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Transporting cold atoms between distant sections of a vacuum system is a central ingredient in many quantum
simulation experiments, in particular in setups, where large optical access and precise control over magnetic
fields is needed. In this work, we demonstrate optical transport of cold cesium atoms over a total transfer distance
of about 43 cm in less than 30 ms. The high speed is facilitated by a moving lattice, which is generated via the
interference of a Bessel and a Gaussian laser beam. We transport about 3 × 106 atoms at a temperature of a few
microkelvins with a transport efficiency of about 75%. We provide a detailed study of the transport efficiency
for different accelerations and lattice depths and find that the transport efficiency is mainly limited by a fast
initial loss most likely due to the sudden onset of the acceleration and the potential depth along the direction
of gravity. To highlight the suitability of the optical-transport setup for quantum simulation experiments, we
demonstrate the generation of a pure Bose-Einstein condensate with about 2 × 104 atoms. We find a robust
final atom number within 2% over a duration of 2.5 h with a standard deviation of <5% between individual
experimental realizations.
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I. INTRODUCTION

Ultracold atoms in optical lattices are powerful platforms
for quantum simulation of complex quantum many-body
systems [1], most notably in the context of condensed-
matter physics [2–4]. Recent advances further opened up
promising new directions [5–9] to study phenomena related
to quantum gravity [10–12], quantum electrodynamics, and
high-energy physics [13,14]. The precise parameter control
and natural scalability of neutral-atom devices enable analog
quantum simulation with hundreds of atoms, which signif-
icantly challenges the limits of state-of-the-art numerical
methods [15–18]. Moreover, neutral atoms offer a broad range
of applications in quantum metrology and sensing [19] and
digital quantum computing [20].

For high-fidelity operation large optical access [21], a
clean electromagnetic environment, and excellent vacuum
conditions are indispensable. These are often achieved by
separating the main experimental apparatus into two distinct
sections: one chamber for preparation and precooling of the
cold atomic cloud and a second science chamber where the
actual measurements are performed (Fig. 1). Such a two-
chamber design naturally requires transporting the atoms
between the two separate vacuum sections. However, this
usually comes at the expense of increased experimental com-
plexity and longer cycle times. On the other hand, reaching
faster cycle times [22–29] and developing compact and robust
experimental setups [30] are essential for the development of
the next generation of quantum devices [31–34].

There are various different transport schemes that have
been developed which make use of magnetic [35–37], optical
[38–46], or hybrid [40,41] traps. Magnetic transport typically

relies on the translation of the trap minimum either by dy-
namically controlling the current in overlapping pairs of coils
[35] or by mechanically moving a single pair of coils [36,37].
While magnetic transport has been demonstrated reliably for
large distances, it requires complex mechanical engineering,
typically limits the optical access, and is applicable to only
magnetically trappable atoms. Optical transport, on the other
hand, can be implemented for any atomic species, although
typically at reduced trap depths. The most straightforward
implementation is based on a mechanically movable lens that
generates a tightly focused optical dipole trap with variable
focus position [43,47]. Since moving mechanical parts intro-
duce vibrations, novel schemes based on focus-tunable lenses
[42,45] have been developed. However, the total transport
duration for all schemes mentioned above is fundamentally
limited either by small longitudinal trapping frequencies or
by the finite velocities of the mechanical stages, which re-
sults in transport times on the order of a second for typical
transport distances. This motivates the use of running-wave
optical lattices, where the motion is controlled via the fre-
quency detuning of two counterpropagating laser beams. This
configuration offers large longitudinal trapping frequencies,
and no moving components are needed [38,39,44].

Here we report fast optical transport of 133Cs atoms over
an unprecedented distance of 43 cm (86 cm round trip) in
< 30 ms (60 ms) using a far-detuned running-wave optical
lattice, for which we reach final velocities of up to 26.6 m/s.
Due to the large mass of cesium, large optical gradients are
required during transport. Therefore, the running-wave lattice
is generated by the interference of a Bessel and a Gaussian
laser beam (Fig. 1), similar to what was used in Ref. [39].
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FIG. 1. Experimental setup. Vacuum system with a two-chamber
design: precooling in a magneto-optical trap (MOT) is performed in
the first chamber, and the final evaporation to Bose-Einstein con-
densation takes place in the glass cell. The distance between the
two chambers is 43 cm. The atom source (oven) is connected to the
top port. The crossed-dipole beams, which form the reservoir trap
in the MOT chamber and the dipole trap (X , Y ) for evaporation in
the glass cell, are shown in red. The transport lattice (red dots) is
formed by the interference of two counterpropagating laser beams: a
Bessel beam (dark red arrow) with frequency ω + �ω (left), which
is generated by sending a laser beam of 35 W onto an axicon, and a
Gaussian laser beam (light red arrow) with frequency ω and variable
power PG, which is focused between the two chambers by a lens. The
detuning �ω = 2π� f results in a running-wave lattice that moves
with velocity v.

We observe a one-way transport efficiency of ∼75% and
demonstrate the robustness of the scheme by generating a
Bose-Einstein condensate (BEC). The mean atom number is
stable within 2% over the course of 2.5 h, making this scheme
suitable for state-of-the-art quantum simulation experiments
using heavy atoms such as 133Cs.

II. EXPERIMENTAL SETUP

Our experimental apparatus consists of two main vacuum
chambers separated by 43 cm (Fig. 1). The magneto-optical
trap (MOT) chamber is a steel chamber, where all precooling
steps are performed: MOT, optical molasses, and degenerate
Raman sideband cooling (see Sec. A 5 and Fig. 13 therein).
The science chamber is a glass cell with large optical access
in order to support single-atom single-site manipulation and
readout [48–56] using a high-numerical-aperture (NA) objec-
tive that is placed outside the vacuum chamber. Moreover, it
has 11 side ports, which can be used for optical lattices and
additional dipole potentials.

A. Optical transport setup

The large mass m of 133Cs requires large optical gradients
to hold the atoms against gravity. The diffraction of Gaus-
sian beams makes this challenging to achieve because large
laser powers are required for a sufficiently steep trap over
the full transport distance. To circumvent this issue we em-
ploy a Bessel beam that is generated using an axicon [39]. It
has a diffractionless range xB = w0 tan(α/2)/(n − 1), which
depends on the apex angle α of the axicon, the waist w0 of
the incoming Gaussian laser beam, and the axicon’s refractive
index n [Fig. 2(a)], as described, e.g., in Refs [39,57]. Within
the range xB the radius of the central spot of the beam profile
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FIG. 2. Transport setup. (a) Realization of the Bessel beam with
an axicon with apex angle α and an incoming Gaussian laser beam
with waist w0. Two-dimensional images show measured beam pro-
files at different distances from the axicon. The diffractionless range
is given by xB. (b) Vertical trap depth Vz of the Gaussian transport
beam (light red dots), the Bessel beam (dark red dots) and the com-
bined trap (medium red dots) versus distance from the axicon taking
gravity into account. The depth is computed using the measured
beam profiles of the Bessel beam (power of incoming laser beam:
35 W) and the focal position of the Gaussian beam at Ptyp

G = 6.5 W.
The dashed vertical lines indicate the start and end point of the trans-
port. (c) Schematic setup used to control the frequency offset � f
between the two transport beams. A small amount of light is split off
from the laser generating the Gaussian transport beam. Two DPAOM
setups with dynamically tunable rf frequencies f1(t ) and f2(t ) are
used to introduce frequency detunings up to 50 MHz each. The setup
is fiber coupled and used to seed a second amplifier, which generates
light for the Bessel-shaped transport beam. (d) Simplified schematic
illustrating the frequency ramps for the round-trip transport for two
different transport distances. Positive � f corresponds to transport in
the direction of the glass cell.

remains approximately constant [Fig. 2(a); see also Fig. 7 in
Sec. A 1]. For an ideal axicon, the 1/e2 waist of the central
peak is wB � 1.8 cos(α/2)/k(n − 1), and its intensity follows
a Gaussian shape; k = 2π/λ is the wave vector, and λ is the
wavelength of the laser beam. Imperfections at the tip of the
axicon result in additional oscillations of the intensity along
the transport axis [Fig. 2(b); see also Fig. 8 in Appendix A].
In our case we use an axicon with an apex angle α = 179◦
and a laser beam with λ = 1064 nm and w0 = 2.5 mm. This
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results in a central spot with waist wB = 80 μm and sufficient
peak intensity over the full transport distance of 43 cm [see
Fig. 7(b) in Sec. A 1]. The Bessel beam acts as a waveguide
that holds the atoms against gravity, and the interference with
the Gaussian laser beam forms the transport lattice. For the
latter we employ a rather large waist of 600 μm and find
that a moderate power of Ptyp

G = 6.5 W is enough for optimal
transport efficiencies. The focus position of the beam was op-
timized by maximizing the transport efficiency. The optimum
was found about 21 cm away from the center of the glass cell.

B. Control of the detuning

The two counterpropagating laser beams form a one-
dimensional (1D) optical lattice V (x) ∝ √

PG sin(2kx +
2π� f t/2). Here � f is the frequency difference between the
two beams, which results in a moving lattice with velocity
v = λ� f /2. For fast and accurate transport, the detuning
needs to be accurately controlled with a large bandwidth.
This is achieved using direct digital synthesis (DDS) and
acousto-optic modulators (AOMs) in double-pass configura-
tion (DPAOMs), as illustrated in Fig. 2(c).

In order to avoid a frequency-offset lock, we use two sepa-
rate fiber amplifiers at 1064 nm to generate the transport laser
beams. We split off light from one of them and use it to seed
the second amplifier. In between, we implement a frequency-
shifting setup that consists of two DPAOMs with dynamically
tunable frequencies f1 and f2. This enables broadband tun-
ing, where each DPAOM can introduce a detuning up
to � f = 50 MHz, which corresponds to a lattice velocity
v ≈ 26.6 m/s. In combination with the large trap frequencies
in the lattice along the transport direction, accelerations up to
several thousand m/s2 can be achieved.

III. REALIZATION OF LARGE-DISTANCE
OPTICAL TRANSPORT

A. Loading of the transport lattice

To facilitate loading of low-temperature atoms into the
transport lattice, we transfer the dilute, precooled cloud into
a large volume reservoir trap and add the Bessel beam at
low intensity to act as a tightly focused optical dimple [58].
The thermalization between the atoms in the reservoir and the
dimple (Bessel) enables high densities at low temperatures in
the transport lattice.

The sequence starts by collecting Zeeman-slowed 133Cs
atoms in a MOT within 3 s, which are further cooled in an
optical molasses using standard techniques (see Sec. A 5). To
further cool and spin polarize the atoms we use degenerate
Raman sideband cooling in a near-detuned optical lattice [59],
which results in a cold atomic cloud of about 2 × 107 atoms
in the absolute ground state |F = 3, mF = 3〉 at < 1 μK with
a peak density of n0 = 3 × 1010 atoms/cm3. When loading
the atoms adiabatically into a crossed-beam dipole trap, the
phase-space density (PSD) φ = n0λ

3
dB is conserved; here

λdB = h/
√

2πmkBT denotes the thermal de Broglie wave-
length, h is Planck’s constant, kB is Boltzmann’s constant,
and T is the temperature of the atoms. To limit the temper-
ature increase, the Raman-cooled cloud is transferred into a
shallow, large-volume crossed-dipole trap, which is formed

by a single laser beam passing through the MOT chamber in
a bow-tie configuration at a wavelength of 1064 nm with a
circular waist of 0.5 mm and a maximum power of 15 and
10 W in the first and second pass, respectively. The power
difference between the beams is due to transmission losses
from the vacuum-chamber view ports and nonoptimal angle
of incidence and polarization of some of the mirrors reflecting
the second dipole trap arm. In addition, we apply a magnetic
field gradient of 31.3 G/cm to hold the atoms against gravity.
For efficient thermalization during loading, we further apply
a magnetic offset field of 120 G to increase the s-wave scat-
tering length to a ≈ 1500a0 [60]; here a0 denotes the Bohr
radius. After a hold time of 250 ms we obtain 6 × 106 atoms
at 3 μK in the crossed-dipole trap.

During the next 400 ms we ramp up the power of the
Bessel beam to 20 W and let the atoms rethermalize. To load
the atoms into the 1D transport lattice, we then redirect all
power from the reservoir beams to the Bessel beam within
500 ms and simultaneously ramp up the Gaussian beam to
6.5 W to avoid spreading of the cloud along the Bessel beam.
The magnetic offset field is changed to 23 G (300a0) to reduce
three-body losses. After the reservoir has been fully removed,
we end with about 4 × 106 atoms at 10 μK in the static
transport lattice. We attribute the large increase in tempera-
ture compared to the reservoir trap to compression in the 1D
lattice.

B. Transport efficiency

Optical transport in the running-wave lattice is realized
by linearly increasing the detuning � f between the two
counterpropagating lattice beams, which results in a constant
acceleration a. Before the atoms reach the final position in
the glass cell, we apply a linear deceleration ramp, where the
detuning is decreased to zero at the same rate as during the
acceleration. For typical parameters (atyp = 2.9 km/s2, Ptyp

G =
6.5 W), we obtain a final transport velocity of 26.6 m/s, and
the transport duration for the full distance to the glass cell
is 25.5 ms. After transport, we find a total of 3 × 106 atoms
in the glass cell at a temperature of 5 μK. This corresponds
to a transport efficiency of ∼75%. We attribute the reduced
temperature in the glass cell to evaporation during transport.
The magnetic offset field in the glass cell is set to 28.2 G
(480a0) during transport. Note that there are no additional bias
fields along the transport axis. Nonetheless, we do not observe
any spin depolarization.

To investigate the transport efficiency as a function of
the transport distance, we perform round-trip measurements,
where the atoms are transported back into the MOT chamber
[Figs. 3(a) and 3(b)]. We scan the final position between the
MOT chamber and the glass cell by changing the time be-
tween the acceleration and deceleration ramps [Fig. 2(d)]. At
the beginning of the transport (100 μs), we observe a sharp de-
crease in the atom number. Varying the acceleration [Fig. 3(a)]
up to 4.0 km/s2 does not lead to a significant further change.
Reducing the lattice depth, on the other hand [Fig. 3(b)],
results in a significant increase in the atom loss. We at-
tribute this initial loss to the sudden onset of the acceleration,
which limits the number of atoms that are transported. This
could be improved in future experiments by implementing
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FIG. 3. Transport efficiency. Efficiency of round-trip transport
versus transport distance: (a) different accelerations a for Ptyp

G =
6.5 W and (b) different lattice depths for atyp = 2.9 km/s2. The lattice
depth is varied by changing the power of the Gaussian transport beam
PG. Relative efficiency of one-way transport to the glass cell versus
(c) power PG for three different accelerations a and (d) acceleration a
for three different Gaussian powers PG. Relative efficiency is defined
as the ratio of the transported atom number to the transported atom
number at low acceleration and large Gaussian power (Sec. A 3 c).
The dashed lines are guides to the eye. In (c) the dashed line shows
a scaling with

√
PG; in (d) the scaling is linear with acceleration a.

Error bars show the standard error of the mean, extracted from five
repetitions in (a)–(d).

nonlinear frequency ramps [39,47,61,62]. In addition, we ob-
serve a reduction in the transport efficiency for the longest
distances, which becomes more pronounced for larger accel-
erations and weaker lattice depths. This is most likely caused
by the smaller lattice depth (see Fig. 9) and the reduced
vertical trap depth [Fig. 2(b)] near the center of the glass
cell. For typical parameters (atyp, Ptyp

G ) we measure round-trip
efficiencies for the full distance (86 cm) to the science cell
of >50%, which is consistent with a one-way transport effi-
ciency of 75%. Residual deviations are most likely explained
by systematic uncertainties in the atom-number calibration.

To gain more insight about the dependence of the transport
efficiency on the depth of the lattice [Fig. 3(c)] and the accel-
eration [Fig. 3(d)], we evaluate the one-way transfer efficiency
in the glass cell. We observe a scaling with

√
PG for low

efficiencies, which suggests that the transport efficiency de-
pends linearly on the depth of the lattice potential. Moreover,
with increasing acceleration it falls off approximately linearly
[Fig. 3(d)]. Again, this suggests a linear dependence on the
lattice depth, if we consider the effective depth of the potential
in the presence of a tilt that is generated by the acceleration.

The saturation of the transport efficiency for high values of PG

and low accelerations a indicates that these parameters are not
the dominating limitations of the observed transport efficiency
of 75%. The main limitations are most likely the fast initial
loss due to the sudden onset of the acceleration and atoms that
are lost during transport due to gravity. Note that changing PG

predominantly changes the lattice depth and has only a minor
impact on the trap depth in the vertical direction that holds the
atoms against gravity.

IV. GENERATION OF A BOSE-EINSTEIN CONDENSATE

A. Dipole trap and optical evaporation

After the atoms are transported into the glass cell they are
levitated with a magnetic field gradient and collected in a
crossed-optical-dipole trap at 1064 nm. The beam along y is
elliptical with a waist of 650 × 80 μm2 in the xz plane and
a maximum power of 5.7 W, matched to the atomic cloud
shape after transport. The one along x is circular with a 50-μm
waist and a maximum power of 350 mW (Fig. 1). We load
the dipole trap by first ramping up the dipole trap along y to
full power and the Gaussian transport beam to zero in 350
ms. After the transport lattice is fully removed, we ramp up
the dipole beam along x in 100 ms to full power. We then
reduce the offset field to 27 G (440a0) in 200 ms. The end of
the offset field ramp defines t = 0 in Figs. 4(a)–4(c). Next,
we perform a short optical evaporation, where the Bessel
transport beam is turned off (500 ms) and at the same time the
power of the dipole beam along y is reduced to 2 W. At this
point [blue dashed line in Fig. 4(c)] we have 9 × 105 atoms at
2 μK and a PSD of φ = 3 × 10−3. The corresponding in situ
peak density is n0 = Nω̄3(mλdB/h)3 = 6 × 1011/cm3 [63],
where the geometric-mean trap frequency is calibrated to be
ω̄ = 2π × 40 Hz.

B. Gradient evaporation

To reach degeneracy we use the technique of forced evapo-
rative cooling in a way similar to what was done in Ref. [63].
We reduce the levitation gradient linearly in two successive
steps to tilt the dipole potential. This allows us to keep
large trapping frequencies and hence large thermalization
rates during evaporation. In Fig. 4(c) we show the PSD dur-
ing evaporation, which was evaluated using the calibrated
atom numbers [Fig. 4(a)], trap frequencies, and temperatures
[Fig. 4(b)]. We optimize the parameters of the evaporation
ramps experimentally by maximizing the evaporation effi-
ciency η = − ln(φ f /φi )/ ln(Nf /Ni ) after each step; here the
indices i and f denote the parameters at the beginning and
end of the evaporation step. We find the following optimized
sequence (see Fig. 13 in Sec. A 5): During the first step,
the gradient is reduced linearly to 11.5 G/cm in 500 ms.
The second step is a hybrid evaporation scheme, where the
gradient is switched off within 5 s, and the power of the dipole
beam along x is reduced to 160 mW in 2 s. The magnetic offset
field is lowered to 23 G (a ≈ 300a0), which was found to be
the optimal ratio of elastic collisions and three-body losses
[58,60]. The evaporation sequence described above typically
results in a BEC with 2.2 × 104 atoms without any discernible
thermal fraction and evaporation efficiencies of η = 1.3 for
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FIG. 4. Evaporation to BEC. Evolution of (a) atom number N ,
(b) temperature T , and (c) PSD (gray dots) and BEC fraction N0/N
(blue dots) during evaporation. The shaded regions indicate the evap-
oration steps: optical evaporation (blue) and gradient evaporation
(gray). The additional optical evaporation during the second gradient
evaporation is shown in dark gray. The blue dashed line shows the
end of the optical evaporation, and the black one shows the end of the
first gradient evaporation. Error bars indicate 1σ standard deviation
for three repetitions. (d) Fluctuations of the normalized BEC atom
number N0 over a period of ∼2.5 h (light blue points). The 1σ

standard deviation is <5%. Dark blue points show the mean values
of the individual data points, averaged over 20-min intervals. The 1σ

standard deviation is <2%.

the first step and η = 2.5 for the second. The final values for
the BEC fraction at the end of the evaporation sequence are
not shown in Fig. 4(c) since the small thermal fraction cannot
be reliably extracted from the data anymore.

The total cycle time is 11.5 s, comparable to other experi-
ments without transport [63–65]. We test that the duration of
the evaporation ramps can be reduced further at the expense
of reduced total atom numbers. With a total cycle time of
7.5 s we obtain pure BECs with 1 × 104 atoms. Finally, to
demonstrate the stability of our transport and its suitability
for quantum simulation experiments, we measure the final
atom number in the BEC over 2.5 h and find that it fluctuates
by <5% and the mean value (averaged over 20 min) drifts
by <2% [Fig. 4(d)]. This is comparable to the atom-number
fluctuations before transport (see Sec. A 4), indicating that it
does not induce additional instabilities.

V. CONCLUSION

In conclusion, we have demonstrated stable optical trans-
port of heavy 133Cs atoms over a large distance of 43 cm in

less than 30 ms with good efficiency and without observable
heating. The transport efficiency seems to be predominately
limited by the temperature of the atoms and potential depth
along the vertical direction. Larger accelerations may further
require the implementation of smoother frequency ramps. The
fast transport setup demonstrated here enables short cycle
times, which will be beneficial for improved statistics in future
experiments. The cycle time could be reduced further by im-
plementing additional all-optical cooling techniques [26–29]
to reduce the loading and evaporation times in the dipole traps.
Our design further facilitates large optical access, enabling
the installation of high-NA objectives for single-atom single-
site-resolved imaging and manipulation of cold 133Cs atoms
in optical lattices [48–56].

The data that support the plots within this paper and other
findings of this study are available from the corresponding
author upon request. The code that supports the plots within
this paper is available from the corresponding author upon
request.

ACKNOWLEDGMENTS

We acknowledge insightful discussions with C. Chin and
his team, E. Haller, and H.-C. Nägerl. The authors acknowl-
edge A. Reetz for help in characterizing the Bessel-beam
profile and performing calculations for the design of the setup
and J. Chen for help in setting up the frequency-detuning setup
and characterization of the pointing stability of the Bessel
beam. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
Project No. 277974659 via Research Unit FOR 2414. The
work was further funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Project
No. 452143229 and under Germany’s Excellence Strategy,
EXC-2111390814868. T.K. was supported by the Bavarian
excellence network ENB via the International Ph.D. Pro-
gramme of Excellence Exploring Quantum Matter (ExQM).
C.R.C. acknowledges support from the ICFO-MPQ Cellex
postdoctoral fellowship and from the European Union (Marie
Skłodowska-Curie Grant No. 897142). H.v.R. acknowledges
support from the Hector Fellow Academy. J.F.W. acknowl-
edges support from the German Academic Scholarship
Foundation. C.S. has received funding from the European
Union’s Framework Programme for Research and Innovation
Horizon 2020 (2014-2020) under Marie Skłodowska-Curie
Grant Agreement No. 754388 (LMUResearchFellows) and
from LMUexcellent, funded by the Federal Ministry of Ed-
ucation and Research (BMBF) and the Free State of Bavaria
under the Excellence Strategy of the German Federal Govern-
ment and the Länder.

APPENDIX

1. Characterization of optical transport setup

Bessel beam. To compute the vertical trap depth Vz along
the transport direction in Fig. 2(a), we measure the Bessel
beam profile at different positions behind the axicon. To
ensure that the camera is not saturated we work at low
power. The axicon is made from fused silica (n = 1.45 at
1064 nm [66]), and the incident beam has low intensity even at
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FIG. 5. Bessel beam profile along x, the transport direction, for
the parameters α = 179◦, w0 = 2.5 mm, and λ = 1064 nm. The dis-
tance from the axicon is indicated in the top left corner of each image.

35-W power due to the large waist (w0 = 2.5 mm), so thermal
lensing in the axicon is assumed to be negligible.

During the first few centimeters behind the axicon the
profile of the beam is still Gaussian. About 25 cm behind
the axicon, the first diffraction ring appears, and the profile
becomes more Bessel-like (Fig. 5). In order to extract a peak
intensity for computing the dipole trap depth, we therefore fit
the images with a two-dimensional (2D) symmetric Gaussian
up to 25 cm behind the axicon and with a 2D Bessel function
at larger distances. For the Bessel fits we use

f (y, z) = AJ0
(√

(y − y0)2 + (z − z0)2/sB
)2

, (A1)

where J0 is the zeroth-order Bessel function of the first kind
and A, y0, z0 and sB are free parameters. Sample crosscuts of
the fitted and measured profiles are shown in Fig. 6.
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FIG. 6. Example fits of a Bessel function (blue line) to the mea-
sured Bessel beam profiles (blue points). The distance from the
axicon is indicated in the top right.
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FIG. 7. (a) Fitted waists wB of the Bessel-shaped transport beam
versus distance from the axicon. The waists are computed from the
fitted radii sB. The inset shows a zoom of the region, which starts at
30 cm behind the axicon, indicating the diffractionless propagation
of the Bessel beam. (b) Power in the central maximum, extracted
from the peak intensity and the fitted radii shown in (a). The input
power before the axicon is 35 W. The inset shows a zoom of the
region starting 30 cm behind the axicon. The dashed vertical lines in
both plots indicate the start and end positions of the transport.

From the Gaussian fits we can directly extract the waist
of the beam for the computation of the depth of the dipole
trap. For the Bessel fits, we map the fitted width to a Gaussian
waist via wB = 1.3

√
2sB [Fig. 7(a)]. We extract the relative

peak intensity of the images versus distance by first sub-
tracting a constant background from the images. Because
the power was not kept constant for all measurements and
instead was increased for long distances from the axicon, we
evaluate the power-normalized peak intensity via the ratio
r(x) = Imax/

∑
px I , where Imax denotes the maximum pixel

value and
∑

px I corresponds to the pixel sum over the whole
image, after subtracting a constant background. We then com-
pute the relative peak intensity by normalizing r(x) to the
relative peak intensity after a distance of xref =13 cm behind
the axicon, Irel = r/r(xref ). In order to get an absolute value
for the peak intensity IB = IrelIref we multiply all values with
the Gaussian peak intensity Iref = 2P/πw2

ref at xref. Here the
regular formula for a Gaussian beam is still applicable because
the beam still has a Gaussian profile. The power contained in
the central peak is shown in Fig. 7(b) for an incoming beam
of 35 W as it was used in this work.
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cles) with the theoretical intensity due to a round-tip axicon (dashed
red line) with b = 6 μm. Both the modulation and the low intensity
at short distances are due to the round tip of the axicon.

An ideal axicon would result in a Gaussian intensity pro-
file along the propagation direction. Imperfections can be
modeled by assuming a round-tip axicon [57]. The effect of
the round tip on the Bessel beam intensity is twofold: First,
it reduces the peak power immediately behind the axicon,
and second, it leads to a modulation of the intensity versus
distance. Both effects are visible in our measurement. We find
reasonable agreement between theory [Ref. [57], Eq. (6)] and
experiment for a round-tip axicon with b = 6 μm (Fig. 8).
Here b is the semimajor axis of the hyperbola used in ap-
proximating the round tip of the axicon. The intensity of the
Bessel beam remains low for the first few centimeters behind
the axicon, and we observe secondary maxima after the initial
intensity peak.

Lattice depth. We compute the lattice depth using the mea-
sured position of the waist of the Gaussian transport beam and
its power PG. The radius and the power in the central peak of
the Bessel beam are shown in Fig. 7 for a total power of the
incoming beam of 35 W. In Fig. 9 we show the calculated
lattice depth for two different values of the powers of the
Gaussian transport beam PG, together with the vertical trap
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FIG. 9. Lattice depth for PG = 2 W (light blue dots) and Ptyp
G =

6.5 W (dark blue dots). The vertical trap depth (red dots) was com-
puted for Ptyp

G [same data as in Fig. 2(b)]. The dashed lines indicate
the start and end position of the transport.

depth Vz. The lattice depth tends to be larger than the vertical
potential depth for longer transport distances.

2. Radio-frequency control of relative detuning

a. Frequency-shifting setup

For the transport lattice we use two ALS 45W Nd:YAG
fiber amplifier systems. The two lasers are referred to as
Gaussian and Bessel lasers according to which of the trans-
port beams the laser generates. The Gaussian laser is seeded
by a low RIN NPRO Mephisto S laser from Coherent. A
small fraction of the light from the output of the Gaus-
sian is split off and frequency shifted using two double-pass
AOMs. One AOM shifts the frequency by 2 f1 within the
range f1 ∈ [150, 175] MHz; the other shifts the frequency by
2 f2 within the range f2 ∈ [200, 225] MHz. The two AOMs
shift the frequency in opposite directions. Because the Gaus-
sian laser is intensity stabilized using a 100-MHz AOM, the
static transport lattice is created with the two AOMs set to
2 f1 = 2 × 175 MHz and 2 f2 = 2 × 225 MHz. We transport
the atoms towards the glass cell by tuning the frequencies to
f2 = 200 MHz and f1 = 175 MHz and transport them back to
the MOT chamber with f2 = 225 MHz and f1 = 150 MHz.
The output of the double-DPAOM setup seeds the Bessel
laser. This laser is not intensity stabilized beyond the internal
stabilization circuitry.

The 225- and 175-MHz frequencies are generated by two
AD9914 DDS evaluations boards. The frequency ramps use
the internal linear ramp generator of the DDS boards with a
typical frequency step of 550 Hz and a step rate of 0.2 μs.
To change the acceleration, we change the frequency step size
and keep the step rate fixed. We have also tested the transport
using AD9910 DDS chips from a Wieser Lab FlexDDS-NG
board and found no difference in transport efficiency. To
decrease the radio-frequency (rf) linewidth we supply an ex-
ternal 2.5-GHz reference clock to the chips directly instead
of relying on the chips’ internal phase locked loop (PLL).
This clock is locked to a 10-MHz Rb reference clock, which
we also use as a clock for the frequency generator (R&S
SMC100A) supplying 100 MHz for the Gaussian beam’s in-
tensity stabilization. This ensures reduced relative frequency
drifts between the Gaussian and Bessel beams. Note that due
to the 32-bit frequency resolution of the DDS chips, the de-
fault detuning of the Gaussian and Bessel beams is not zero
but rather on the scale of a few millihertz.

b. Sensitivity to rf noise

To characterize the sensitivity of the transport to frequency
noise we modulate the frequency of the 100-MHz intensity-
stabilization AOM using Gaussian white noise. The white
noise is generated from an arbitrary wave-form generator
with a bandwidth of 10 MHz, a peak voltage of 1 V, and a
crest factor of ∼4.3. The output of the wave-form generator
is sent to the low-FM input of the signal generator for the
AOM. We vary the amplitude of the frequency modulation
by changing the modulation bandwidth of the signal gener-
ator. Figure 10(a) shows the atom number measured in the
MOT chamber without transport but holding the atom in the
lattice for 16 ms and the one in the glass cell after transport
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FIG. 10. (a) Atom number in the lattice versus frequency mod-
ulation bandwidth. The left axis shows the atoms remaining after
holding them in the static lattice for 25.5 ms; the right axis shows
the atoms arriving in the glass cell after transport. (b) Ratio of the
atom numbers in the MOT and glass cell, indicating that the transport
efficiency is reduced as the noise of the lattices is increased. The inset
shows the FWHM linewidth of the rf source for the AOM shifting the
frequency of the Gaussian beam as a function of FM amplitude.

(atyp = 2.9 km/s2, Ptyp
G � 6.5 W). We find that for modulation

bandwidths > 1 kHz the atom number decreases in a similar
fashion for both the atoms held in the lattice and the atoms
transported. To estimate the change in transport efficiency
due to the frequency modulation, we compute the ratio of the
transported and held atom numbers and plot it in Fig. 10(b).
We find that the modulation also affects the transport effi-
ciency, reducing it linearly as the modulation amplitude is
increased beyond 1 kHz. The inset in Fig. 10(b) shows the
rf linewidth versus the modulation amplitude. The linewidth
is extracted by fitting a Lorentzian to the signal generator’s
output spectrum measured with a spectrum analyzer. Since
we can add small amounts of noise to the frequency of the
Gaussian beam without worsening the transport efficiency, the
transport efficiency is not limited by the frequency sources or
relative drifts between them.

3. Transport efficiency measurements

a. Extended data

In Fig. 11 we show additional measurements of the trans-
port efficiency that were taken for different values of PG and
a. In Figs. 3(c) and 3(d) we show crosscuts of this 2D plot.
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FIG. 11. One-way transport efficiency measurements. Fig-
ures 3(c) and 3(d) are crosscuts through this figure. The mean
transport efficiency is normalized to the mean transport efficiency
at a = 0.5 km/s2 and PG = 6.5 W. The mean is computed over five
repetitions.

b. Normalization

The measurements in Figs. 3(c) and 3(d) are taken by mea-
suring the atom number in the glass cell (one-way transport).
To extract a relative efficiency, we use the mean atom number
transported at the lowest acceleration of a = 0.5 km/s2 and
the highest power of the Gaussian transport beam Ptyp

G =
6.5 W as a reference. The mean is calculated using five re-
peated measurements.

c. Guides to the eye in Figure 3

Before fitting the guides to the eye in Figs. 3(c) and 3(d),
the data are filtered. For Figs. 3(c) and 3(d) all points with a
relative efficiency η > 0.75 or η < 0.1 are ignored since we
observe a saturation for low values of the acceleration and
large powers, while there is essentially no transport for low
values of the power PG of the Gaussian transport beam. To
account for the saturation in the acceleration data [Fig. 3(d)]
we discard the points with accelerations smaller than

0 100 200 300 400
0.9
1.0
1.1

P
re

0 100

0 100 200 300
0.9
1.0
1.1

P
os

t

0 100

0 200 400 600

Shot

0.9
1.0
1.1

B
E

C

0 200

N Shots

FIG. 12. Atom-number stability before (Pre) and immediately
after (Post) transport and in the BEC [same data as in Fig. 4(d)].
As in Fig. 4(d), the dark blue points show mean values, which were
obtained by averaging the individual data points in a time window
of 20 min. The histograms on the right show the corresponding
distributions.
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FIG. 13. Sketch of the sequence. The relative changes in de-
tuning, power, and magnetic field B are shown for both the MOT
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not to scale in order to improve readability.

a = 5 km/s2 for the measurement with a power of Ptyp
G =

6.5 W.
We fit the data in Fig. 3(c) using N (P) = b1

√
PG + b0,

where b1 and b0 are free fit parameters, and the data in
Fig. 3(d) using N (a) = b̃1a + b̃0, with free parameters b̃1 and
b̃0.

4. Atom-number stability before and after transport

In Fig. 12 we show how the transported atom number
fluctuates between repeated measurements before and directly
after the transport and compare the results to the fluctuations
in final atom number in the BEC N0. The histograms on the
right show the distribution of the fluctuations for the corre-
sponding measurements. For all data sets we have removed a

slow drift, which is caused by the stabilization of the ambient
temperature in the laboratory.

5. Experimental sequence

Laser cooling of 133Cs atoms is performed on the D2 line
(|6S1/2 → P3/2〉, λD2 = 852 nm). In the following we denote
the |F = 4〉 → |F ′ = 5〉 transition as the cooling and |F =
3〉 → |F ′ = 4〉 as the repumping transition.

The experimental sequence starts by loading 3 × 107 atoms
in a magneto-optical trap (MOT) from a Zeeman slower in 3 s.
The cooling light of the MOT is −4
 detuned from the cool-
ing transition. Here 
 = 2π × 5.2 MHz [67] represents the
linewidth of the D2 line. Additionally, 2 mW of resonant light
in the repumper transition are required to prevent depumping.
After MOT loading, we perform a compressed MOT stage to
increase the density of the cloud. In 28 ms we increase the
magnetic field gradient from 9 to 17.5 G/cm and the cooler
detuning to −8
. Simultaneously, we reduce the cooler and
repumper power to 25 mW and 60 μW, respectively. We
subsequently switch off the gradient and increase the cooler
detuning to −22
 for an 11.5-ms-long molasses phase. In
order to improve the cooling efficiency during this stage the
residual magnetic fields are compensated with an accuracy
of 50 mG. Typically, we obtain at the end of the molasses
phase 3 × 107 atoms, comparable to the MOT phase, with a
temperature of 10 μK.

After molasses, the atoms are optically pumped into
|F = 3〉, where degenerate Raman sideband cooling (dRSC)
is performed in a three-dimensional optical lattice. The Raman
lattice is −20 GHz detuned from |F = 3〉 → |F ′ = 2〉 reso-
nance. The lattice is generated by interfering three orthogonal
beams along the x̃, ỹ, and z directions. Here the (x̃, ỹ) axis
denotes a rotation of 30◦ with respect to the coordinate system
shown in Fig. 1(a). The ỹ-lattice beam is retroreflected after
passing through a λ/4 wave plate. The beams are linearly
polarized. The x̃ and z beams are polarized such that they
interfere only with the ỹ beam. In addition to the lattice, a cir-
cularly polarized beam propagates along the z direction. This
beam is resonant with the |F = 3〉 → |F ′ = 2〉 transition with
a power of 650 μW. After 7 ms of dRSC cooling we obtain
2 × 107 atoms at <1 μK at a density of 3 × 1010 atoms/cm3.
The following steps towards condensation are described in the
main text.

A detailed sequence for producing degenerate gases of
cesium atoms is presented in Fig. 13. This includes the relative
changes in detuning, power, and magnetic fields either in the
glass cell or in the MOT chamber. We sketch the respective
values for the start and end of the ramps.
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