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Heavy polarons in ultracold atomic Fermi superfluids at the BEC-BCS crossover:
Formalism and applications
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We investigate the system of a heavy impurity embedded in a paired two-component Fermi gas at the crossover
from a Bose-Einstein condensate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) superfluid via an extension of
the functional determinant approach (FDA). FDA is an exact numerical approach applied to study manifestations
of Anderson’s orthogonality catastrophe (OC) in the system of a static impurity immersed in an ideal Fermi gas.
Here, we extend the FDA to a strongly correlated superfluid background described by a BCS mean-field wave
function. In contrast to the ideal Fermi gas case, the pairing gap in the BCS superfluid prevents the OC and leads
to genuine polaron signals in the spectrum. Thus our exactly solvable model can provide a deeper understanding
of polaron physics. In addition, we find that the polaron spectrum can be used to measure the superfluid pairing
gap, and in the case of a magnetic impurity, the energy of the subgap Yu-Shiba-Rusinov (YSR) bound state. Our
theoretical predictions can be examined with state-of-art cold-atom experiments.
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I. INTRODUCTION

The dynamics of an impurity interacting with a bath of
quantum-mechanical particles are unique and fundamental
in understanding many-body quantum physics [1–3]. On the
one hand, system’s simplicity allows us to develop insightful
theoretical models and, in some cases, access exact solutions
to make quantitative comparisons with experiments [4,5]. On
the other hand, since a single impurity barely affects the back-
ground, we can apply the impurity as a sensitive probe of the
surrounding many-particle medium [1]. Two important and
related theoretical concepts have been developed to study the
impurity-medium problems: polarons [2,3] and orthogonality
catastrophe (OC) [6,7].

In 1933, Landau [8] introduced the general concept of po-
larons to describe impurity-medium systems as quasiparticles
formed by dressing the impurity with elementary excitations
of the medium. Polarons have become some of the most
celebrated “quasiparticles” in condensed matter physics and
can be commonly found in various crystalline solids [9,10].
In recent years, polaron physics in experiment [11–21] and
theory [22–39] has progressed rapidly in the new platform
of ultracold quantum gases, which provides unprecedented
controllability and accessibility [40,41]. The insightful con-
cept of polaron leads to developing approximate approaches
such as the extended Chevy’s ansatz [22,26] or the many-body
T -matrix method [2,24,36] that includes only a few medium
excitations, which proved to be an excellent approximation
for mobile impurities. The underlying physics is that multiple
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medium excitations cost the mobile impurity’s recoil energy
and are energetically unfavorable. Together with Monte Carlo
simulations, these approximated approaches predict several
characteristic features of the polaron spectrum: attractive and
repulsive polaron branches with finite residue, the dark con-
tinuum [35], and the molecule-hole continuum [2]. While
both attractive and repulsive polarons have been observed in
experiments [13,14], other features remain elusive due to the
uncertainty in theoretical calculations.

In contrast to a mobile impurity, an infinitely heavy im-
purity immersed in a Fermi sea can excite many particle-hole
pairs close to the Fermi surfaces without costing recoil energy,
leading to the occurrence of OC [3,7]. The concept of OC, i.e.,
the many-particle states with and without impurity become
orthogonal, was raised by Anderson in 1967 [6] to understand
the Fermi-edge singularity of x-ray absorption spectra in met-
als [4,5]. This well-known Fermi-edge singularity is the first
and most important example of nonequilibrium many-body
physics and is exactly solvable [42,43] via the functional de-
terminant approach (FDA) [44–47]. Unfortunately, OC leads
to vanishing quasiparticle residues [3], where polaron does not
technically exist. Consequently, this exactly solvable model
may not be directly applied to understand polarons.

The present study, which accompanies the Letter Ref. [48],
investigates a heavy impurity immersed in a two-component
Fermi superfluid medium described by the standard Bardeen-
Cooper-Schrieffer (BCS) pairing theory [49–51]. The purpose
is twofold.

First, we aim to construct an exactly solvable model for
polaron with finite residue. As shown in this study, our sys-
tem is suitable for an exact approach—an extended FDA,
and the presence of a pairing gap can efficiently suppress
multiple particle-hole excitations and prevent Anderson’s OC.
Therefore our model provides a benchmark calculation of
the polaron spectrum and rigorously examine all the specu-
lated polaron features. We name our system “heavy crossover
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polaron” since the background Fermi gas can undergo a
crossover from a Bose-Einstein condensation (BEC) to a BCS
superfluid.

Second, our prediction can be applied to investigate the
background Fermi superfluid excitations, a long-standing
topic in ultracold atoms. Polarons have already been realized
in BEC and ideal Fermi gas experimentally, but the physics
of these weakly interacting background gas are well under-
stood. More recently, it has also been shown that polarons
in BEC with a synthetic spin-orbit-coupling can reveal the
nature of the background roton excitations [38]. Investigating
polaron physics in a strongly correlated Fermi superfluid at
the BEC-BCS crossover, namely crossover polaron, has also
been proposed in several pioneering works with approximated
approaches [52–56]. Our exact method in the heavy impurity
limit allows us to apply the polaron spectrum to measure the
Fermi superfluid excitation features such as the paring gap and
subgap Yu-Shiba-Rusinov (YSR) bound states [57–61], which
is highly experimentally relevant. Nowadays, it is standard to
use Feshbach resonance at the BEC-BCS crossover to realize
a BCS Fermi superfluid. Recent experiments have already
demonstrated the coexistence of Bose and Fermi superfluids
in several realizable systems, 6Li - 7Li [62], 6Li - 41K [63],
and 6Li - 174Yb [64] mixtures, where the heavy species can
serve as the impurity at will. The combinations 6Li - 133Cs
[65], 6Li - 168Er [66], and 6Li - 168Er [66] are also promising
candidates, where the interspecies Feshbach resonances have
been characterized.

The rest of this paper is organized as follows. In the fol-
lowing section, we establish our general formalism and show
how to extend the exact FDA approach to the case of a BCS
superfluid as a background system. Section III is devoted to
presenting our numerical results, and Sec. IV is given to the
discussion of possible experimental realizations. Finally, we
conclude our paper by discussing the physics and proposing
applications in Sec. V.

II. FORMALISM

A. Heavy impurity in a BCS superfluid

Our system consists of a static impurity atom, that either is
localized by a deep optical lattice or has infinitely heavy mass,
and a two-component Fermi superfluid with equal mass m↑ =
m↓ = m. We assume the impurity can be in either a noninter-
acting or an interacting hyperfine state with the background
fermions, where the many-body Hamiltonian is given by Ĥi

and Ĥf , correspondingly. The energy difference of these two
hyperfine states only leads to trivial effects and is neglected
in this work. The interaction between unlike atoms in the
two-component Fermi gas can be tuned by a broad Feshbach
resonance, and characterized by the s-wave scattering length
a. At low temperature T , these strongly interacting fermions
undergo a crossover from a BEC to a BCS superfluid, which
can be described by the celebrated BCS theory at a mean-field
level and is briefly reviewed here and in Appendix A.

Using the units h̄ = 1 hereafter, the BCS Hamiltonian is
given by

Ĥi = K0 +
∑

k

ψ̂
†
khi(k)ψ̂k, (1)

where ψ̂
†
k ≡ (c†

k↑, c−k↓) is the Nambu spinor representation

with c†
kσ (ckσ ) being the creation (annihilation) operator

for a σ -component fermion with momentum k. Here, K0 ≡
−V�2/g + ∑

k(εk − μ) with V denoting the system volume
and � being the pairing gap parameter. εk ≡ h̄2k2/2m is the
single-particle dispersion relation and μ is the chemical po-
tential. We assume the populations of the two components are
the same and fixed by μ via the number equation Eq. (A1)
[67]. The bare coupling constant g should be renormalized by
the s-wave scattering length a between the two components
via

g−1 = m

4πa
−

�∑
k

1

2εk
, (2)

where � is an ultraviolet cutoff. hi(k) can be regarded as a

single-particle Hamiltonian ĥi in momentum space and has a
matrix form:

hi(k) =
[
ξk �

� −ξk

]
, (3)

where ξk ≡ εk − μ. For a given scattering length a and tem-
perature T , � and μ are determined by a set of the mean-field
number and gap equations (see Appendix A).

When the static impurity is in the interacting hyperfine
state, the many-particle Hamiltonian is given by

Ĥ f = Ĥi + V̂ ≡ Ĥi +
∑
σ,k,q

Ṽσ (k − q)c†
kσ cqσ , (4)

where Ṽσ (k) is Fourier transformation of Vσ (r), the potential
between impurity and σ -component fermion. For a reason
which will become clear soon, we would like to express Ĥi and
Ĥf in a bilinear form. Defining ψ̂

†
k = (c†

k↑, c−k↓) ≡ (c†
k, h†

k )

and rewriting V̂ as

V̂ =
∑
kq

[Ṽ↑(k − q)c†
kcq − Ṽ↓(q − k)h†

khq] +
∑

k

Ṽ↓(0),

(5)
make the bilinear form apparent. We can write the bilinear
form of Ĥ f explicitly,

Ĥ f = K0 + ω0 +
∑
kq

ψ̂
†
kh f (k, q)ψ̂q, (6)

where ω0 = ∑
k Ṽ↓(0) and

h f (k, q) = hi(k)δkq +
[
Ṽ↑(k − q) 0

0 −Ṽ↓(q − k)

]
(7)

can be regarded as a single-particle Hamiltonian ĥ f in mo-
mentum space and in a matrix form. We can see that, ĥi and
ĥ f are the single-particle representative of Ĥi and Ĥ f up to
some constants, respectively.

It is worth noting that, in the many-body Hamiltonian Ĥ f

we have assumed that the pairing order parameter � remains
unchanged by introducing the interaction potential Vσ (r). For
a nonmagnetic potential (V↑ = V↓) that respects time-reversal
symmetry, this is a reasonable assumption, according to An-
derson’s theorem [1]. For a magnetic potential (V↑ �= V↓),
the local pairing gap near the impurity will be affected, as
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FIG. 1. A sketch of the occupation and structure of the single-particle spectrum of a two-component superfluid Fermi gas at (a) zero
temperature and (b) finite temperature. The big black sphere represents the impurity in noninteracting (black arrow up) or interacting (black
arrow down) hyperfine state. These spectra always have two-branch structures separated by an energy gap of 2�̃, where the red and blue
rectangles represent the negative and blue branches, respectively. However, the individual energy level with or without impurity interaction
have shifts as indicated by the black solid and dashed lines, correspondingly. There also exists an in-gap YSR bound state if the impurity
interaction is magnetic (a↑ �= a↓).

indicated by the presence of the YSR bound state. We will
follow the typical non-self-consistent treatment of the mag-
netic potential in condensed matter physics [1,57] and assume
a constant pairing gap as the first approximation for simplic-
ity. We leave a more rigorous self-consistent calculation of a
pairing gap to future studies.

B. Functional determinant approach

We are interested in a situation where the impurity is driven
from a noninteracting hyperfine state to an interacting hy-
perfine state at t = 0, as sketched in Fig. 1. The most basic
quantity to describe the response to this process is the time-
overlapping function

S(t ) = 〈
eiĤit e−iĤ f t

〉 ≡ Tr
[
eiĤit e−iĤ f t ρ̂0

]
, (8)

where ρ̂0 is the initial thermal density matrix, and Ĥi and
Ĥf are the many-body Hamiltonian with the impurity in non-
interacting and interacting hyperfine state, respectively. The
response in frequency domain can be obtained via a Fourier
transformation

A(ω) = 1

π
Re

∫ ∞

0
eiωt S(t )dt, (9)

which is also called spectral function.
We review our main theoretical tool, FDA, and show how

to extend this method to the case of an ultracold BCS su-
perfluid as the background medium. An exact calculation of
Eq. (8) is usually not accessible due to the exponentially grow-
ing complexity of the many-body Hamiltonian with respect
to particle number N . However, one can prove that Eq. (8)
can reduce to a determinant in a single-particle Hilbert space
that grows only linearly to N , if Ĥi and Ĥf are both fermionic
[45,68,69], bilinear many-body operators, such as Eq. (1) and
Eq. (6) shown in the previous section. In that case, we have

S(t ) = e−iω0t det[1 − n̂ + eiĥit e−iĥ f t n̂], (10)

where n̂ is the occupation number operator (see Appendix B
for details).

It would be more convenient to carry out numerical calcu-
lations in the coordinate space in a finite system confined in
a sphere of radius R. We then take the system size towards
infinity, while keeping the density constant, until numerical
results are converged. The bilinear form of the many-body
Hamiltonians in coordinate space are given by

Ĥi = K0 +
∫

drφ̂†(r)hi(r)φ̂(r), (11)

Ĥ f = K0 + ω0 +
∫

drφ̂†(r)h f (r)φ̂(r), (12)

with K0 = −V�2/g + ∑
k(εk − μ) being an unimportant

constant that cancels out in Eq. (10). Here, φ̂†(r) =
[c†

↑(r), c↓(r)] ≡ [c†(r), h†(r)] are creation operators in the
coordinate space. Since higher partial wave interaction is neg-
ligible at low temperature, we focus on the s-wave channel.
We also assume Vσ (r) = Vσ (r) is spherically symmetric and
short-range. The single-particle representative of Hamiltoni-
ans in coordinate space, therefore, are given by

h f (r) = hi(r) +
(

V↑(r) 0
0 −V↓(r)

)

≡
(− 1

2m
d2

dr2 + V↑(r) − μ �

� 1
2m

d2

dr2 − V↓(r) + μ

)
.

(13)

In our numerical calculation, we choose a soft-core van-der-
Waals potential

Vσ (r) = −C6

r6
exp

[
− r6

σ

r6

]
, (14)

where C6 is the dispersion coefficient describing the long-
range behavior of the impurity-fermion interaction and
determines the van-der-Waals length lvdW = (2mC6)1/4/2.
The short-range parameter rσ are tuned to give the desired
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energy-dependent scattering length

aσ (EF ) = − tan ησ (kF )

kF
, (15)

where ησ (kF ) is the s-wave scattering length between the
impurity and σ -component fermions at the Fermi energy
EF = k2

F /2m. We find our calculations are insensitive to other
details of Vσ (r) (such as the value of lvdW and the number of
short-range bound states the potential supported) as long as
kF lvdW � 1. Therefore we denote aσ (EF ) ≡ aσ hereafter for
the simplicity of notation. In the calculations here, we choose
kF lvdW = 0.01 unless specify otherwise. To calculate Eq. (10),
we need to find the eigenpairs Eν , φν ≡ [φν,↑(r), φν,↓(r)] for
hi(r) and Ẽν , φ̃ν for h f (r), and express the occupation operator
n̂ as a diagonal matrix with elements

nνν = f (Eν ) = 1

eEν/kBT + 1
. (16)

We also need to take care of ω0 if V↓ �= 0. Noticing that the
original definition ω0 = ∑

k Ṽ↓(0) = ∑
k

∫
dr〈k|r〉V (r)〈r|k〉

is equivalent to taking the trace of the matrix representative of
V̂↓ in momentum state basis (see Appendix C). Therefore ω0

can also be obtained via tracing V̂↓ in an arbitrary complete
orthogonal set of basis, i.e., ω0 = TrV̂↓. The details on the
discretization basis set and other technical issues of numerical
calculations are presented in Appendix C.

We give a few further remarks on some possible extensions
of our methods. As already noticed in Ref. [7], generalization
of FDA to other geometries and confinement can be easily
implemented to the single-particle Hamiltonian. Our single-
channel soft-core van der Waals potential have been proved
to mimic the interatomic interaction near broad Feshbach res-
onances very well [70] and can be replaced by multichannel
interactions to describe closed-channel dominated Feshbach
resonances.

III. RESULTS

A. Single-particle spectrum

It is illustrative to first see the structure of a single-particle
spectrum, as sketched in Fig. 1. When the impurity interac-
tion is absent, diagonalizing hi(r) gives the well-known BCS
dispersion relation

Eν = ±Ekν
= ±

√
ξ 2

kν
+ �2, (17)

where kνR = nνπ with integer nν . The positive and negative
branches of the spectrum are separated by an energy gap

2�̃ =
{

2� μ � 0
2
√

�2 + μ2 μ < 0
, (18)

which represents the minimum energy required to break a
Cooper pair into a particle-hole excitation. At zero temper-
ature, the many-body ground state can be regarded as a fully
filled Fermi sea of the lower branch, and a completely empty
Fermi sea of the upper branch. [Notice that the Eν are mea-
sured with respect to chemical potential μ, which leads to the
occupation f (Eν ) = 1/(e−Eν/kBT + 1)].

In the presence of impurity interaction, our numerical cal-
culations show that Ẽν still consists of two branches separated

FIG. 2. Single-particle spectrum of a Fermi superfluid with a
magnetic impurity (a↓ = 0) as a function of 1/(kF a↑). The scattering
length between the two-component fermions is kF a = −2, which
gives rise to μ 
 0.85EF and � 
 0.40EF at zero temperature. The
solid red curve in the middle shows the YSR bound state energy. The
inset shows the corresponding YSR wave functions φ̃ν,↑ (blue solid
curve) and φ̃ν,↓ (red dash-dotted curve) at kF a↑ = −2.

by 2�̃, with each individual energy level shifted as shown in
Fig. 1. Moreover, when the impurity scattering is magnetic
(a↑ �= a↓), a subgap YSR bound state exists. Figure 2 shows
the YSR bound state energy as a function of 1/(kF a↑) for
the case kF a = −2 and kF a↓ = 0 at zero temperature. The
decreasing bound state energy with increasing 1/(kF a↑) can
be qualitatively understood from the analytic expression

EYSR 
 � cos [η↑(EF ) − η↓(EF )], (19)

which holds in the weak-coupling limit (a → 0−) [59]. Here,
η↑(EF ) and η↓(EF ) = 0 are the impurity scattering phase
shifts of the potentials V↑(r) and V↓(r) at Fermi energy EF .
The inset of Fig. 2 shows the YSR wave function at kF a↑ =
−2, where one can see that the YSR bound state has a rel-
atively large size (about 30k−1

F in this case) and shows an
oscillation behavior at large distances.

We give some further remarks here on the two-body bound
states supported solely by the short-range potential Vσ (r),
when the other component of fermions are absent. In general,
there are multiple such bound states, and almost all of them
are deeply bound with large binding energy Eb � � and
highly localized to the impurity. As a result, the overlapping
between these deeply bound states and BCS scattering waves
are vanishingly small. Therefore these deeply bound states are
almost unaffected by the presence of the other component
and give negligible effects on the response functions. The
only exception is the shallowest bound state with aσ > 0.
This shallow bound state can strongly couple to the scattering
states of the other component, and hence can no longer be
distinguished from the eigenstates φ̃ν .
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FIG. 3. Zero-temperature Ramsey responses |S(t )| for a mag-
netic impurity (a↓ = 0) scattering with (a) attractive scattering
lengths a↑ < 0 and (b) repulsive scattering lengths a↑ > 0 are shown
for different values of the scattering length a between the two-
component fermions; see legend.

B. Magnetic impurity

We first focus on the simplest case, where the impurity only
interacts with the spin-up component, i.e., a↓ = 0.

When � = 0 and a↓ = 0, our system reduces back to an
ideal Fermi gas (consisting of spin-up fermions) [3,7], and
the asymptotic behavior of the Ramsey response at t → ∞
is given by

S(t ) 
 Ce−i�Et/h̄

(
1

iEFt/h̄ + 0+

)α

+Cbe−i(�E−EF +Eb)t/h̄

(
1

iEFt/h̄ + 0+

)αb

, (20)

where C and Cb are both numerical constants independent
with respect to kF a and Cb = 0 for a↑ < 0. Here,

α = η↑(EF )2/π2 (21)

and

αb = [1 + η↑(EF )/π ]2 (22)

are determined by the scattering phase shifts η↑(EF ) at Fermi
energy. Eb is the binding energy of the shallowest bound state
consisting of the impurity and a spin-up fermion for a↑ > 0
and � = 0. Furthermore, the change in energy is given by

�E =
∑
Eν<0

(Eν − Ẽν ), (23)

where deeply bound states are excluded from Ẽν . Notice that
the power-law decaying behavior of |S(t )| at � = 0 is evident
in Fig. 3 (see the blue lines).

In sharp contrast, for cases with nonzero pairing gap, the
asymptotic behavior in the long-time limit shows that |S(t →
∞)| ∝ t0 approach to some constants. These asymptotic con-
stants are larger for larger �. Further details can be obtained
by an asymptotic form that fits our numerical calculations
perfectly well, as reported in Fig. 4,

S(t ) 
 Dae−iEat + Dre−iErt , (24)

-1

0

1

10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

(b)

(a)

FIG. 4. Fitting asymptotic behavior of ReS(t ) at zero tempera-
ture for a magnetic impurity (a↓ = 0) that only interacts with spin-up
component of the Fermi superfluid with kF a = −2 for (a) kF a↑ = −2
and (b) kF a↓ = 2. The cross symbols are the numerical results, and
the solid curves correspond to the fitting formula Eq. (24).

where Dr = 0 for a↑ < 0. We obtain Da, Dr , Ea, and Er from
fitting, and find that Er = ReEr + iImEr is in general com-
plex. In contrast, Ea = ∑

Eν<0(Eν − Ẽν ) (where Ẽν excludes
the two-body deeply bound states) is purely real, and can
be explained as a renormalization of the filled Fermi sea, as
indicated by the grey arrows in Fig. 1(a).

The long-time asymptotic behavior of S(t ) manifests itself
as some characterized lineshape in the spectral function

A(ω) ∝
{

Zaδ(ω − Ea) ω ≈ Ea

Zr
|ImEr |/π

(ω−ReEr )2+(ImEr )2 ω ≈ ReEr
, (25)

i.e., a δ function around Ea and a Lorenzian around ReEr .
The existence of δ-function peak unambiguously confirms
the existence of a well-defined quasiparticle—the attractive
polaron with energy Ea. The Lorenzian, on the other hand,
can be recognized as a repulsive polaron with finite width and
hence finite lifetime. Here, Za = |Da| and Zr = |Dr | are the
residue of attractive and repulsive polarons, correspondingly.
Numerically, we find that Za ∝ (�/EF )αa and Zr ∝ (�/EF )αr

at small � as shown in the insets of Figs. 5(a) and 5(b). As a
result, Eq. (24) have the same form as Eq. (20), the analytic
expression of S(t ) for a noninteracting Fermi gas medium,
if we replace the low-energy cutoff 1/t → �. However, the
power-law coefficients αa and αr are only close to but not
exactly the same as the analytical expressions of α and αb. In
the inset of Fig. 5(a), our numerical fitting gives αa ≈ 0.136,
comparing with α ≈ 0.124 for ideal Fermi gases. In the inset
of Fig. 5(b), αr ≈ 0.083 and αa ≈ 0.452, in compare with
α ≈ 0.124 and αb ≈ 0.419. These small differences are prob-
ably due to the modification of scattering phase shifts in the
presence of �.

Next, we study the full zero-temperature polaron spectrum
across the BEC-BCS crossover and show them in Fig. 5.
Numerically, to obtain A(ω) accurately requires a Fourier
transformation that involves an integration of S(t ) from t = 0
to t → ∞. We follow the procedures adopted from Ref. [7]:
we numerically integrate S(t ) up to some large cutoff time
t∗ ∼ 500/EF and carry-out the integration analytically with
the fitting formula Eq. (24) for t > t∗.
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FIG. 5. Zero-temperature polaron spectra with a↓ = 0 for
(a) kF a↑ = −2 and (b) 2 as a function of 1/(kF a) at the BEC-BCS
crossover. The white dashed and solid curves corresponds to the
attractive (Ea) and repulsive (Er) polaron energy, respectively. The
insets shows the residues of the polarons. The blue solid curves and
the purple dashed curves show the residue of attractive polaron Za

and repulsive polaron Zr , respectively, as a function of �, which
show power-law behaviors at small �.

Figure 5(a) shows the case kF a↑ = −2 > 0, where the
white dashed curve indicates the attractive polaron δ-function
peak. This attractive polaron separates from a molecule-hole
continuum by a region of anomalously low spectral weight,
namely the “dark continuum” (also shown in the inset of
Fig. 6). The existence of dark continuum has been previously
observed in spectra of other polaron systems. However, most
of these studies apply various approximations, and only re-
cently a diagrammatic Monte Carlo study proves the dark
continuum is indeed physical [35]. Here, our FDA calculation
of the heavy crossover polaron spectrum gives an exact proof
of the dark continuum. In addition, we can see that the dark
continuum regime becomes smaller towards the deep BCS

side of the Feshbach resonance for the background Fermi
superfluid. We expect that the dark continuum vanishes in the
� → 0 limit, and the attractive polaron will merge into the
molecule-hole continuum, forming a power-law singularity
seen in the spectrum of heavy impurity in an ideal Fermi gas
[7].

The white solid curve in Fig. 5(b) shows the repulsive
polaron energy. We can observe that the repulsive polaron
width become larger from the BCS side towards the unitary
limit. Near the unitary limit, the repulsive polaron residue
Zr also deviates from the power law-dependence and starts
decreasing as shown in the inset of Fig. 5(b). Towards the
BEC side, both the repulsive polaron and the molecule-hole
continuum are vanishing, which can also be inferred from the
behavior Za → 1 on the deep BEC side.

We also study the finite-temperature spectrum at kF a = −2
as shown in Fig. 6. Figures 6(a) and 6(b) show the spectrum
at kF a↑ = −2 and kF a↑ = 2, respectively. As temperature
increases, we observe the expected thermal broadening and
slightly shifts of the spectral peaks since � reduces at finite
temperature. Interestingly, we also observe some additional
features. An onset of spectral weight enhancement arises
sharply at the energy

E (−)
YSR = Ea − (� − EYSR), (26)

below the attractive polaron. We explain this feature as an
additional decay from the upper branch state to the subgap
YSR state illustrated by the green arrow in Fig. 1(b). There is
also another feature that associates with the repulsive polaron
shows up for the kF a↑ = 2 case at energy

E (+)
YSR = Re(Er ) − (EYSR + �), (27)

which implies that this feature is related to the decay from
the YSR state back to the lower branch as illustrated by the
purple arrow in Fig. 1(b). These two decay processes are
only allowed if the upper branch has thermal occupations
initially, which explain why such features only show up at
finite temperature. These features can be better depicted in

FIG. 6. Polaron spectra with kF a = −2 and a↓ = 0 at different temperature (see legend) with (a) kF a↑ = −2 and (b) 2, with the green
dashed and red dash-dotted vertical lines indicates the YSR features E (−)

YSR and E (+)
YSR, respectively. A zoom-in of the dark spectrum at zero

temperature is shown in the inset. A small artificial width is added to the δ-function peak at zero temperature for visibility. The full spectra as
a function of 1/(kF a↑) are shown in (c) at zero temperature and (d) kBT = 0.2. The white dahsed and solid curves shows the attractive and
repulsive polaron energies, respectively. The red dashed and dash-dotted in (d) corresponds to E (−)

YSR and E (+)
YSR, respectively.
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FIG. 7. Polaron spectrum of heavy nonmagnetic impurity (a↑ = a↓) in a BCS superfluid with kF a = −2 at different temperature (see
legend). The impurity scattering length is (a) kF a = −2 and (b) 2. The red dashed vertical line shows a feature at Es − 2� associated with
the singularity at Es. The inset shows the residue as a function of 1/(kF a↑). The full spectrum as a function of 1/(kF a↑) are shown in (c) and
(d) for zero and finite temperature, respectively. The white dashed and solid curves shows attractive and repulsive polaron energy, and the red
dash-dotted curve shows the finite temperature feature.

the comparison of the full spectra as a function of 1/(kF a↑) at
zero and finite temperature in Figs. 1(c) and 1(d), respectively.

C. Nonmagnetic impurity

In this section, we study the case of nonmagnetic impurity
scattering a↑ = a↓, where the YSR state merges into the upper
branch states as a result of Eq. (19) and ceases to exist.

As expected, Fig. 7(a) shows no YSR features at kF a = −2
and is quite simple. In contrast, the polaron spectra on the
positive side kF a↑ = 2 are much more complex as depicted in
Fig. 7(b). Interestingly, the repulsive polaron at zero tempera-
ture is also characterized by a δ function with infinite lifetime.
In addition, another singularity shows up at Es. We speculate
the new long-lived repulsive polaron is related to undamped
density excitations (i.e., the gapless Goldstone mode of the
Fermi superfluid) excited by the nonmagnetic impurity po-
tential. As the coupling to the gapless Goldstone mode does
not cost energy, the OC mechanism may lead to a power-law
singularity, which is the reminiscent of the damped repulsive
polaron in the case of magnetic impurity scattering. With this
understanding in mind, we have checked that the asymptotic
t → ∞ behavior fits the formula

S(t ) ≈ Dae−iEat + Dre−iErt + Dse
−iEst

(
1

iEFt

)αs

(28)

very well, as shown in Fig. 8(a). Our numerical fitting con-
firms Ea, Er , and Es are all purely real. We also find that
the power-law component of the singularity αs ≈ 0.5, which
seems to be a constant insensitive to a↑, a↓, and a. The residue
Za = |Da| and Zr = |Dr | as a function of impurity interaction
1/(kF a↑) are shown in the inset of Fig. 7(a), which shows
that the attractive polaron residue decreases and repulsive
polaron becomes dominated on the positive side of impurity
scattering length a↑ > 0. The dependence of Za and Zr on �

is reported in Fig. 8(b). Similar to the magnetic impurity case,
we observe the power-law dependences Za ∝ (�/EF )αa and
Zr ∝ (�/EF )αr at small �, and Za → 1 and Zr → 0 on the
deep BEC side � → ∞.

Figures 7(c) and 7(d) show the comparison between zero
and finite temperature polaron spectrum as a function of
1/(kF a↑). We can observe a finite temperature feature appears
at Es − 2�, as shown in red dash-dotted curve in Fig. 7(d) [as
indicated by the dashed vertical line in Fig. 7(b) at kF a↑ = 2].
This feature is the reminiscent of the structure at E (+)

YSR in
the case of magnetic impurity scattering [see Eq. (27)], if we
recall the replacement ReEr → Es and EYSR = � as a result
of the dissolution of the YSR state into the upper branch
single-particle states.

FIG. 8. (a) ReS(t ) as a function of t , the cross symbol shows the
numerical result, and the solid line is the fitting formula Eq. (28).
(b) The polaron residue as a function of �. The blue solid, red
dashed and purple dash-dotted curves correspond to Za, Zr , and
Za + Zr , respectively. The power-law exponents αa ≈ 0.85 and αr ≈
0.25. (c) Polaron spectrum of heavy nonmagnetic impurity (kF a↑ =
kF a↓ = 2) at zero temperature as a function of 1/(kF a) at the
BEC-BCS crossover. The white solid, dash and dash-dotted curve
corresponds to the repulsive polaron, attractive polaron and the sin-
gularity energy, respectively.
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Finally, we present the spectrum across the BEC-BCS
crossover as a function of 1/(kF a) in Fig. 8(c). Towards the
BEC side, we observe that the spectral weight of the sin-
gularity decreases [which can be implied by the increase of
Za + Zr shown in Fig. 8(b)]. Eventually, the singularity and
the repulsive polaron merges at around 1/(kF a) 
 0.5, which
coincides where the chemical potential μ is changing from
positive to negative.

IV. EXPERIMENTAL REALIZATION

Our predictions could be readily examined in cold-atom
experiments. Indeed, several quantum mixtures consisting
of a Fermi superfluid and a Bose condensate have already
been demonstrated, including 6Li - 7Li [62], 6Li - 41K [63],
and 6Li - 174Yb [64] mixtures. Quantum mixtures such as
6Li - 133Cs [65], 6Li - 168Er [66], and 6Li - 168Er [66] should
also be available soon, since the interspecies Feshbach res-
onances have been characterized recently. In these mixtures,
polaron physics can be explored by reducing the concentration
of the bosonic component. For 6Li - 174Yb, 6Li - 133Cs, and
6Li-Er systems, the minority bosonic species have different
polarizability, which allows imposing a deep optical lattice
to localize the impurity without affecting much the itinerant
fermions. Even without the optical lattice, our calculations
still give quantitatively accurate predictions due to the ex-
tremely large mass ratio. The response functions predicted
here can be measured via established methods: S(t ) can be
accessed via an interferometric Ramsey scheme; A(ω) can be
obtained in rf-spectroscopy.

As a concrete example, let us focus on the 6Li - 133Cs
mixture. Nowdays, a two-component Fermi superfluid of 6Li
atoms in the lowest two energy hyperfine states |1, 2〉 = |F =
1/2, mF = ±1/2〉 is a typical setup to realize the BEC-BCS
crossover in cold-atom laboratories, owing to a broad Fes-
hbach resonance at B0 
 832 G. The Feshbach resonances
between 133Cs and 6Li have been accurately calibrated in
2013 [65]. Remarkably, in its lowest energy state |a〉 = |F =
3, mF = 3〉 133Cs atoms have a broad Feshbach resonance near
B0 with 6Li atoms in both hyperfine states |1, 2〉. The reso-
nances locate at B0↑ = 843.4(2) G for |Li : 1〉 + |Cs : a〉 and
B0↓ = 889.0(2) G for |Li : 2〉 + |Cs : a〉. The three closely
located broad Feshbach resonances mean that we can con-
veniently tune the magnetic field, to reach three significant
scattering lengths a, a↑ and a↓ at the same time. In particular,
by sweeping the magnetic field near B0↑ = 843.4(2) G, the
parameter sets used in Fig. 6 and Fig. 7 can be easily realized.

Since our theoretical treatment assumes the impurity mass
is infinitely large, it would be nessesary to analyze the finite
mass effect. Such effect can be estimated by comparing the
recoil energy and superfluid gap �, both of which play the
role of suppressing multiple particle-hole excitations. From
momentum and energy conservation, the recoil momentum
of a fermion at fermi momentum kF on a heavy impurity
with mass M is approximately 2mkF /M if m/M � 1. The
recoil energy thus is given by Erecoil = (2mkF /M )2/2m =
(4m2/M2)EF . Therefore the finite mass effect can be ne-
glected if Erecoil � 2� or equivalently m/M � √

�/2EF . For
6Li - 133Cs, the mass ratio m/M ≈ 0.045 ensures that our
predictions for � � 0.1EF are valid. A more quantitative

investigation can be a comparison with the Chevy ansatz pre-
dictions, such as Ref. [55], for large impurity mass systems,
which will be explored in future studies. On the other hand,
one can also localize the impurity via a strong optical lattice,
and essentially eliminate the finite mass effect [3,7].

V. DISCUSSIONS AND APPLICATIONS

The present work shows how to generalize FDA to the
system of a heavy impurity immersed in a BCS superfluid.
This formalism allows us to construct an exact model to
investigate polaron physics, which gives all the universal po-
laron features, such as attractive and repulsive polaron, dark
continuum, and molecule-hole continuum. In our model, the
existence of polarons is protected from OC since the super-
fluid pairing gap suppresses multiple particle-hole excitations,
which plays a similar role as the recoil energy of a mobile
impurity in conventional Fermi polarons. In addition, we have
shown in an accompanying paper [48] that the pairing gap can
also protect the polarons from thermal fluctuations, allowing
experimental studies at a more accessible temperature kBT ∼
�. Our results for the nonmagnetic impurity case also show
some surprising results: the existence of a repulsive polaron
with an infinite lifetime and an additional singularity. These
peculiar characteristics only occur at the perfect balance of
the two scattering lengths, where the impurity can only excite
gapless density fluctuations. It would be interesting to find
an intuitive understanding of the underlying physics in future
studies.

Our predictions can also be applied to measure various
exciting features of the Fermi superfluid, although the BCS
description is only quantitatively reliable on the BCS side, and
become only qualitatively reliable near the unitary limit and
the BEC side. The BCS description also eliminates the collec-
tive bosonic excitation, which might become important in the
deep BEC side and induce OC. We will nevertheless neglect
such excitations in this first study. In the magnetic impurity
case, the polaron spectrum at a finite but low temperature
shows sharp features that measure the subgap YSR bound
states. In particular, if Ea, Re(Er ), E (−)

YSR and E (+)
YSR shown in

Fig. 6(d) are all measured accurately, Eqs. (26) and (27) give
rise to

2� = Ea + Re(Er ) − E (−)
YSR − E (+)

YSR, (29)

independent on EYSR. We believe that this relation may only
depend on the existence of a pairing gap and an in-gap bound
state, and therefore holds independent of the theoretical model
used in this work. This allows a highly accurate measurement
of the pairing gap � at the whole BEC-BCS crossover. In the
nonmagnetic impurity case, there is also a finite temperature
feature associated with the singularity Es − 2�, which can be
applied to measure the pairing gap �.
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APPENDIX A: THE BCS-LEGGETT THEORY OF THE
BEC-BCS CROSSOVER

For a given scattering length a and temperature T , �, and μ

are determined by the mean-field number and gap equations:

∑
k

[
1 − ξk

Ek
+ 2

ξk

Ek
f (Ek )

]
= n, (A1)

m

4πa
+

∑
k

[
1 − 2 f (Ek )

2Ek
− 1

2εk

]
= 0, (A2)

where f (Ek ) = [exp(−Ek/kBT ) + 1]−1 is the Fermi-Dirac
distribution, with kB is the Boltzmann constant. Here Ek =√

ξ 2
k + �2 are the eigenvalues of Eq. (3) with the correspond-

ing eigenvector [uk, vk]T , where u2
k = [1 + ξk/Ek]/2, v2

k =
1 − u2

k, and 2ukvk = �/Ek.

APPENDIX B: DERIVATION OF FDA

Here, we provide details on extending the FDA to the case
of an ultracold BCS superfluid as the background medium.
Specifically, we aim to prove how Eq. (8) reduces to Eq. (10).
Our derivation closely follows the spirit of Ref. [45] on
deriving Levitov’ s formula, which relates certain traces of
many-body operators in Fock space to single-particle deter-
minants. Equation (8) of Ref. [45] shows that

Tr
[
e�(Â)e�(B̂)

] = det(1 + eÂeB̂) (B1)

for second quantized fermionic operators quadratic in Fock
space

�(A) =
∑
i, j

〈i|Â| j〉a†
i a j, (B2)

where Â is the corresponding single-particle operator and a†
i

and ai are the creation and annihilation operators for a given
one particle state i. The matrix A with elements 〈i|Â| j〉 can
be recognized as a matrix representation of Â in the basis |i〉.
Reference [45] also proves that Eq. (B1) can be generalized to
products of more then two operators, such as

Tr
[
e�(Â)e�(B̂)e�(Ĉ) · · · ] = det(1 + eÂeB̂eĈ · · · ). (B3)

In the main text, both of the many-body Hamiltonians Hi

in Eq. (1) and H f in Eq. (6) are expressed in a bilinear form
that relates with the matrix representation hi and h f of single-

particle operators ĥi and ĥ f , respectively. It will be convenient
to work in the eigenbasis of hi, but we will see that the final
expression does not depend on such choice of the specific
single-particle basis set. The eigenstates of hi are determined
by the Bogoliubov transformation

a†
k,+ = ukc†

k − vkh†
k, a†

k,− = vkc†
k + ukh†

k, (B4)

with eigenvalue Ek,± = ±
√

ξ 2
k + �2, where uk and vk are the

well-known Bogoliubov coefficients defined in Appendix A.
For convenience, we also define the corresponding unitary
transformation matrix U , and use a collective subindex ν ≡
{k, ξ = ±}. With these definitions, and noticing that K0 and

ω0 are constant numbers, we arrive at the expressions

eiĤit = eiK0t eit�(ĥi ), (B5)

e−iĤit = e−iK0t e−iω0t e−it�(ĥ f ), (B6)

where

�(ĥi ) =
∑
ν,τ

(h̃i )ντ a†
νaτ , (B7)

�(ĥ f ) =
∑
ν,τ

(h̃ f )ντ a†
νaτ . (B8)

Here, h̃i and h̃ f are the matrix representation of ĥi and ĥ f in

the eigenstate basis of hi, respectively, which satisfies h̃i =
U†hiU = D(Eν ) and h̃ f = U†h f U , where D(Eν ) detnotes a
diagonal matrix with elements Eν . The initial thermal density
matrix ρ̂0 in the same basis can also be written as

ρ̂0 = 1

Z e−�(λ̂), �(λ̂) =
∑

ν

λνa†
νaν, (B9)

where e−λν = e−Eν/kBT = n(Eν )/[1 − n(Eν )] and n(Eν ) =
f (Eν ) = 1/[eEν/kBT + 1] [68,69]. Here, the normalization
constant is given by Z = Tr[exp(−∑

ν λν â+
ν âν )] = det[(1 −

n̂)−1], where �(n̂) = ∑
ν n(Eν )a†

νaν .
Finally, we can rewrite Eq. (8) as

S(t ) = e−iω0t

Z Tr
[
eit�(ĥi )e−it�(ĥ f )e−�(λ̂)

]
, (B10)

and according to the trace formula Eq. (B3), we have

S(t ) = e−iω0t

Z det[1 + eit ĥi e−it ĥ f e−λ̂]. (B11)

With the expression of Z , we arrive at

S(t ) = e−iω0t det[1 + eit ĥi e−it ĥ f n̂(1 − n̂)−1]

det[(1 − n̂)−1]

= e−iω0t det[1 − n̂ + eiĥit e−iĥ f t n̂], (B12)

which is Eq. (10) as promised. Since a determinant remains
the same after applying a unitary transformation to any or-
thogonal set of basis, we can now see that S(t ) does not
depend on the choice of single-particle basis set. Although, in
numerical calculations, it might still be most straightforward
to use eigenstates of hi, where n̂ and eiĥit are both represented
by diagonal matrices.

APPENDIX C: NUMERICAL CALCULATIONS

Our numerical calculations are carried out in the coordinate
space and limited in the s-wave channel since we assume
impurity-medium interactions are dominated by short-range
spherical symmetric potentials Vσ (r) [3,7]. As mentioned in
Appendix B, it would be most convenient to expend the
single-particle operators in the eigenbasis of hi(r) in Eq. (13).

To proceed with numerical calculation, we consider a finite
system confined in a sphere of large radius R. Keeping kF

constant and carrying out calculation for larger and larger
R, we find numerical convergences. In typical calculations,
we choose kF R = 250π–375π . In our numerical calculation,
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we also choose a soft-core van-der-Waals potential given in
Eq. (14), which is smooth and nonsingular in the whole co-
ordinate space. On the other hand, this potential have been
proved to mimic the interatomic interaction near broad Fesh-
bach resonances very well [70]. This finite-range potential are
also characterized by a typical length scale, namely the van-
der-Waals length lvdW. In our typical calculations, we choose
kF lvdW = 0.01–0.05, which are close to realistic values in
ultracold experiments. We also find that numerical results are
determined by the energy-dependent s-wave scattering length
at kF , and insensitive to other details of Vσ (r), such as the
value of lvdW and the number of short-range bound states the
potential supported) as long as kF lvdW � 1.

To find the eigenbasis of hi(r), we discretize the contin-
uous space by expanding the wave function in a fifth-order
B-splines basis [71–73]

φν,σ (r) =
∑

n

c(ν,σ )
n bn(r), (C1)

which allows us to use an uneven numerical grid. The soft-
core van-der-Waals potential we adopted is relatively deep
at the short-range r � lvdW, which requires a dense grid. On
the other hand, we need to carry out the calculation to large
distances R � lvdW, where the long-range potentials are very
shallow and only requires a sparse grid. Therefore it would
be much more efficient to use an uneven numerical grid. We
usually use 100–150 grid points at short range r < 2lvdW and
1000–1500 grid points at large distances. The B-spline basis
also allows a higher order approximation of the derivative
operator for the calculation of the kinetic energy. However,
the B-spline basis are nonorthogonal, therefore, one need to
solve a generalized eigenvalue problem,[

h(↑,↑)
i h(↑,↓)

i

h(↓,↑)
i h(↓,↓)

i

](
�c(ν,↑)

�c(ν,↓)

)
= Eν

[
S 0
0 S

](
�c(ν,↑)

�c(ν,↓)

)
, (C2)

where �c(ν,σ ) is a vector notation of the coefficients c(ν,σ )
n , and

the overlapping matrix S have the matrix elements

Smn =
∫

drbm(r)bn(r). (C3)

The matrix elements of h(σ,σ ′ )
i are given by

h(↑,↑)
i mn

= −h(↓,↓)
i mn

= 1

2m

∫
drb′

m(r)b′
n(r) − μSmn, (C4)

where the superscript “′” denotes first derivative and

h(↑,↓)
i mn

= h(↑,↓)
i mn

= �Smn. (C5)

Similarly, we can diagonalize h f (r) by the expansion

φ̃ν,σ (r) =
∑

n

d (ν,σ )
n bn(r) (C6)

and solve the generalized eigenvalue problem[
h(↑,↑)

f h(↑,↓)
f

h(↓,↑)
f h(↓,↓)

f

]( �d (ν,↑)

�d (ν,↓)

)
= Ẽν

[
S 0
0 S

]( �d (ν,↑)

�d (ν,↓)

)
, (C7)

where

h(↑,↑)
f

mn
= −h(↓,↓)

f
mn

= h(↑,↑)
i mn

+
∫

drbm(r)V (r)bn(r)

(C8)
and

h(↑,↓)
f

mn
= h(↓,↑)

f
mn

= h(↑,↓)
i mn

. (C9)

With these eigenvalues and eigenvectors, we can have

eiĥit → D(eiEν t ), (C10)

e−iĥ f t → U †D(e−iẼμt )U , (C11)

and

n̂ → D

(
1

eEν/kBT + 1

)
, (C12)

where D denotes a diagonalized matrix. The unitary matrix U
has matrix elements

U μν = ( �d (μ,↑)† �d (μ,↓)†
)[S 0

0 S

](
�c(ν,↑)

�c(ν,↓)

)
. (C13)

If V↓(r) �= 0, we also need to calculate ω0 = ∑
k Ṽ↓(0)

arising from the anticommutator in Eq. (4):∑
k,q

Ṽ↓(k − q)c†
k↓cq↓ =

∑
k,q

Ṽ↓(k − q)(cq↓c†
k↓ − δkq)

=
∑
k,q

Ṽ↓(k − q)h†
qhk −

∑
k

Ṽ↓(0)

=
∑
k,q

Ṽ↓(k − q)h†
khq −

∑
k

Ṽ↓(0),

(C14)
where we applies the Ṽ↓(k − q) = Ṽ↓(q − k) in the last line,
since the interaction potential is assumed to be spherically
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FIG. 9. S(t ) at zero temperature for (a) noninteracting Fermi
gases as background medium � = 0 and (b) BCS superfluid with
kF a = −2. The perfectly overlapping blue solid curve and red cross
symbols corresponds to kF a↑ = −2, a↓ = 0 and a↑ = 0, kF a↓ = −2,
respectively.
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symmetric. Here, we have

Ṽ↓(k − q) = 〈k|V̂↓|q〉 =
∫

dr〈k|r〉V↓(r)〈r|q〉

= 1

(2π )3

∫
drV↓(r)e−i(k−q)·r. (C15)

which relates to the Fourier transformation of V↓(r). We can
also express ω0 as

ω0 =
∑

k

〈k|V̂↓|k〉 =
∑

k

∫
dr〈k|r〉V↓(r)〈r|k〉, (C16)

which can be interpreted as taking a trace of the matrix
representative of V̂↓ in momentum state basis, and is equiv-
alent to take a trace over any orthogonal basis. In principal,
this expression requires summation over infinite k. How-
ever, since we are taking the calculation in a finite system
with discretized basis and limited in the s-wave channel, it
would be consistent to take the trace over an orthogonal basis
b̃m(r). Although we cannot directly use the B-spline basis
since it is nonorthogonal, we can obtain an orthogonal set by

solving

v↓�gm = v↓
mS�gm, (C17)

where

v↓
mn

=
∫

drbm(r)V↓(r)bn(r). (C18)

Then we can see that

b̃m(r) =
∑

n

gm
n bn(r), (C19)

form an orthogonal set of basis and the trace is given by

ω0 =
∑

m

v↓
m. (C20)

With the help of Eqs. (C10), (C11), (C12), and (C20), we can
calculate S(t ) in Eq. (10) numerically.

One important test is the comparison of S(t ) in two cases:
(A) V↑(r) = V (r), V↓(r) = 0 and (B) V↑(r) = 0 and V↓(r) =
V (r). Even though ω0 = 0 for case (A) but ω0 �= 0 for the case
(B), the final result of S(t ) should nevertheless be exactly the
same due to the permutation symmetry between spin states ↑
and ↓, as shown in Fig. 9. The blue solid curve and red cross
symbols corresponds to the case (A) and (B), respectively, and
they overlap perfectly, for both noninteracting Fermi gases
[Fig. 9(a)] and BCS superfliud [Fig. 9(b)].
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