordinate axes are set as
m. The duration of geometric trajectory is set as �t = 600 ns.

the above discussion and the comparison between Fig. 3 and
Fig. 4, we can find that the ray orbits from the top point
(0, 1.5 m) are more stable than those from the left point
(−1.5 m, 0).

Different from mechanics, in order to fit the actual experi-
mental environment, the influence of air on the imaging effect
of lens is often not negligible in the studying works of optical
lens. Therefore, the refractive index n(x, y) is set as Eq. (17)

and the incident mode of light is changed from point source
into beam.

n(x, y) =

⎧⎪⎨
⎪⎩

1 (n < 1)√
2√

μBx2
B+y2

B

− μB
−1/6 (n � 1)

. (17)
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FIG. 4. The Ez component, the absolute value of the electric field, geometrical trajectories, and Poincaré cross section of different mass
ration μ = 1 (a)–(d); μ = 1.1 (e)–(h); μ = 1.2 (i)–(l); and μ = 2(m)–(p) when a point source is placed at (0, 1.5 m). The horizontal and

vertical coordinates of Poincare cross section are set as X = x(1 + U 2
B

μB
), U = 2

π
tan−1(

U 2
B√
μB

). The square boxes of subgraphs are simulation
areas, and the layered boundaries in the first two columns of subgraphs are perfect matching layers. The units of y-x coordinate axes are set as
m. The duration of geometric trajectory is set as �t = 600 ns.

Based on the refractive index n(x, y) in Eq. (17), we set a
simple model including NSEL and air background in Fig. 1(c).
We set μ = 1, 1.2, and 2 (μB = 1, 0.8333 and 0.5), respec-
tively, and incident a light beam from the left side or upper
side of NSEL. The numerical results of geometrical optics and
wave optics are shown in Figs. 5 and 6.

According to Fig. 5, when μ = 1, the NSEL is equal to
the traditional Eaton lens and leave NSEL 180° away from
where it came in. When μ is greater than 1 (taking μ = 1.2 as

an example), the beam will diverge and most of the deflected
angles will be greater than 180°. When μ continues to increase
(taking μ = 2 as an example), the deflected angle of the
beam increases gradually and the ray begins to split sideways,
resulting in strong scatterings in electric field. According to
Eq. (16), |dkx/dt | has positive correlation with μB. When μ

is greater than 1(μB < 1), |dkx/dt | of NSEL is smaller than
|dkx/dt | of traditional Eaton lens. At the same time, |dky/dt |
does not change as much as |dkx/dt | when μB is changed.
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FIG. 5. The Ez component, absolute value of electric field and geometric trajectories with different mass ratios μ = 1 (a)-(c), μ = 1.2 (d)-
(f) and μ = 2 (g)-(i) when the beam is incident to the NSEL (the inner part of black circles in (a)-(c) or ellipse in (d)-(i) μBx2

B + y2
B = ( 2

μB
−1/6+1

)2

in the center) from air background on the left side. The square boxes of subgraphs are simulation areas, and the layered boundaries in the first
two columns of subgraphs are perfect matching layers. The units of y-x coordinate axes are set as m.

In other words, the change of kx is less than that of ky in the
same time range. In traditional Eaton lens, between the time
that beam passes through the x axis and leaves the lens, kx

decreases from zero to negative and ky increases from negative
to zero. Therefore in NSEL, ky will increases from negative
to positive when the beam leaves the lens. Hence, the ray
keeps approaching the incident point as it leaves NSEL, as
Figs. 5(d)–5(i) show.

In Fig. 6, when μ = 1, in the same way, the beam will turn
away 180° after passing through the lens. Between the time
that the beam passes through the y axis and leaves the lens,
kx decreases from positive to zero and ky increases from zero
to positive. So when μ is greater than 1, ky is still positive
when the beam leaves the lens because the change of kx is
less than that of ky in the same time range. Therefore, the
beam keeps away from the incident point as it leaves NSEL, as
Figs. 6(d)–6(i) show. In addition, the incident light beam will
first converge (does not converge on a point) and then diverges
after passing through the y axis with the deflected angle of
less than 180° when μ is greater than 1. When μ continues

to increases, the deflected angle decreases gradually and the
convergence position is closer and closer to the origin. It is
worth noting that there is not any scattering in other directions
no matter what the value of μ is.

It is worth noting that the results are consistent except that
the heavy axis and coordinate axis are swapped over when μ

is replaced with 1/μ, which is because μB will be the same
mass factor on the new heavy axis (y axis) after coordinate
transformation.

IV. CONCLUSION

In this paper, it is proved that AKP in two-body motion
has similar properties to the NSEL under certain conditions.
Therefore, we reproduce the mechanical behavior of AKP
from the perspective of wave optics and geometric optics by
studying the electric field and ray trajectories with different
mass ratios μ. The results show that with the increase of μ,
the self-focusing property of the traditional Eaton lens will
be lost, and when the point source is placed on the left side
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FIG. 6. The Ez component, absolute value of electric field and geometric trajectories with different mass ratios μ = 1 (a)-(c), μ = 1.2 (d)-
(f) and μ = 2 (g)-(i) when the beam is incident to the NSEL (the inner part of black circles in (a)-(c) or ellipse in (d)-(i) μBx2

B + y2
B = ( 2

μB
−1/6+1

)2

in the center) from air background on the upper side. The square boxes of subgraphs are simulation areas, and the layered boundaries in the
first two columns of subgraphs are perfect matching layers. The units of y-x coordinate axes are set as m.

or upper side, the electric field and ray will change from
elliptic (periodic orbit) to quasiperiodic orbits of symmetric
irregular shape, and finally to chaotic distribution. According
to Poincaré cross section, we can also observe the evolution
from solitary points to closed curves and then to dense points,
which is very similar to the phenomena of AKP. When a beam
is incident to NSEL from air, the deflected angle of the beam
from the left side is greater than 180° and increases gradu-
ally, causing strong scattering, which is consistent with chaos
states, while the deflected angle of the beam from the upper
side is less than 180° and becomes smaller and smaller with
the increase of μ. Based on this correspondence between AKP

and NSEL, more related applications such as superscattering
and new light field regulations, will be achieved by combining
some transformation optics principles [13,14,32,33] in the
future.
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