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The ability to create and manipulate strongly correlated quantum many-body states is of central importance
to the study of collective phenomena in several condensed-matter systems. In the last decades, a great amount
of work has been focused on ultracold atoms in optical lattices, which provide a flexible platform to simulate
peculiar phases of matter both for fermionic and bosonic particles. The recent experimental demonstration of
Bose-Einstein condensation (BEC) of light in dye-filled microcavities has opened the intriguing possibility
to build photonic simulators of solid-state systems, with potential advantages over their atomic counterpart.
A distinctive feature of photon BEC is the thermo-optical nature of the effective photon-photon interaction,
which is intrinsically nonlocal and can thus induce interactions of arbitrary range. This offers the opportunity to
systematically study the collective behavior of many-body systems with tunable interaction range. In this paper,
we theoretically study the effect of nonlocal interactions in photon BEC. We first present numerical results
of BEC in a double-well potential, and then extend our analysis to a short one-dimensional lattice with open
boundaries. By resorting to a numerical procedure inspired by the Newton-Raphson method, we simulate the
time-independent Gross-Pitaevskii equation and provide evidence of surface localization induced by nonlocality,
where the condensate density is localized at the boundaries of the potential. Our work paves the way toward
the realization of synthetic matter with photons, where the interplay between long-range interactions and low
dimensionality can lead to the emergence of unexplored nontrivial collective phenomena.
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I. INTRODUCTION

The study of exotic phenomena arising from the interplay
between low dimensionality and strong interactions has been
a very active field of research in the last decades, ranging
from electronic and magnetic properties in low dimension [1]
to the emergence of topologically ordered states [2]. While
the discovery and characterization of such phenomena was
first made in solid-state systems, the recent advances in the
fields of ultracold atoms [3], ultracold dipolar molecules [4],
and photonics [5,6] have granted the possibility to engineer
alternative physical systems to simulate solid-state matter.
The development of such an artificial matter, often referred
to as synthetic matter, offers the ability to manipulate with
unprecedented precision the physics of the simulated material,
e.g., interactions and presence of artificial magnetic-orbital
fields [6,7], allowing us to unveil properties and phases of
matter in physical conditions that are difficult to access in
solid-state materials [8].

In this framework, the recent experimental demonstration
of two-dimensional Bose-Einstein condensation (BEC) of
light in dye-filled microcavities has opened the possibility to
use photons to simulate the equilibrium properties of bosonic
matter. First observed in 2010 [9,10], photon BEC is an
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out-of-equilibrium state of light showing effective thermal
steady-state properties, achieved by pumping photons into
a dye-filled microcavity in proper conditions. The geometry
of the cavity mirrors provides an effective trapping potential
and mass to photons, while the pumping sets their chemical
potential. Specifically, the effective trapping potential is
induced by a proper shaping of the cavity mirrors, which were
curved in Refs. [9,10] to provide an harmonic confinement
(a later experiment on the same system was reported also in
Ref. [11]). The effective mass results from the freezing of the
longitudinal quantum number of the cavity modes populated
by the photons reemitted by the dye molecules. This is ob-
tained by using a short distance between the cavity mirrors to
have a free spectral range that is comparable with the spectral
width of the emission line of the dye solution within the
cavity. Thermalization of the photon gas and the possibility
of a nonvanishing chemical potential is achieved by repeated
absorption and emission of photons by the dye molecules
pumped with an external laser, with consequent conservation
of the average number of photons. In these conditions, albeit
the system is out of equilibrium, the resulting state of the
emitted light can be seen as effectively in a steady state close
to equilibrium [12,13], and described by a wave function
�(r) and chemical potential μ, quantifying respectively
the electric field and the energy stored in the condensate
optical mode, obeying a proper Gross-Pitaevskii equation
[9,14–17].
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Recently, in 2019, a photon BEC in a double-well potential
was experimentally obtained [18] using similar methods to
those in Refs. [9,10]. The effective two-well potential for
photons was imprinted by properly shaping the cavity mirrors
using dedicated delamination techniques. Importantly, these
techniques can be used to imprint any potential, e.g., lattices
or nonperiodic potentials [19–21]. The experimental demon-
stration of photon BEC in a double well, together with the
ability to realize arbitrary lattice potentials, has opened the
possibility to use photon BEC to realize synthetic matter at
room temperature, envisioning the study of many-body phe-
nomena in parameter regimes that are often unexplored in
cold-atom experiments. In this respect, a peculiarity of photon
BEC is the nature of the effective photon-photon interaction,
which arises from a thermo-optical nonlinearity and is thus in-
trinsically nonlocal [15,16,22]: The condensate intensity heats
up the medium at some point r, causing a spatial modification
of the index of refraction that depends nonlocally on the in-
tensity via a proper Green’s function. As such, the interaction
strength at a given point r depends on the wave function of
the whole condensate, thereby manifesting its nonlocal (i.e.,
long-range) nature. In addition to the nonlocal thermo-optical
nonlinearity, also local attractive interactions based on the
optical Kerr effect are present. In current experiments, these
interactions are much weaker than the thermo-optical one, and
their influence on the photon BEC is thus negligible. As of to-
day, experiments and theoretical analyses of photon BECs are
performed considering effective photon-photon interactions
with very short range. In the perspective of using arrays of
photon BECs as simulators of complex many-body quantum
states, a deeper knowledge on how the presence of strong
long-range interactions affects the condensate properties is
highly desirable.

In this paper, we analytically and numerically study the
effect of strong interactions with arbitrary range in photon
BEC. We first present our results on the two-well potential
of Ref. [18], and then extend our analysis to a short lattice
of six sites with open boundaries. We numerically determine
the condensate wave function and corresponding chemical
potential by solving the time-independent Gross-Pitaevskii
equation with nonlocal nonlinearity [15], resorting to a nu-
merical algorithm inspired by the Newton-Raphson method
[23,24]. We simulate the photon BEC in different regimes of
interaction, and find that the nonlocal nonlinearity can induce
a level inversion in the low-energy spectrum, remarkably sta-
bilizing a ground state where the condensate density localizes
at the boundaries of the potential.

This paper is organized as follows. In Sec. II, we study
the effect of the nonlocal nonlinearity in the double-well
potential. In Sec. III, we extend our discussion to a short one-
dimensional lattice, providing evidence of the onset of surface
localization of the condensate density, in proper nonlocal
regimes. We draw our conclusions in Sec. IV, and provide
additional details in the appendices.

II. BEC IN A DOUBLE-WELL POTENTIAL

We open by discussing the effect of a nonlocal interaction
in the case of the BEC of photons in the double-well potential

[18]. We first introduce our model and notations, and then
present our numerical results.

A. Model

In photon BEC, the effective steady state is described by
a time-independent nonlocal Gross-Pitaevskii equation in two
dimensions [9,15,16],[

− h̄2

2m
∇2 + V (r) +

∫
dr′ G(r, r′)|�(r′)|2

]
= μ�(r), (1)

where r = (x, y) denotes the two-dimensional spatial coordi-
nate, ∇2 = ∂2/∂x2 + ∂2/∂y2, and V (r) is the effective poten-
tial. The wave function �(r) is normalized as

∫
dr |�(r)|2 =

N0, where N0 is the total (average) number of photons in the
condensate mode, and the chemical potential μ encodes the
energy stored in this mode. The Green’s function G(r, r′)
describes the effective nonlocal photon-photon thermo-optical
interaction [15]. In the following, we consider an isotropic
interaction, i.e., G(r, r′) ≡ G(r − r′). We can equivalently
recast Eq. (1) by rescaling the wave function as �(r) =√

N0ψ (r), where now ψ (r) has unit norm, and by introduc-
ing the normalized interaction kernel K (r) = G(r)/g where
g := ∫

dr G(r) quantifies the interaction strength, i.e.,[
− h̄2

2m
∇2 + V (r) + gN0

∫
dr′ K (r, r′)|ψ (r′)|2

]
= μψ (r).

(2)
The sign of g in Eq. (2) determines the nature of the inter-
action. It is repulsive, or defocusing, for g > 0, while it is
attractive, or focusing, for g < 0. From now on, we focus on
the case of repulsive interaction g > 0.

The goal now is to study numerically the effect of the non-
local interaction on the condensate wave function. To reach
this goal, we restrict ourselves to one dimension (r = x and
∇2 = d2/dx2). This choice allows us to drastically reduce the
numerical complexity of the problem while granting access
to the most relevant information on the interplay between
the interaction strength and its range, encoded in K (x, x′) as
detailed below. In our simulations, we model the double-well
potential as

V2W(x) =

⎧⎪⎪⎨
⎪⎪⎩

mω2

2

(xmin

π

)2
cos2

( πx

xmin

)
, (|x| < xmin/2),

mω2

2

(
|x| − xmin

2

)2
, (|x| � xmin/2),

(3)

where the subscript “2W” stands for “double well”. In Eq. (3),
ω is the effective trapping potential on each minimum, and
xmin is the distance between the two minima. In the case of
local interaction, the kernel is a delta function K (x) = δ(x).
For a nonlocal interaction, K (x) describes heat transport, and
its form is found by solving the appropriate heat diffusion
equation [15–17]. Here, to limit the numerical complexity, we
model the kernel as a regularized box potential of the form

K (x) = K0

[
tanh

(x + σ

w

)
− tanh

(x − σ

w

)]
, (4)

where σ denotes the effective thermo-optic interaction range
(i.e., 2σ is approximately the size of the box), w quan-
tifies how sharply the interaction goes to zero around the
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FIG. 1. (a) Color map of the experimental data for the double-
well potential V (x, y) from Ref. [18]. (b) Cut along the x axis of
the data in panel (a) (blue points) for y0 = 73.675 μm, marked
by the dotted horizontal black line, and fitted with the func-
tion in Eq. (3) using

√
mω = 0.117346

√
THz/μm (i.e., ω �

1.08×1012 rad/s with m � 7.76×10−36 kg) and xmin = 12.5 μm
(red line; see Appendix A). The origin of the x axis in panel (b) has
been shifted to have a symmetric double well around x = 0 [which
corresponds to x = 73.5 μm in panel (a), marked by the vertical
black dotted line].

box boundaries x = ±σ , and K0 = 1/
∫ ∞
−∞ dx K (x) ensures

the kernel unit normalization (for sufficiently small w, K0 �
1/2σ ). The choice of the box potential in Eq. (4) allows us to
systematically study the effect of nonlocality while keeping a
reasonable numerical complexity of our simulations (details
are given in Appendix B). Hereafter, we refer to the case
K (x) = δ(x) of local interaction as σ = 0.

In Eq. (3), we have two independent length scales: ξ =√
h̄/mω, which is the characteristic size of the wave func-

tion density within each well, and the distance between the
minima of the two wells xmin. To use experimentally mean-
ingful values in Eq. (3), we take the photon mass as m �
7.76×10−36 kg and fit the low-energy part of the potential
from Ref. [18], in particular the cut along the axis of the
double well, using the function in Eq. (3). The result of the
fit is shown in Fig. 1. From the experimental data, we ex-
tract the distance between the two minima xmin � 12.5 μm,
and estimate the trapping frequency in a single microsite as
ω � 1.08×1012 rad/s, from which ξ = √

h̄/mω � 3.54 μm
follows (see Appendix A for details). This allows us to rewrite
Eq. (2) in dimensionless units, using ξ and h̄ω as characteristic
length and energy scales, respectively.

B. Numerical method

We then simulate Eq. (2) in dimensionless units by resort-
ing to a numerical method inspired by the Newton-Raphson
method [23,24], which is detailed in Appendix B. We here
report the main steps for the sake of clarity. Our goal is
to find the condensate wave function ψ (x), and associated
chemical potential μ, for given values of gN0 and σ , using
the kernel in Eq. (4). We discretize the x axis using a grid
of M points. Since the double-well potential confines the
wave function within a finite segment of length S along the
x axis, symmetric with respect to x = 0, we can truncate the
x domain into a box of linear length Lx > S, where Lx is
chosen such that the wave function is zero for all x outside the
box. Then, we discretize x ≡ x j = −Lx/2 + ( j − 1)
x, with

x = Lx/M, and j = 1, . . . , M. Consequently, the wave func-
tion ψ (x) is in turn discretized into an M-dimensional vector

�ψ , whose components are ψ j = ψ (x j ). Here, S is basically
the spatial extension along x of the condensate density, which
is approximately S � xmin due to the high potential barriers
for |x| > xmin/2.

We identify two parts in the Hamiltonian in Eq. (2): The
linear Hamiltonian H0 = −(1/2)d2/dx2 + V (x), and the non-
linear contribution F (x) = gN0

∫
dx′ K (x − x′)|ψ (x′)|2. The

linear Hamiltonian in the discrete formulation is an M×M
matrix, whose exact diagonalization yields the spectrum of
the Schrödinger’s equation, i.e., the wave functions {ψ (0)

m (x)}
and associated energies {μ(0)

m } (m = 1, . . . , M) for gN0 = 0
denoted by the superscript “(0)”. The key idea behind our
method is to determine, for a fixed value of σ , the non-
linear wave function ψ

(g)
m (x) and corresponding chemical

potential μ
(g)
m for a given gN0 	= 0 perturbatively, starting

from the knowledge of ψ (0)
m (x) and μ(0)

m . Then, starting from
gN0 = 0, we gradually ramp up the value of gN0 by a small
step dg: At the qth step of this ramping, we determine
ψ

(q dg)
m (x) as ψ

(q dg)
m (x) = ψ

((q−1)dg)
m (x) + ϕ(x), for a proper

small correction ϕ(x) that is found as detailed in Appendix B.
This procedure is seeded using ψ (0)

m (x) and μ(0)
m for q = 1,

and repeated by increasing q until the value of gN0 appearing
in Eq. (2) is reached.

C. Numerical results

Using this approach, we numerically simulate Eq. (2) using
Lx = 40, M = 400 (i.e., 
x = 0.1), and xmin = 3.53121. We
set w = 1 in Eq. (4) and ramp up the coupling strength from
gN0 = 0 to gN0 = 50, with increase dg = 0.5, for different
values of σ . Since we are interested in the properties of the
system at low energy, we focus on the nonlinear evolution
of the two lowest-energy levels of the double well m = 1, 2,
which are the symmetric and antisymmetric states that we
denote by ψs,a (x) � e−(x+xmin/2)2/2ξ 2 ± e−(x−xmin/2)2/2ξ 2

respec-
tively at energy μs,a. In the linear case gN0 = 0, the symmetric
and antisymmetric states are characterized respectively by the
absence or presence of a node at x = 0, i.e., ψ (0)

s (0) 	= 0
while ψ (0)

a (0) = 0. Due to the node in the antisymmetric
state, one has μ(0)

a > μ(0)
s (in our numerics, μ(0)

s � 0.364 and
μ(0)

a � 0.522). The goal now is to study how these two states,
and their ordering in energy, change in the presence of the
nonlocal nonlinearity.

1. Depletion of the condensate density

The numerically obtained densities in the nonlinear case
|ψ (g)

s,a (x)|2 are shown in Fig. 2, panels (a) and (b). We obtain
these states by seeding the Newton-Raphson algorithm using
ψ (0)

s,a (x) and μ(0)
s,a , respectively. We specifically plot |ψ (g)

s,a (x)|2
for gN0 = 50 and for σ = 0, 2, 4, 6, 9, to gradually reach the
regime of highly nonlocal interaction starting from the local
case. From our simulations, in the linear case, we find cor-
rectly the symmetric and antisymmetric states (black dashed
lines). In the nonlinear case, the form of the condensate den-
sity drastically depends on the interaction range. In the local
case σ = 0 (blue solid lines), increasing gN0 simply spreads
the condensate density within the wells. This result may not
come as a surprise, since both condensate peaks tend to reach
the Thomas-Fermi limit of very dense photon cloud [25],
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FIG. 2. Condensate density as a function of x (in units of ξ ; see text) from the simulation of the Gross-Pitaevskii equation for (a) symmetric
|ψs(x)|2, and (b) antisymmetric state |ψa (x)|2, with the double-well potential in Eq. (3) [see also Fig. 1(b)]. The condensate density at fixed
gN0 = 50 is plotted for σ = 0 (blue solid line), σ = 2 (blue-gray dash-dotted line), σ = 4 (dark green dash-dotted line), σ = 6 (light green
dashed line), and σ = 9 (solid red line). For clarity, we plot also the condensate density in the linear case (black dashed line). The numerical
parameters are Lx = 40, M = 400, xmin = 3.53121, w = 1, and dg = 0.5. Vertical gray dashed lines mark the position of the potential minima
x = ±xmin/2. (c) Energy gap 
Egap := μ(g)

a − μ(g)
s in units of h̄ω as a function of gN0. Different curves refer to different values of σ , with color

coding as in panels (a) and (b). The horizontal dotted gray line marks the value 
Egap = 0, below which the antisymmetric state becomes the
lowest-energy state of the double well. This happens for σ = 4 and sufficiently large gN0, signaling the preference for the system to create a
full depletion area (with a node) between the two wells.

while either overlapping around x = 0 in the symmetric state,
or avoiding the overlap preserving the node in the antisym-
metric state.

When the interaction becomes nonlocal, the density at a
given point x feels the repulsion from a finite portion of the
surrounding density. This fact can drastically affect the low-
energy properties of the system, depending on the value of
σ . We identify three distinct nonlocal regimes: (i) a regime
where σ is smaller than the condensate width S, (ii) a regime
where σ and S are comparable, and (iii) a regime where σ

becomes larger than S. In the first regime (blue-gray dash-
dotted line for σ = 2 in Fig. 2), increasing σ qualitatively
changes the density profile but does not provide any drastic
effect in the low-energy part of the spectrum: The two density
lobes reduce their width and repel from each other, effectively
renormalizing xmin. In the symmetric state [Fig. 2(a)], this
means that the lobes’ overlap around x = 0 starts to decrease.
In the antisymmetric case [Fig. 2(b)], instead, the overlap is
already suppressed due to the presence of the node at x = 0,
and thus the repulsive nonlocal interaction simply enhances
such a repulsion.

A critically different scenario is observed in the second
regime (dark green dash-dotted line with σ = 4 in Fig. 2).
We observe that, when starting our calculation from the sym-
metric state, the nonlocality almost completely suppresses the
lobes’ overlap, therefore inducing a depletion area around
x = 0, and it further pushes the density lobes far apart from
each other. The effect is less drastic when starting from the
antisymmetric state, because the node already effectively pro-
vides a depletion area around x = 0. This is further enhanced
by the nonlocal repulsion, increasing also in this case the
lobes’ mutual distance. Interestingly, due to the induced de-
pletion, the spatial form of the condensate density in the
symmetric and antisymmetric cases become very similar, sug-
gesting the onset of a level inversion between the symmetric
and antisymmetric states. This point is further corroborated
below.

Lastly, in the third regime, for σ � S, the effect of the
interaction becomes trivial. In this case, the interaction on

the scale of the condensate size becomes all-to-all; i.e., the
density at each point x interacts with the density of the whole
condensate, and thus one can write Eq. (2) with K (r, r′) ≡ K0,
i.e., [

− h̄2

2m
∇2 + V (r)

]
ψ (r) = (μ − gN0K0)ψ (r). (5)

The interaction then simply becomes an overall energy shift
that can be included in the definition of μ and then the system
returns to be effectively linear. This is clearly observed in
Fig. 2, panels (a) and (b), for σ = 6 (light green dashed line),
and especially for σ = 9 (red solid line), where the density
becomes equal to the one in the linear case (black dashed line).

2. Symmetric-antisymmetric level inversion

A deeper insight on the system behavior in the three
regimes is provided by Fig. 2(c). We define the energy gap

Egap := μ

(g)
a − μ

(g)
s , and plot it in units of h̄ω as a function

of gN0 for the same values of σ used in panels (a) and (b).
This allows us to trace the nonlinear evolution of the energies
of the symmetric and antisymmetric state: 
Egap > 0 implies
that the lowest-energy state of the system is the symmetric
one, where the system prefers to keep a nonzero overlap
between the density lobes, even if vanishingly small, while

Egap < 0 implies instead that the lowest-energy state is the
antisymmetric one, highlighting the preference for the sys-
tem to form a node at x = 0 and thus a full depletion area
between the lobes. As evident from the figure, for the scanned
values of gN0, one has 
Egap > 0 for σ = 0, 2 and σ = 6, 9,
corresponding to the first and third regime, respectively (for
σ = 6 we see a monotonically decreasing behavior of the
gap, which may hint a level inversion for gN0 larger than
the scanned values). In these cases, the ground state of the
system is the symmetric state. Notice that for σ = 9 (red line)
one has 
Egap � 0.158, independently of gN0, which is the
result in the linear case 
Egap = μ(0)

a − μ(0)
s (black dashed

line) as expected from Eq. (5). Remarkably, in the second
regime for σ = 4, 
Egap becomes negative for sufficiently
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large gN0. This is a signature of the level inversion between
the symmetric and the antisymmetric state: At this point, the
antisymmetric state, which is the excited state for small gN0,
becomes the lowest-energy state.

The analysis in this section points out the highly nontriv-
ial interplay between the strength of the interaction and its
range, allowing us to conclude that, in proper regimes, the
nonlocal interaction can induce a complete depletion region
in the condensate density between the wells. We notice that
a double-well potential can be seen as a limit case of a
one-dimensional lattice potential, where the two wells iden-
tify the two “boundary” (or surface) sites of the lattice, and
the point x = 0 is the degenerate “bulk”. As such, a natural
question that now arises is how nonlocal nonlinearities affect
the condensate density when the potential V (x) describes a
one-dimensional lattice, where the presence of both bulk and
boundary states can give raise to nontrivial effects.

III. SURFACE LOCALIZATION OF LIGHT
IN LATTICE POTENTIALS

In this section, we extend the discussion in Sec. II by
taking as potential V (x) a one-dimensional array of several
wells, where a well defines a lattice site. We first review the
spectrum of the linear Hamiltonian for the lattice potential,
and then study how nonlocal nonlinearities modify the energy
landscape, highlighting the onset of surface localization of the
condensate density.

A. Model and linear spectrum

We consider a lattice of Dx sites along x, where the distance
between two consecutive minima (i.e., the lattice constant) is
given by xmin. Without loss of generality, we take the potential
V (x) as an even function of x as

VL(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mω2

2

(
xmin

π

)2

cos2

(
πx

xmin
+ φx

)
, (|x| < xB),

mω2

2
(|x| − xB)2, (|x| � xB),

(6)

where the subscript “L” stands for “lattice”. We denote by
xB = xmin(Dx − 1)/2 the position of the rightmost external
minima (i.e., the right boundary of the potential), and φx = 0
for Dx even and φ = π/2 for Dx odd. The different value of
φx depending on the parity of Dx ensures the spatial inversion
symmetry of VL(x). Notice that VL(x) reduces to V2W(x) in
Eq. (3) when Dx = 2.

Let us consider the case xmin 
 ξ (deep-lattice, or tight-
binding, limit), where the distance between two consecutive
lattice wells is much larger than the characteristic size of a
lattice well. As in Sec. II, we focus on the low-energy part
of the spectrum, specifically the first Dx energy states. The
low-energy wave functions {ψ (0)

m (x)}, with m = 1, . . . , Dx,
consists in general of Dx localized quasi-Gaussian peaks (i.e.,
the Wannier localized functions), each one centered on a
given lattice well. Out of these Dx peaks, two peaks are cen-
tered at the two outermost lattice sites (i.e., the boundary, or
surface, sites), and the remaining Dx − 2 peaks occupy the
bulk lattice sites. The overlap of the Wannier functions on
the bulk sites gives rise to the set of Dx − 2 energy levels

FIG. 3. First Dx eigenvalues {μ(0)
m } of the linear Hamiltonian H

(in units of h̄ω) for the lattice with Dx = 6 in Eq. (6). The spectrum
consists of Dx − 2 nondegenerate bulk states (m = 1, 2, 3, 4) that
identify the tight-binding band μm � μ0 + J0λm, for some μ0 and
J0, and λm as in Eq. (C4). The two quasidegenerate surface states
(m = 5, 6) appear at higher energy above the bulk states. The re-
spective wave functions of these six states are shown in Fig. 6 of
Appendix C.

{μ(0)
m } (m = 1, . . . , Dx − 2), defining the tight-binding lowest

energy band. The band becomes flatter and flatter (i.e., the
bulk states approach degeneracy) the larger xmin/ξ . Instead,
the two Wannier functions at the boundary sites give rise to
two additional, quasidegenerate energy levels μ

(0)
Dx−1 and μ

(0)
Dx

,
at significantly higher energy compared to the tight-binding
band. These two high-energy levels identify the symmetric
and antisymmetric localized surface modes, effectively form-
ing a boundary double-well system (see Appendix C).

While the discussion above is valid for general Dx, which
can be arbitrarily large, in this paper, we focus on a rel-
atively short lattice of Dx = 6 sites. We make this choice
because, on one hand, short lattices are relevant to current
photon BEC experiment, and on the other hand, they allow
us to systematically investigate the effect of nonlinearities
while keeping a reasonable numerical complexity. Always for
numerical reasons, we choose xmin/ξ = 6. We identify this
choice as a good compromise between being in the sufficiently
deep-lattice limit, while avoiding the presence of vanishing
small energy gaps in the spectrum that would spoil the numer-
ical convergence of our algorithm. The first Dx eigenvalues,
ordered in ascendent order, are shown in Fig. 3. Dots with
m = 1, 2, 3, 4 denote bulk states, where the condensate wave
function is distributed on the four bulk lattice sites. The red
dots at m = 5, 6 are the two quasidegenerate boundary states,
where instead the condensate wave function focuses on the
two boundary sites; see Fig. 6 of Appendix C.

B. Nonlinearity-induced surface localization

We now study the effect of a nonlocal nonlinearity on the
lattice photon BEC, and provide evidence of the onset of sur-
face localization of the condensate wave function. We follow
the same numerical scheme used in Sec. II for the double
well. Here, we use M = 1000 and Lx = 150 (i.e., 
x = 0.15),
and scan the nonlinearity strength from gN0 = 0 to gN0 = 10,
using a step dg = 0.025.

The result of our simulation is shown in Fig. 4, where
we plot the chemical potential μ

(g)
m for the first Dx states

as a function of gN0. We simulate different values of σ ,
from the local case σ = 0, where K (x) = δ(x), to the highly
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FIG. 4. Chemical potential μ(g)
m in units of h̄ω for m = 1, . . . , Dx

as a function of gN0 obtained by solving Eq. (2) for (a) σ = 0,
(b) σ = 10, (c) σ = 20, and (d) σ = 25, using as initial guess for
the Newton-Raphson calculation ψ (0)

m (x) and μ(0)
m . Color coding as

in Fig. 3. The data for m = 1 are plotted as blue dots, and those for
m = 5, 6 as dashed red lines. For σ = 20, a level inversion around
gN0 = 1.7 is detected: The boundary state, which is the highest en-
ergy state for small gN0, becomes the lowest state for large gN0. The
black dashed line in panels (c) and (d) marks the slope μ(g)

m − μ(0)
m =

gN0K0 in Eq. (5) expected in the highly nonlocal limit (K0 � 1/2σ ;
see Sec. II). The data for m = 1 and m = 2 (dark blue dots and light
blue solid line, respectively) appear almost overlapped on the scale
of the plot. The data are plotted up to gN0 = 3 for graphical purposes
only.

nonlocal case where the interaction range σ is sufficiently
larger than the spatial extension of the condensate wave func-
tion S � (Dx − 1)xmin along the lattice. For σ > 0, the kernel
is as in Eq. (4). For a given m, the energies μ

(g)
m and respective

wave functions ψ
(g)
m (x) are computed by seeding the Newton-

Raphson nonlinear calculation using ψ (0)
m (x) and μ(0)

m with the
same m as initial guess. This allows us to trace the evolution
of the first Dx energy levels as the nonlinearity strength and
ranges are increased, starting from the linear case in Fig. 3.
These data are complemented by Fig. 5, where we show the
wave function density |ψ (g)

1 (x)|2 for specific cases in Fig. 4.
The picture emerging from our numerical data can be summa-
rized as in the following sections.

1. Local interaction

For a local interaction (σ = 0), the first Dx eigenvalues
increase with gN0 preserving their ordering; i.e., no level
inversion occurs [see Fig. 4(a)]. In particular, the ground state
(blue dots) for gN0 = 0 continuously evolves into the ground
state for large gN0. This point is further established by looking
at the condensate density in Fig. 5, panels (a) and (b): Starting
from the linear solution (see Appendix C), increasing the
interaction strength simply spreads the condensate density all
over the lattice, tending to a configuration where all the Dx

lattice wells are populated and the peaks of the density have
the same height on each well. The physical reason for this fact
is readily understood. In our system, there are two elements
that play an opposite role in terms of energy minimization:
On one hand, the lattice potential boundaries act as much as
possible to confine the wave function both avoiding populat-
ing the boundary sites and maximizing the occupation of the
central bulk sites, while on the other hand, the local repulsive
interaction tends to avoid such an imbalanced occupation,
therefore inducing a more and more uniform peak density
the larger gN0 along the lattice wells. As such, any form of
condensate density localization is energetically unfavorable.

2. Nonlocal interaction

As the interaction range increases (σ > 0), the system dis-
plays a richer phenomenology. We here report the numerical
results for σ = 10, 20, 25. This choice of the values of σ is
motivated by the fact that we are interested in studying the
system where nonlocal effects play a predominant role, i.e.,
σ � xmin, following Sec. II. The nonlinear chemical potentials
as a function of gN0 are shown in Fig. 4, panels (b)–(d), and
the respective ground-state condensate density is reported in
Fig. 5, panels (c)–(e).

We first comment the data for σ = 10 in Fig. 4(b), where
the interaction range involves several condensate peaks, but it
is still smaller than the condensate size S. The first Dx nonlin-
ear eigenvalues evolve with gN0 starting from their respective
linear values by preserving their ordering, as in the local case.
We observe that the bulk eigenvalues for m = 1, 2 and m =
3, 4, after an initial separation, become very close in energy;
however, they are always well separated in energy from the
boundary eigenvalues for m = 5, 6 (red dashed lines). The
ground-state density shown in Fig. 5(c) displays two peaks
at the sites close to the boundary ones, and the two central
bulk sites are almost empty. This effect can be seen simply

FIG. 5. Ground-state wave function density |ψ (g)
1 (x)|2 (pink thick line) and lattice potential VL(x) (blue thin line) in Eq. (6), with

√
mω = 1,

Dx = 6, and xmin = 6. Lengths and energies are in units of ξ and h̄ω, respectively. The values of the potential are rescaled by a factor 0.02 for
graphical purposes. Panel (a) is the linear solution for gN0 = 0 (see also Appendix C), where the value of σ is irrelevant, while other panels
are for gN0 = 10 and (b) σ = 0, (c) σ = 10, (d) σ = 20, and (e) σ = 25. For σ = 20, the condensate density localizes at the boundary sites.
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as a redistribution of the condensate density within the bulk
sites, in order for the system to minimize the effect of the
nonlocal interaction, while always keeping the boundary sites
unoccupied.

As the interaction range is further increased and becomes
comparable with the condensate size S, a different scenario
arises. The key result of our paper emerges for σ = 20, in
Fig. 4(c). For small gN0, we see that the increase of the
Dx − 2 bulk eigenvalues with gN0 is well captured by the lin-
ear behavior μ

(g)
m − μ(0)

m � gN0K0, with K0 � 1/2σ , expected
from the highly nonlocal approximation in Eq. (5) (black
dashed line). Instead, the boundary eigenvalues (m = 5, 6; red
lines), in striking difference with the previous cases, increase
with a smaller slope, and eventually evolve into a bulk state
around gN0 = 1.7. Around this value, the ground-state and
first-excited state eigenvalues (m = 1 and m = 2 correspond-
ing to dark blue dots and light blue line in the figure, which are
almost overlapped) invert with the boundary eigenvalue, and
evolve into a (nonlinear) boundary state. Here, specifically,
the state with m = 2, which has a node in x = 0, evolves into
the lowest-energy state. As such, the boundary state that is
the highest state in energy in the lower band for gN0 � 1.7
becomes the ground state for gN0 � 1.7. This fact is also
clearly seen from the form of the condensate density in Fig. 5,
comparing panel (a), which is the linear solution for gN0 = 0,
with panel (d). After the level inversion, the increase of the
eigenvalues for m = 3, 4, 5, 6 is again well captured by the
highly nonlocal approximation.

By further increasing σ toward the highly nonlocal regime,
this level inversion, and thus surface localization, is not de-
tected within the scanned range of gN0. This is seen in
Fig. 4(d) for σ = 25. The boundary state evolves into a bulk
state in a similar way as in panel (c), but all other eigenvalues
evolve with gN0 according to the highly nonlocal approxima-
tion in Eq. (5). Here, the ground-state density preserves its
shape throughout the nonlinear evolution, as can be seen by
comparing panels (a) and (e) of Fig. 5, in agreement with the
fact that the system is entering the all-to-all interaction regime
and remains effectively linear.

The fact that a surface localized state in this intermediate
nonlocal regime becomes the most energetically favorable
state can be intuitively explained as follows. As said in the lo-
cal case, for small interaction strength, the most energetically
favorable configuration is always the one having a condensate
density focused mostly on the central lattice sites, due to the
presence of the potential boundaries. When the interaction
strength becomes sufficiently large, and the interaction range
is comparable with the size of the condensate density, de-
spite the presence of the lattice boundaries, it becomes more
energetically favorable for the system to minimize as much
as possible the interaction energy by splitting the condensate
density focusing it at the lattice boundaries.

More rigorously, the interaction term in the intermedi-
ate regime behaves as a correction to the lattice potential
VL(x), raising the energy of the bulk sites with respect to
the boundary sites. This can be seen as follows. If we call
x j the position of the jth minimum of the lattice poten-
tial, one can approximate in the limit σ 
 ξ the density
as |ψ (x)|2 � ∑

j |ψ (x j )|2δ(x − x j ). The interaction term in

the Gross-Pitaevskii equation can then be approximated as∫
dx′ K (x − x′)|ψ (x′)|2 � ∑

j K (x − x j )|ψ (x j )|2. This term
behaves as a correction to the lattice potential VL(x), adding
a local nonlinear chemical potential μNL(x) = gN0

∑
j K (x −

x j )|ψ (x j )|2. For gN0 > 0, μNL(x) is maximal at the center of
the lattice, and minimum at the boundaries. This can be seen
by observing that, for x close to the lattice center, the sum
over j will symmetrically include sites both to the left and
to the right of x [recall that K (x) is a symmetric function of
x]. As x gradually approaches the lattice boundaries, the sum-
mation decreases because it includes an increasing number of
spatial points both toward the surface, where |ψ (x j )|2 � 0,
and far from it, where instead K (x − x j ) � 0, yielding a zero
contribution to the overall sum. As a result, the minima of
the overall effective lattice potential Veff (x) ≡ VL(x) + μNL(x)
will be at lower energy at the boundaries with respect to
the lattice center, hence favoring the focusing of condensate
density close to lattice boundaries.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we theoretically studied the effect of a re-
pulsive (defocusing) thermo-optical nonlocal nonlinearity in
Bose-Einstein condensate (BEC) of photons. We first stud-
ied the case of photons trapped in the double-well potential
experimentally realized in Ref. [18], in the presence of a
strong nonlocal interaction with tunable range. We performed
our analysis by developing a numerical code inspired by the
Newton-Raphson method, which allowed us to solve the time-
independent Gross-Pitaevskii equation with arbitrary potential
and interaction form. We observed that, while a local interac-
tion induced a spreading of the condensate density throughout
the double well, a sufficiently large but finite nonlocality fa-
vored instead the emergence of a full depletion area between
the two wells, tending to focus the condensate density at the
potential boundaries.

We then extended our analysis to a one-dimensional small
lattice of six sites. This allowed us to generalize our previous
observations for the double well, which is a minimal extension
of a lattice with two sites only, to a more complex case where a
distinction between bulk and boundary (or surface) sites could
be made. We focused on the nonlinear evolution of the first
low-energy eigenvalues forming the lowest energy band for
different values of the interaction range. Our key result was
that, when the interaction range was comparable with the size
of the lattice, and the interaction was sufficiently strong, a
level inversion between eigenvalues took place. In particular,
the state with the condensate wave function localized at the
potential boundaries, which is the highest eigenvalue of the
lowest band for a weak or short-range interaction, becomes
the ground-state energy level for strong interaction. This fact
signaled the onset of surface localization, where the conden-
sate density is focused at the system boundaries. In our paper,
we modeled the photon-photon thermo-optical interaction as
a regularized box potential. In future, it would be interesting
to study the emergence of surface localization using smoother
forms of the interaction kernel, as well as the extension of
our results on surface localization to large lattices with several
sites.
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Our results point out the highly nontrivial interplay
between potential boundaries and interaction within a one-
dimensional array of potential wells. An intriguing question
opened by our work is how long-range interactions affect
the photon BEC when several one-dimensional lattices are
coupled together, with the inclusion of a complex coupling
between photons in different arrays to mimic the presence
of a synthetic magnetic (or gauge) flux in the system (i.e.,
a bosonic flux ladder of photons). A possible way to in-
troduce an effective magnetic field in our setup, thereby
implementing a photonic two-leg flux ladder, can be making
two separated structured microcavities, each one realizing a
one-dimensional array of photon BEC, and couple them with a
time-modulated coupling constant, with a proper distribution
of the modulation phases in space [26]. The interaction range
is determined by the degree of nonlocality of the thermo-
optical response of the microcavity, which can be controlled
by adding proper thermo-responsive dopants to the system
[15,27]. In the present experiments using dye molecules
[9,10,18], the pumping is not performed continuously but
rather with 500 ns long pulses. On one hand, this time is much
longer than the timescale of the absorption and reemission
processes by the dye molecules (approximately between 10 ps
and 100 ps), inducing effective thermalization of the photon
gas. On the other hand, this pulse length is shorter than the
expected equilibration time for heat transport to reach a steady
state within the dye solution. True continuous wave operation
is expected to be possible for instance using semiconductor
materials for photon thermalization [28].

Our work paves the way toward the simulation of
condensed-matter systems using photon BECs (i.e., synthetic
matter of light), thus envisioning the intriguing possibility to
study exotic, possibly topological phases of matter emerg-
ing from the interplay between low dimensionality, effective
gauge fields, and strong interactions with tunable range.
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APPENDIX A: FITTING THE DOUBLE-WELL POTENTIAL

In this Appendix, we provide details on the way we fit the
experimental data of the double-well potential from Ref. [18]
with the function in Eq. (3). We estimate the value of the
trapping frequency ω from the value of the height of the po-
tential barrier 
E (th) := V2W(0) − V2W(±xmin/2), which from
Eq. (3) is


E (th) = mω2

2

(xmin

π

)2
. (A1)

We impose that the value in Eq. (A1) matches the ex-
perimental value of the potential barrier 
E (exp), which

from the data in Fig. 1 is 
E (exp) � 0.109 THz. By in-
verting the relation in Eq. (A1) and by imposing 
E (th) ≡

E (exp), one has

√
mω = (π/xmin)

√
2
E (exp). By using

xmin � 12.5 μm, which is the experimental value of the
distance between the two minima of the double-well po-
tential, we find

√
mω � 0.117346

√
THz/μm. The trapping

frequency ω can be then estimated by assuming a pho-
ton mass m � 7.76271×10−36 kg [18], and one finds ω �
1.08415×1012 rad/s (approximately 0.173 THz). This yields
the characteristic length scale for each local harmonic oscil-
lator ξ = √

h̄/mω � 3.53987 μm, which is the characteristic
length scale in our simulations. In units of ξ , the distance be-
tween the two minima of the double well is xmin/ξ � 3.53121.
In rescaled units, we then simulate Eq. (2) setting h̄/

√
m = 1,√

mω = 1, and xmin = 3.53121, i.e., giving lengths and ener-
gies in units of ξ and h̄ω, respectively. As a final annotation,
we mention that, to fit the experimental data in Fig. 1, the
potential in Eq. (3) was shifted by Vmin = 0.12 THz, so that
V2W(±xmin/2) = Vmin, but this offset just adds a constant shift
to the chemical potential μ in Eq. (2), and we then take
Vmin = 0 in our simulations.

APPENDIX B: DETAILS ON THE NUMERICAL
SIMULATION

In this Appendix, we discuss in detail the numerical
method used to solve the Gross-Pitaevskii equation[

−1

2

d2

dx2
+ V (x) + gN0

∫ ∞

−∞
dx′ K (x − x′)|ψ (x′)|2

]
ψ (x)

= μψ (x), (B1)

in dimensionless units (see main text). In Eq. (B1), we take
the wave function and the nonlinear kernel normalized to
unity,

∫ ∞
−∞ dx |ψ (x)|2 = 1 and

∫ ∞
−∞ dx K (x) = 1. In addition,

the potential V (x) and nonlinear interaction kernel K (x) are
real functions of x, so both the wave function and chemical
potential μ can be taken real. In our simulations, we always
consider cases where V (x) and K (x) are such that the wave
function ψ (x) is contained within a segment I of length S of
the real axis, i.e., |ψ (x)| � 0 for all x /∈ I . This allows us to
study Eq. (B1) limiting ourselves to x defined within a finite
domain of size Lx > S, which we take by convention symmet-
ric with respect to x = 0, i.e., −Lx/2 � x < Lx/2. We then
discretize the x variable as a linear grid of M points equally
spaced by 
x = Lx/M, i.e., x j = −Lx/2 + j
x, where j =
0, . . . , M − 1. The wave function ψ (x) is then represented by
a vector with M entries �ψ = (ψ (x0), ψ (x1), . . . , ψ (xM−1)). In
the following, we will denote by ψ j the jth entry of �ψ , i.e.,
ψ j ≡ ψ (x j ). It is understood that Lx is sufficiently larger than
S to yield |ψ j | = 0, for all j with |x j | > Lx/2.

The derivative operator in Eq. (B1), acting on the wave
function �ψ , is discretized using the pseudospectral represen-
tation [29]. By defining the matrix � as

�1| jk = (1 − δ jk )
(−1) j+k

2
cot

(
θ j − θk

2

)
, (B2)

where δ jk is the Krönecker delta and θ j = 2π j/M, we obtain a
matrix representation D1 of the first-derivative operator d/dx
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as

D1 = 2π

Lx
�1, (B3)

and consequently the matrix representation D2 of the second-
derivative operator d2/dx2 reads D2 = D1 · D1, where “·”
denotes the matrix dot product. The matrix representation
of the potential V (x) and nonlocal nonlinear convolution
F [ψ (x), x] = ∫ ∞

−∞ dx′ K (x − x′)|ψ (x′)|2 are straightforward,
since both terms represent multiplicative operators in x
space. Then, V (x) is represented by the diagonal ma-
trix V with entries V| jk = δ jkV (x j ), and the convolution
is represented by a diagonal matrix F[ �ψ] with entries
F| jk = δ jk 
x

∑M−1
p=0 Kj pψ

2
p . Therefore, the discrete version of

Eq. (B1) reads

(
−1

2
D2 + V + gN0 F[ �ψ ]

)
�ψ = μ �ψ. (B4)

Notice that, in the linear case for gN0 = 0, Eq. (B4) re-
duces to the Schrödinger equation for a particle in a potential
V (x), which can be solved by exact diagonalization of the
Hamiltonian matrix H = −D2/2 + V. To solve Eq. (B4) for
gN0 	= 0, we resort to an iteration scheme based on the
Newton-Raphson method [23,24]. The basic idea of this
method is to find the unknown wave function �ψ and chemical
potential μ for a given value of the nonlinearity strength
gN0 ≡ g0, which we denote by �ψ (g0 ) and μ(g0 ) for simplic-
ity, starting from the knowledge of the wave function and
chemical potential for a smaller value of the nonlinearity
strength g0 − dg, i.e., �ψ (g0−dg) and μ(g0−dg), where ideally dg
is infinitesimally small.

If we denote by �χ ≡ �ψ (g0−dg) the known wave function, we
expand the unknown wave function �ψ (g0 ) as �ψ (g0 ) = �χ + �ϕ,
where �ϕ is a small correction to �χ such that |ϕ j | � |χ j |, for
all j, which has to be found by solving Eq. (B4). By plugging
the expansion �ψ (g0 ) = �χ + �ϕ into Eq. (B4), we can reduce the
nonlinear equation (B4) to a linear system for the correction
�ϕ. Let us now find the linear equation for ϕ j . By keeping
only first-order terms in ϕ j , one has ψ2

pψ j � χ2
pχ j + χ2

pϕ j +
2χpχ jϕp and one can write Eq. (B4) component-wise as

μχ j + μϕ j =
∑

h

Hjhχh +
∑

h

Hjhϕh + g0
xχ j

∑
p

Kj pχ
2
p

+ 2g0
xχ j

∑
p

Kj pχpϕp + g0
xϕ j

∑
p

Kj pχ
2
p ,

(B5)

where h, p = 0, . . . , M − 1. The goal now is to write from
Eq. (B5) a linear system of the form A�ϕ = �v for the correction
�ϕ, for a matrix A and vector �v to be determined from Eq. (B5).
In this way, one can find the correction as �ϕ = A−1�v. It can be
useful to rename the dummy indexes p as h in the summa-
tions involving ϕp, rename ϕ j = ∑

h δ jhϕh, and group terms

in Eq. (B5) as

∑
h

(
Hjh + 2g0
xKjhχ jχh + δ jhg0
x

∑
p

Kj pχ
2
p − μδ jh

)
ϕh

= μχ j −
∑

h

Hjhχh − g0
xχ j

∑
p

Kj pχ
2
p , (B6)

which suggests that one can define the matrix A and the vector
�v as

A| jh = Hjh + 2g0
xKjhχ jχh + δ jhg0
x

∑
p

Kj pχ
2
p − μδ jh,

v j = μχ j −
∑

h

Hjhχh − g0
xχ j

∑
p

Kj pχ
2
p . (B7)

Once �ϕ is determined as �ϕ = A−1�v, the eigenvalue μ ≡ μ(g0 )

in Eq. (B6) can be found from the new wave function
�ψ (g0 ) = �χ + �ϕ simply as

μ(g0 ) � 
x

∑
j

ψ
(g0 )
j � j, (B8)

where

� j =
∑

h

Hjhψ
(g0 )
h + g0
x

∑
p

Kj p
(
ψ (g0 )

p

)2
ψ

(g0 )
j . (B9)

In this method, since the wave function and the chemical
potential for a nonlinear strength g0 − dg have to be known
in order to find those for a nonlinear strength g0, a possible
way to determine ψ

(g0 )
j and μ(g0 ) for the desired (final) value

g0 of the nonlinear strength can be seeding the calculation in
Eq. (B6) using as a starting point the wave function �ψ (0) and
μ(0) computed in the absence of nonlinearities (g0 = 0), i.e.,
by solving the Schrödinger equation by exact diagonalization
of the Hamiltonian matrix H in Eq. (B4). Basically, one first
finds �ψ (dg) and μ(dg) seeding Eq. (B6) with �ψ (0) and μ(0). One
then repeats the calculation finding �ψ (2dg) and μ(2dg) seeding
Eq. (B6) with the previously determined �ψ (dg) and μ(dg), and
so on repeating the procedure until �ψ (g0 ) and μ(g0 ) for the
desired value of g0 are reached.

Notice that, in an actual numerical context, where dg is
small but anyhow finite, one can still rely on this lineariza-
tion but one has to perform additional convergence iterations,
labeled by n, for a given value g of the nonlinear strength
in order to refine the value of �ϕ. In practice, the numerical
procedure that we employ to find the solution of Eq. (B4) for a
target value g0 of the nonlinearity strength can be summarized
in the following steps:

1. Solution of the linear problem. First, one solves
the Schrödinger equation by exact diagonalization of H in
Eq. (B4), and selects the desired state from the linear spec-
trum. This yields the wave function and chemical potential
�ψ (0) and μ(0) to seed the nonlinear calculation.

2. Newton-Raphson nonlinear steps, with gradual increase
of the nonlinearity strength. Here, one chooses a small step
dg and solves Eq. (B6) as explained before. In order to refine
the solution, one performs a number of convergence steps
by repeatedly solving Eq. (B6) for a given value g. For a
given convergence step n, one computes �ψ (g)

n and μ
(g)
n by

finding �ϕn seeding Eq. (B6) with �χ ≡ �ψ (g)
n−1 and μ ≡ μ

(g)
n−1
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found from the previous convergence step. To enhance the
numerical convergence of the algorithm, �ψ (g)

n is updated using
a relaxation factor γ < 1 [23], i.e., �ψ (g)

n = �χ + γ �ϕ, and the
chemical potential μ

(g)
n is found as in Eq. (B8). The wave

function �ψ (g)
n is normalized to unity at every convergence step.

During the convergence steps, one can define the maximum
numerical error as

MaxErr(n) := max j

∣∣∣∣ψ (g)
n, j

∣∣ − ∣∣ψ (g)
n−1, j

∣∣∣∣. (B10)

By fixing a numerical tolerance ε � 1, the convergence steps
are repeated until the condition MaxErr(n̄) < ε is found after
a number n̄ of steps. The resulting wave function �ψ (g) ≡ �ψ (g)

n̄

and chemical potential μ(g) ≡ μ
(g)
n̄ at the end of the con-

vergence steps are then taken as solution of Eq. (B4) with
nonlinearity strength g. These values are used to seed the
nonlinear calculation for a nonlinearity strength g + dg, and
the whole procedure is repeated until the value g0 is reached.

In our simulations, we fix ε = 10−12 and γ = 0.1, and
observe that convergence is reached for 100 < n < 400, for
all values of g and σ used in this paper. Let us also point
out that the specific choice of the regularized box kernel K (x)
in Eq. (4) is motivated by numerical considerations. On one
hand, a box potential reduces the numerical complexity of the
problem, because it allows for small system lengths Lx, and
in turn not too large values of M, which significantly helps
to keep a reasonable numerical complexity of the problem.
Using a kernel from the solution of the heat equation [15–17],
or a Gaussian kernel [15], requires indeed larger values of Lx,
and thus of M, especially in the highly nonlocal regime, due
to the slower decaying behavior for large |x|. On the other
hand, a sharp box potential (i.e., for w → 0) introduces in the
numerical simulations a discontinuity that may spoil numeri-
cal convergence. Due to these issues, in order to have a good
numerical resolution and a reasonable numerical complexity,
we opt to use the regularized box potential.

We mention that a similar numerical method, specifically
to solve the two-dimensional Gross-Pitaevskii equation in
cylindrical coordinates, was used in Ref. [15].

APPENDIX C: SPECTRUM IN THE DEEP-LATTICE LIMIT

In this Appendix, we report for the sake of completeness
the derivation of the spectrum of Eq. (2), in the one-
dimensional case, with the lattice potential in Eq. (6), and in
the linear case (gN0 = 0). We focus on the first Dx energy
levels. As discussed in Sec. III A, the spectrum consists of
Dx − 2 states identifying the bulk states, forming the lowest
tight-binding energy band, and two states above the band that
describe the two boundary states.

In order to find the first Dx states of the spectrum, one
can resort to first-order degenerate perturbation theory. In
the limit xmin/ξ → ∞, the system consists of Dx indepen-
dent one-dimensional harmonic oscillator wells with potential
V (x) = mω2(x − xm)2/2, where {xm} are the positions of the
central point of each potential well of the lattice. By tak-
ing each well in its ground state, the spectrum then consists
of Dx degenerate levels at energy μm = h̄ω/2 and eigen-
functions given by the Wannier localized functions fm(x) =
Am e−(x−xm )2/2ξ 2

/
√

ξπ1/4 (m = 1, . . . , Dx), where {Am} are

proper normalization factors. Out of these Dx states, L =
Dx − 2 states describe Gaussian functions localized at the
bulk sites, and the other two are Gaussians localized at the two
boundary sites. Of course, for infinitely distant wells, there is
no distinction between bulk and boundaries.

Let us now consider xmin/ξ 
 1 but finite. Here is where
bulk and boundary states become clearly distinguished: Re-
ducing the distance between the lattice minima starting from
infinity will reduce the potential barriers separating nearest-
neighbor wells in the bulk, causing the localized wave
functions to have an exponentially vanishing but nonzero
overlap. At low energy, since the two boundary sites keep
the high barrier potentials, the Wannier functions prefer
to occupy the bulk sites, while leaving the boundary sites
empty. Let us now focus on the L = Dx − 2 bulk states.
In the basis of the Wannier functions { fm(x)}, the effect
of reducing xmin/ξ can be described by starting from the
case of infinitely separated wells, and adding a perturba-
tion δV which couples the localized Gaussian fm(x) only to
its nearest-neighbor Gaussians fm±1(x). As such, the pertur-
bation δV in the basis fm(x) ≡ 〈x| fm〉 has elements given
by δV |m,m′ ≡ 〈 fm|δV | fm′ 〉 = −J0 δm′,m±1, where J0 > 0 quan-
tifies the strength of the nearest-neighbor wave functions’
overlap (i.e., the tight-binding tunneling integral). Now, the
perturbation lifts the degeneracy and spectrum becomes μm �
h̄ω/2 + J0λm, where the corrections {λm} are the eigenvalues
of the matrix δV/J0.

The eigenvalues {λm} can be found by the following ob-
servation. Let us now take m = 1, . . . , L, for some L, and let
us define the matrix �L = −δV/J0 + λ1, where 1 is the L×L
identity matrix. Element-wise, �L| j, j±1 = 1, �L| j, j = λ, and
all other elements are zero. The eigenvalues of −δV/J0 are
the roots of the characteristic polynomial PL(λ) := det(�L ).
By explicit inspection of the matrix �L, it can be shown by in-
duction that the following recursion relation holds: det(�L ) =
λ det(�L−1) − det(�L−2), or in terms of characteristic poly-
nomials

PL(λ) = λ PL−1(λ) − PL−2(λ). (C1)

This relation makes sense for L � 3. For L = 2, one has
P2(λ) = λ2 − 1. By introducing the new variable z = λ/2,
i.e., λ = 2z, one has P2(z) = 4z2 − 1, and the recurrence re-
lation in Eq. (C1) becomes (set L → L + 1)

PL+1(z) = 2z PL(z) − PL−1(z). (C2)

The recurrence relation in Eq. (C2), together with the fact that
P2(z) = 4z2 − 1, is the recurrence relation of the Chebyshev
polynomials of the second kind [30], i.e., PL(z) ≡ UL(z). In
order to find the eigenvalues, i.e., the roots of PL(λ), one
computes the roots of UL(z) by setting z = cos(θ ). By further
using the expression [30]

UL[cos(θ )] = sin[(L + 1)θ ]

sin(θ )
, (C3)

one has UL[cos(θ )] = 0 for θ ≡ θm = πm/(L + 1), but since
θ = arccos(z), one has zm = cos[πm/(L + 1)]. Since by def-
inition z ∈ [−1 : 1], one has θ ∈ [0 : π ]. Since λ = 2z, the
roots of PL(λ), ordered such that λm � λm+1, can be written
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FIG. 6. Wave functions {ψ (0)
m (x)} for the first Dx = 6 levels in Fig. 3 with the came color coding. The first four panels refer to the four bulk

states for m = 1, 2, 3, 4, and the last two are the two boundary states for m = 5, 6. The bulk states are a sequence of peaks whose amplitude
is modulated by the stationary wave in Eq. (C7). The two vertical dashed gray lines mark the position of the two boundary potential minima
x = ±xB [see Eq. (6)]. The quasidegenerate boundary states are instead a symmetric and antisymmetric combination of localized peaks at the
two boundary sites. The fact that, in the bulk states, the amplitude of the boundary peaks is nonzero, as well as the fact that the boundary states
extend a bit also in the bulk, is ascribed to the fact that, with xmin = 6, the system is not in the strict deep-lattice limit.

as

λm = −2 cos
( πm

L + 1

)
(m = 1, . . . , L). (C4)

The eigenvectors {�vm} of −δV/J0, whose entries vm, j deter-
mine the height of the jth wave function peak in the mth
energy state, are found as customary from the secular equa-
tion (−δV/J0)�vm = λm�vm, with λm as in Eq. (C4). Here, we
use the following convention on the values of j. Due to the
presence of the high potential barriers at the lattice bound-
aries, the effective deep lattice has L = Dx − 2 sites. In the
eigenvalue problem, the values of j = 1, . . . L include only
the Dx − 2 sites of the effective lattice (i.e., excluding the
boundaries), where the height of the jth wave function peak
vm, j can be nonzero. We will then identify the two boundary
sites by extending the domain to j = 0 and j = L + 1, where
by convention vm, j is identically zero on these two sites.

The spatial j dependence of {�vm} can be found
in the following way. Let us define vm,k = ∑

j eik jvm, j ;
then one has from the element-wise secular equation,
which is −vm, j−1 − vm, j+1 − λmvm, j = 0, the expression∑

k[2 cos(k) + λm]e−ik jvm,k = 0. Because of the presence
of the oscillating terms e−ik j , this relation is satisfied if
[2 cos(k) + λm]vm,k = 0, for each k. This means that one has
vm,k 	= 0 when 2 cos(k) = −λm, i.e., by using Eq. (C4), when
k = ±k0 = ±πm/(L + 1). Otherwise, when 2 cos(k) 	= −λm,
one has vm,k = 0. Going back to real space j, the j depen-
dence of �vm is

vm, j = vm,k0 eiπm j/(L+1) + vm,−k0 e−iπm j/(L+1), (C5)

for j, m = 1, . . . , L. As said before, we require that vm, j is
identically zero on the extended domain for j = 0 and j =
L + 1. In Eq. (C5), this boundary condition yields vm,k0 =
−vm,−k0 , which can be taken as vm,k0 = −iv0/2 to have a real

vm, j , and then we can write Eq. (C5) as a stationary wave

vm, j = v0 sin
( πm j

L + 1

)
. (C6)

The constant v0 in Eq. (C6) is chosen to ensure the unit
normalization of the vector �vm. In the case of a symmetric
potential V (x) = V (−x), as in the case of Eq. (6), Eq. (C6) is
modified by shifting j → j − (L + 1)/2, i.e.,

vm, j =

⎧⎪⎨
⎪⎩

v0 cos
(πmxj

L + 1

)
, (m odd),

v0 sin
(πmxj

L + 1

)
, (m even),

(C7)

where x j = j − (L + 1)/2 with j = 1, . . . , L is the position
along the x axis of the jth potential minimum (in units of xmin).

The first Dx eigenvalues {μm} and real wave functions
{ψm(x)} for the case of the lattice potential discussed in
Sec. III (Dx = 6 and xmin = 6) are shown in Figs. 3 and 6, re-
spectively. The spectrum consists of Dx − 2 bulk energy levels
as μm � μ0 + J0λm, where μ0 and J0 quantify the zero point
and bandwidth, and λm is as in Eq. (C4), with L = Dx − 2.
Small deviations from the predicted behavior are due to the
fact that, with xmin = 6, the system is not in the deep-lattice
limit. Also, the fact that μ0 	= h̄ω/2 is a consequence of the
fact that the lattice wells are not perfectly harmonic (they are
approximately only at their center). Above the tight-binding
band of bulk states, the two quasidegenerate boundary states
(red points) are found. These two states form a “boundary
double well”, where the lowest boundary state is a symmetric
combination of two localized functions at the boundary sites,
whereas the highest boundary state is instead an antisymmet-
ric combination (see also Fig. 6).

For completeness, we mention that, for m > Dx, the higher
bands are encountered. The wave functions in these bands
are characterized by an increasing number of nodes appearing
at the minima of the potential wells; i.e., some of the Wan-
nier localized functions are not Gaussians but rather higher
Hermite-Gauss modes.
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