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Superfluidity of a laser-stirred Bose-Einstein condensate
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We study superfluidity of a cigar-shaped Bose-Einstein condensate by stirring it with a Gaussian potential
oscillating back and forth along the axial dimension of the condensate, motivated by experiments of Raman
et al. [Phys. Rev. Lett. 83, 2502 (1999)]. Using classical-field simulations and perturbation theory, we examine
the induced heating rate, based on the total energy of the system, as a function of the stirring velocity v. We
identify the onset of dissipation by a sharply increasing heating rate above a velocity vc, which we define as
the critical velocity. We show that vc is influenced by the oscillating motion, the strength of the stirrer, the
temperature, and the inhomogeneous density of the cloud. This results in a vanishing vc for the parameters
similar to the experiments, which is inconsistent with the measurement of nonzero vc. However, if the heating
rate is based on the thermal fraction after a 100 ms equilibration time, our simulation recovers the experimental
observations. We demonstrate that this discrepancy is due to the slow relaxation of the stirred cloud and dipole
mode excitation of the cloud.
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I. INTRODUCTION

An intriguing phenomenon of quantum liquids is the emer-
gence of superfluidity, which was first observed in liquid
helium [1,2]. This superfluid behavior can be tested by drag-
ging an object through a stationary fluid and examining the
dissipationless flow around this object. For an object moving
at a velocity v, dissipationless flow occurs below a certain
critical velocity vc. Above this velocity, dissipation occurs via
the creation of excitations such as phonons and vortices. An
estimate of the critical velocity is given by the Landau crite-
rion vc = min(Ek/h̄k), where Ek is the energy of an excitation
with momentum h̄k [3]. This predicts the critical velocity to
be the roton velocity for liquid 4He and the pair-breaking
velocity for liquid 3He, consistent with the measurements in
Refs. [4–6].

With the advent of Bose-Einstein condensates (BECs) of
dilute gases, the study of superfluidity was expanded to a wide
range of quantum liquids. A pioneering technique of local
perturbation, namely, laser stirring, was employed for probing
superfluidity in these systems. This includes the measure-
ments of superfluidity in cigar-shaped condensates [7–10],
two-dimensional condensates [11], and three-dimensional
condensates [12]. Given this broad variety of systems, differ-
ent origins of the onset of dissipation have been identified,
such as vortex-antivortex creation [13] for the experiment
in Ref. [11] and phonon creation [14] for the experiment
in Ref. [12]. Vortex shedding and quantized vortices were
observed in Refs. [15–21]. Other stirring experiments include
those in Refs. [22–26]. Laser stirring is also employed to
generate controlled vortex distributions [27–29]. A number of
theoretical studies were reported in Refs. [30–40].

In Ref. [7] a cigar-shaped cloud of 23Na atoms was stirred
with a blue-detuned laser beam oscillating back and forth
in the axial direction. Using a strong beam, the superfluid
response was measured based on the thermal fraction deter-
mined as a function of the stirring velocity, which is varied
by the stirring displacement at a fixed stirring frequency. The
resulting critical velocity was vc/vB = 0.25, where vB is the
Bogoliubov phonon velocity. In follow-up experiments with
improved calorimetry [8], the critical velocity was determined
using low stirring velocities and for a colder system, yielding
vc/vB = 0.07 ± 0.01.

In this paper we study the experiments of Ref. [7] from
a theoretical perspective. The stirring process is described
in Fig. 1(a), where the stirring velocity is determined by
v = 4 f d , with f the frequency and d the displacement. This
back-and-forth oscillating motion is qualitatively distinct from
a circular stirring motion [14] and dramatically affects the
onset of dissipation, as we describe in this paper. The con-
densate dynamics is simulated with a classical-field method,
using parameters that are comparable to those used in experi-
ments [7]. The equilibrium cloud is shown in Fig. 1(b). Using
simulation and analytical results for a homogeneous system,
we provide insight into the reduction of the critical velocity
due to the oscillating motion, the temperature, and the strong
stirring potential. We derive the heating rate perturbatively in
the stirring term, which shows excellent agreement with the
simulations and describes the oscillating-motion broadening
analytically. Furthermore, we confirm the measurements of
nonzero critical velocity [7] if the superfluid response is based
on the thermal fraction of the nonequilibrated cloud. We ex-
pand on this by analyzing the slow relaxation of the stirred
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FIG. 1. (a) Sketch of the stirring process. A blue-detuned laser
beam (blue) stirs a cigar-shaped cloud (red). The stirring velocity
v = 4 f d is determined by the oscillation frequency f and the dis-
placement d in the x direction. (b) Simulated density cloud with
the density at the trap center n0 = 10.7 μm−3 and the temperature
T/Tc = 0.75. The dimensionless heating rate R is determined as a
function of v for fixed (c) d = 20 μm and (d) f = 56 Hz. The
beam strength is V0/μ = 2, where μ is the mean-field energy at the
trap center. The dynamics of the central plane density are shown
for v = 0.8 mm/s and stirring times of (e) 14.5, (g) 36.2, and
(i) 57.9 ms corresponding to (c), while the results in (f), (h), and
(j) correspond to (d). The critical velocity vc, determined via fitting
(solid lines), is 0.46 ± 0.01 mm/s and 0 for the heating rate in (c) and
(d), respectively.

cloud, which occurs on a timescale of 5 s much longer than
the used 0.1 s relaxation time in the experiments. Finally, we
discuss the dynamical regimes of phonon- and vortex-induced
dissipation and show that the latter occurs for strong stirring
potentials and large displacements of the stirrer.

In Figs. 1(c)–1(j) we present an example for the stirring
process and the analysis of its heating rate. Given that the ve-
locity is determined via v = 4 f d , its magnitude can be tuned
either by varying f and keeping d fixed or by varying d and
keeping f fixed. The heating rate of the first scenario is shown
in Fig. 1(c) and snapshots of the density distribution are shown
in Figs. 1(e), 1(g), and 1(i). The heating rate of the second
scenario and snapshots of the density distribution are shown
in Figs. 1(d), 1(f), 1(h), and 1(j). We note that the second
scenario does not give a nonzero critical velocity, determined
via fitting, whereas the first scenario does. Furthermore, we
note the strong excitation of the atom cloud that is visible
in the snapshots, which only displays a slow relaxation to
a thermalized state, as we show below. These two examples
exemplify key ingredients of our subsequent discussion.

This paper is organized as follows. In Sec. II we describe
our simulation method. In Sec. III we derive the analytical

heating rate and show its comparison to the simulations. In
Sec. IV we detail the mechanism of vortex-induced dissipa-
tion for strong stirrers. In Sec. V we discuss the reduction
of the onset of dissipation due to temperature. In Sec. VI
we show the simulations for trapped clouds. In Sec. VII we
describe the slow relaxation of the stirred trapped cloud. We
summarize in Sec. VIII.

II. SIMULATION METHOD

Motivated by the experiments of Ref. [7], we study super-
fluidity of a cigar-shaped cloud of 23Na atoms confined in
a three-dimensional harmonic trap. We simulate the stirring
dynamics using the classical-field method of Ref. [14], which
builds on semiclassical-field methods such as the truncated
Wigner approximation [41,42], as we describe below. The
unperturbed system is described by the Hamiltonian

Ĥ0 =
∫

dr
[

h̄2

2m
∇ψ̂†(r) · ∇ψ̂ (r) + V (r)ψ̂†(r)ψ̂ (r)

+ g

2
ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

]
, (1)

where ψ̂ (ψ̂†) is the bosonic annihilation (creation) operator.
The interaction constant g = 4πash̄

2/m is determined by the
s-wave scattering length as and the atom mass m. The ex-
ternal potential represents a harmonic trap V (r) = m[ω2

x x2 +
ω2

⊥(y2 + z2)]/2, where ωx and ω⊥ are the trap frequencies in
the axial and the radial direction, respectively. To describe
laser stirring we add a time-dependent term

Ĥs(t ) =
∫

dr V (r, t )n̂(r), (2)

where n̂(r) is the density operator describing the density at the
location r = (x, y, z) and V (r, t ) is the Gaussian potential

V (r, t ) = V0 exp

(
− [x − x(t )]2 + (y − y0)2

2σ 2

)
, (3)

which is constant in the z direction. Here V0 is the strength and
σ is the width. This potential is centered around x(t ) and y0.
We set y0 to be at the cloud center and vary x(t ) periodically
at a constant velocity v between the points x = −d and x = d
as described in Fig. 1(a). A constant velocity means that the
velocity flips sign at the turning points instantaneously. d is
chosen such that the distance between the turning points is
2d . The potential travels a distance 4d during one oscillation
period that is given by T = 4d/v. The frequency of the oscil-
lation is f = v/(4d ). The periodic motion x(t ) = x(t + T ) is
described as

x(t ) =
{−d + vt, 0 � t � T/2

3d − vt, T/2 < t < T,
(4)

which is characterized by two parameters v and d .
For the numerical simulations we discretize space on a

lattice of size Nx × Ny × Nz and a discretization length l =
1 μm. We choose l such that it is smaller than the healing
length ξ = h̄/

√
2mgn and the de Broglie wavelength λ =√

2π h̄2/(mkBT ) [43]. Here n is the density, T the temper-
ature, and kB the Boltzmann constant. In our classical-field
simulation we replace the operators ψ̂ in Eq. (1) and in the
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FIG. 2. Simulated heating rate R (dots) for a homogeneous condensate at T/Tc = 0.05, which is induced by stirring the condensate with
a weak stirrer oscillating back and forth in the x direction. R is plotted as a function of the stirring velocity v = 4 f d for (a) d = 20 μm, (b)
d = 10 μm, and (c) d = 2.5 μm. The solid lines are the Bogoliubov estimates of Eq. (12). The dashed lines correspond to Eq. (16), where the
motion is approximated by a cosine stirring motion. The vertical dashed lines denote the Bogoliubov phonon velocity vB = 1.62 mm/s.

equations of motion by complex numbers ψ . We sample the
initial states in a grand canonical ensemble of temperature
T and chemical potential μ via a classical Metropolis al-
gorithm. For the system parameters we choose (ωx, ω⊥) =
2π × (9, 32.5) Hz, the total number of atoms N ≈ 1.48 ×
105, and T/Tc = 0.75. The critical temperature is estimated by
Tc ≈ 0.94h̄ω̄N1/3/kB, where ω̄ = (ωxω

2
⊥)1/3 is the geometric

mean of the trap frequencies [3]. This results in the trap central
density n0 = 10.7 μm−3 and Thomas-Fermi diameters of 84.8
and 23.5 μm in the axial and radial directions, respectively.
Since the number of atoms is one order of magnitude smaller
than in the experiments, our system represents a scaled down
version of the experiment. For comparison, we also consider
homogeneous clouds of the average density n = 10 μm−3 and
various T/Tc. Here Tc is estimated as Tc ≈ 3.31h̄2n2/3/mkB

[3]. We employ a lattice of 150 × 50 × 50 (128 × 128 × 8)
sites for simulations of the trapped (homogeneous) cloud.

Specifically, we implement the stirring protocol as follows.
We choose a set of stirring parameters V0, σ , d , and f . For
homogeneous (trap) simulations we use 2σ = 2 μm (2 and
3.25 μm) and V0 in the range V0/μ = 0.08–5 (1–6.36). The
mean-field energy μ = gn is determined using the average
(maximum) density of the homogeneous (trapped) system.
The stirring protocol is the following. We turn on V0 linearly
over 4 ms, stir the cloud for 72 ms, and then turn off V0 linearly
again. We repeat this for a desired set of stirring parameters
and the ensemble. We calculate an ensemble average of the
energy E = 〈H0〉 using Eq. (1), with the operators ψ̂ replaced
by complex numbers ψ . During stirring, E increases linearly
with time and from its slope we determine the heating rate
dE/dt , as described in detail in Appendix A 1. The dimen-
sionless heating rate is obtained by R = h̄(dE/dt )/(NcylV 2

0 ),
where Ncyl = πNσ 2/A is the number of atoms in a cylinder
of length Lz and radius σ , with A the system area, which
is determined by A = LxLy and A = πRxRy for the homoge-
neous and trapped systems, respectively. Here Lx and Ly are
the dimensions of the homogeneous cloud, and Rx and Ry are
the Thomas-Fermi radii of the trapped condensate in the x
and y directions, respectively. We show R for various system
and stirring parameters below, which is typically averaged

using the initial ensemble of 100 samples. In Appendix A 2
we show the determined value of the critical velocity for a
system with varying discretization lengths, which confirms
that the simulation results are not affected by our choice of
the discretization length.

III. HOMOGENEOUS BEC AT LOW TEMPERATURE

To understand and isolate various features of the stirring
process we first consider a homogeneous condensate at a low
temperature of T/Tc = 0.05. We stir this system with a weak
stirrer following the protocol described in Sec. II. We use
V0/μ = 0.087 and 2σ = 2.0 μm. We determine the heating
rate R for various values of v = 4 f d by varying f and keeping
d constant. In Fig. 2 we show R(v) for fixed d = 20, 10, and
2.5 μm. We find two regimes in the heating rate. For v much
lower than the Bogoliubov estimate of the phonon velocity
vB = √

gn/m = 1.62 mm/s, the stirrer produces almost no
heating of the system, showcasing the superfluid behavior of
the condensate. For high v close to vB, excitations are created
in the system, leading to a sharp increase of the heating rate.
To characterize this transition between the two regimes, we
determine the onset of dissipation by a critical velocity vc

using the fitting function

(
dE

dt

)
fit

= P

(
v2 − v2

c

)2

v
+ B, (5)

with P, B, and vc the free parameters [44]. For R(v) in Fig. 2,
this fitting function yields vc = 1.26, 1.03, and 0.37 mm/s for
d = 20, 10, and 2.5 μm, respectively. The magnitude of vc

is below vB and decreases with decreasing d . We explain this
below analytically.

We derive an analytical expression for the heating rate
by considering the stirring term as a perturbative term [14].
We use Bogoliubov theory at zero temperature and solve the
equations of motion. The total Hamiltonian of the system
is Ĥ (t ) = Ĥ0 + Ĥs(t ). For the unperturbed uniform sys-
tem, the Bogoliubov approximation gives the diagonalized
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Hamiltonian

Ĥ0 =
∑

k

h̄ωkb̂†
kb̂k, (6)

where b̂k (b̂†
k) is the Bogoliubov annihilation (creation) opera-

tor and h̄ωk =
√

εk (εk + 2mv2
B) is the Bogoliubov dispersion,

with εk = h̄2k2/(2m) the free-particle dispersion. In momen-
tum space, the stirring term becomes

Ĥs(t ) =
∑

k

Vk(t )n̂k, (7)

where Vk(t ) and n̂k are the Fourier transforms of the stirring
potential and the density operator, respectively. To calcu-
late Vk(t ) we expand the periodic motion in Eq. (4) into a
Fourier series of the form x(t ) = ∑N

λ=0 aλ cos(ωλt ), with aλ

the amplitudes and ωλ the frequencies. Within the Bogoliubov
approximation we use n̂k ≈ √

N0(uk + vk )(b̂†
−k + b̂k ), where

N0 is the number of condensate atoms and uk and vk are the
Bogoliubov parameters. This results in

Ĥs(t ) =
∑

k

Vk(t )
√

N0(uk + vk )(b̂†
−k + b̂k ), (8)

with

Vk(t ) = Vk

N∏
λ=0

exp[ikxaλ cos(ωλt )]. (9)

Here Vk = (2πV0σ
2/A)δkz exp(−k2σ 2/2) exp(ikyy0) is the

time-independent term. We solve the dynamical evolution cre-
ated by Eqs. (6) and (8) using the ansatz

b̂k(t ) = e−iωkt b̂k + Ak(t ), (10)

where Ak(t ) is given by (see Appendix C)

Ak(t ) = −2i

h̄
Vk

√
N0(uk + vk )

∞∑
ν0,...,νN =−∞

N∏
λ=0

[
iνλJνλ

(kxaλ)
]

× e−i(ωk−ωeff )t/2 sin[(ωk − ωeff )t/2]

ωk − ωeff
. (11)

Here ωeff is defined as ωeff = ∑N
λ=0 νλωλ and Jν (x) is the

Bessel function of the first kind of order ν. With Eq. (10)
we determine the expectation value of the energy 〈E (t )〉 =∑

k h̄ωk 〈b̂†
k(t )b̂k(t )〉. This results in the energy change

〈�E (t )〉 = ∑
k h̄ωk|Ak(t )|2. The time derivative of the energy

change yields the heating rate (see Appendix C)

dE

dt
= 2π

h̄

∑
k

ωk (uk + vk )2N0|Vk|2

×
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
B(kx )δ(ωk − ωeff ), (12)

where B(kx ) is given in Appendix C and includes a prod-
uct of various Bessel functions of the first kind of order ν.
Equation (12) cannot be reduced analytically and thus we

solve it numerically following the method described in Ap-
pendix C. To gain insight into the result in Eq. (12), we take
the first-order term in the Fourier expansion x(t ) = a cos(ωt ),
which is a cosine motion instead of a linear oscillating motion
originally considered in Eq. (4). This results in the heating rate
(Appendix C)

dE

dt
= 2π

h̄

∑
k,ν

ωk (uk + vk )2N0|Vk|2J2
ν (akx )δ(ωk − νω).

(13)

This expression is similar to the heating rate for a circular
stirring motion in Ref. [14]. Here a = 8d/π2 represents the
one-dimensional equivalent of a radius. To solve Eq. (13) we
replace the k sum by an integral and obtain

R = 2
∞∑

ν=−∞
k̃2

c e−k̃2
c

√
k̃4

c + 4ṽ2
Bk̃2

c

k̃2
c + 2ṽ2

B

∫ 1

0
dκ

J2
ν (8κ k̃cd̃/π2)√

1 − κ2
,

(14)
with

k̃c = (−2ṽ2
B +

√
4ṽ4

B + π2ν2ṽ2ṽ2
B/d̃2

)1/2
. (15)

Here R = h̄(dE/dt )/(NcylV 2
0 ) is the dimensionless heating

rate and ṽ = v/vB, ṽB = vBmσ/h̄, d̃ = d/σ , and k̃ = kσ are
dimensionless parameters. Equation (14) can be solved, giv-
ing

R = 2
∞∑

ν=1

k̃2
c e−k̃2

c

√
k̃4

c + 4ṽ2
Bk̃2

c

k̃2
c + 2ṽ2

B

(8k̃cd̃/π2)2ν2

(
ν + 1

2

)

× F

(
ν+1

2
, ν+1

2
; ν+1, ν + 1, 2ν + 1; −(8k̃cd̃/π2)2

)
,

(16)

where F (�, �; m, m, n; x) is the regularized generalized hyper-
geometric function. We calculate the estimates of Eqs. (12)
and (16) as a function of v = 4 f d for the same stirring param-
eters as in the simulations and show these results in Fig. 2. The
results of the estimates and the simulation are consistent for
d = 2.5 μm and deviate for large d . The estimate of Eq. (12)
shows a maximum at a higher v than in the simulation. The
low-v regime of the heating rate is well captured by Eq. (12)
for all d , providing an accurate estimate of the onset of dis-
sipation, whereas the estimate of Eq. (16) captures this low-v
regime only for small d .

In Fig. 3(a) we compare the simulations of linear oscillat-
ing motion with the simulation of a linear motion. For a linear
stirring motion, we choose x(t ) = vt moving at a constant
velocity v in the +x direction. We determine R(v) and show
the results in Fig. 3(a). This heating rate gives the onset of
dissipation close to vB. It agrees with the linear oscillating mo-
tion of d = 20 μm for high v and deviates for v near vB. This
deviation is due to the difference between a linear oscillating
motion and a linear motion, which is more pronounced for
small d . For a large d → ∞ our linear oscillating motion ap-
proaches a linear motion and we recover the Landau criterion
of superfluidity, where vc is approximately equal to vB and
dissipation above vc occurs due to the creation of phonons.
The oscillating motion results in an additional broadening of

043317-4



SUPERFLUIDITY OF A LASER-STIRRED BOSE- … PHYSICAL REVIEW A 105, 043317 (2022)

FIG. 3. (a) Simulated heating rate R(v) for d = 20, 5, and
2.5 μm and their comparison with the heating rate of a linear stirring
motion (pluses). (b) Critical velocity vc determined from the simu-
lations (circles) and the Bogoliubov estimate (solid line) for various
values of d .

the heating rate curve, which is responsible for an onset of
dissipation at lower velocity below vB. To quantify this re-
duction we determine vc via fitting with the fitting function
in Eq. (5) and present these results in Fig. 3(b). Here vc de-
creases with decreasing d . We note that this reduction of vc is
similar to the reduction found for a circular stirring motion in
Ref. [14], where vc was lower for a smaller stirring radius. We
compare vc with the estimate of vc determined using Eqs. (12)
and (5). This estimate provides excellent agreement with the
simulated vc. Further, vc appears to vanish for d → 0. The

dependence of vc on d is approximately linear for small d and
sublinear for large d while approaching vc of linear motion.

IV. STRONG STIRRING POTENTIAL

We now proceed to examine the influence of a strong
stirring potential. We use the same system parameters as in
Sec. III and determine the simulated heating rate R(v) for
various V0 and d . In Fig. 4(a) we show R(v) for d = 20 μm
and V0/μ = 0.087, 0.5, 1, and 2. Compared to a weak stir-
rer, the heating rate shows qualitative changes for a strong
stirrer. The heating rate shows a steep increase at the onset
of dissipation and then increases slowly with increasing v

around vB. R(v) decreases at high v for all V0. For increasing
V0, the onset and the maximum of the heating rate shift to
a lower and a higher v, respectively. We show below that
this steep onset of heating is associated with the formation of
vortex-antivortex pairs. We now examine how this steep onset
of heating is modified as d is reduced. In Fig. 4(b) we show
R(v) for V0/μ = 2 and d = 20, 15, 10, and 5 μm, for which
the values of v are chosen below vB. The steep onset is clearly
present for d = 20 μm as in Fig. 4(a), which is then washed
out for smaller d due to increased broadening of the oscillating
motion. There is no steep onset visible at all for d = 5 μm.
This implies suppressed vortex-induced dissipation for small
displacements. In Fig. 4(c) we show the results of vc as a
function of d for various V0. vc decreases with decreasing
d for all V0, manifesting the reduction of oscillating motion
present at all V0. For high V0 and large d , the reduction of vc

with respect to a weak stirrer is mainly due to the creation of
vortex pairs, which we demonstrate below. For high V0 and
small d , it is due to both vortex creation and the broadening
induced by the oscillating, and therefore accelerated, motion.

To investigate vortex-induced dissipation we calculate the
time evolution of the phase φ(x, y) of a single plane and
a single trajectory during stirring. For vortices we calculate
the phase winding around the lattice plaquette of size l ×
l using

∑
� δφ(x, y) = δxφ(x, y) + δyφ(x + l, y) + δxφ(x +

l, y + l ) + δyφ(x, y + l ), where the phase difference between
sites is taken to be δφx,y ∈ (−π, π ]. A phase winding of +2π

and −2π indicates a vortex and an antivortex, respectively.

FIG. 4. (a) Plot of R(v) for d = 20 μm and V0/μ = 0.087, 0.5, 1, and 2. The vertical dashed line denotes the Bogoliubov velocity vB.
(b) R(v) for V0/μ = 2 and different values of d . (c) vc as a function of d for the same V0/μ as in (a), where the dashed lines are a guide to the
eye.
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Vortices + Phonons

Phonons
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V0/µ
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m
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FIG. 5. Dissipation regimes as a function of V0 and d for stirring
velocity v/vB = 0.85 and T/Tc = 0.05. The blue and the red shaded
area denote the phonon and the vortex regime, respectively.

We count the total number of vortices and average it over the
z direction and the ensemble. As an example, we choose a stir-
ring velocity v/vB = 0.85 and analyze the time evolution of
the vortex number for various V0 and d . If we find on average
at least one vortex pair in the time evolution during stirring,
we refer to this as the vortex regime. In Fig. 5 we show the
dissipation regimes for vortex creation as a function of V0 and
d . For large d the onset of vortices sets in for V0/μ � 1. This
vortex region shrinks as d is reduced. For small d < 4 μm the
time evolution shows no vortex pair creation for all V0. This
explains why a steep onset of heating is present at d = 20,
15, and 10 μm, and absent at d = 5 μm, for V0/μ = 2 in
Fig. 4(b).

V. HIGH TEMPERATURE

Next we examine the influence of temperature. For all
simulations we use the same density n as above and V0/μ =
0.087. In Fig. 6(a) we show R(v) for d = 20 μm and T/Tc =
0.05, 0.5, and 0.75. The broadening and the height of the
heating rate curve increases and decreases with increasing
T/Tc, respectively. This results in an onset of dissipation at
low velocity for high temperature. In Fig. 6(b) we show vc

as a function of d for the same T/Tc as in Fig. 6(a). vc

decreases with both increasing T/Tc and decreasing d . While
the temperature reduction is more pronounced for large d than
for small d , the dependence on d is similar at both low and
high temperature. This temperature reduction of vc is due to
the thermal broadening of the phonon modes and the reduction
of the phonon velocity itself at nonzero temperature.

VI. TRAPPED CONDENSATE

Finally, we consider a trapped cloud as in the experiments
[7]. We simulate a cigar-shaped condensate having the central
density n0 = 10.7 μm−3 and T/Tc = 0.75. The critical tem-
perature Tc is the estimate of a noninteracting trapped system.
In all simulations we choose d � 25 μm for stirring the con-
densate region of the cloud using the same stirring process as
above. While the cloud size and the temperature are compara-
ble to the experiments, n0 is smaller by a factor of 10 than in
the experiments to enable our numerical simulations. We first
isolate the effect of oscillating motion and strength of the stir-
rer in the trapped cloud. We use 2σ = 2.0 μm and calculate

FIG. 6. (a) Plot of R(v) for d = 20 μm and T/Tc = 0.05, 0.5,
and 0.75. (b) Plot of vc as a function of d for various T/Tc as in (a).

the heating rate R(v) for various d and V0/μ. The mean-field
energy μ = gn0 is determined using n0. In Fig. 7(a) we show
R(v) for d = 20 μm and V0/μ = 1, 2, and 5. This heating
rate shows a behavior that is similar to the case of a homoge-
neous system at low temperature in Fig. 3(a). Here the strong
stirrer response is broadened by the thermal broadening of the
phonon modes and the inhomogeneous density of the cloud.
The onset of heating has contributions of vortex excitations
as we demonstrate below. This vortex-induced dissipation is
suppressed for small d due to increased broadening of the
oscillation motion as in Fig. 7(b). In Fig. 7(c) we show vc

and its dependence on V0 and d . In this strong stirrer regime
V0/μ � 1, vc decreases with both increasing V0 and decreas-
ing d . This is similar to the case of a homogeneous system
and low temperature. For large d the reduction in vc is due to
the creation of vortices that occurs at a lower velocity. This
vortex creation is suppressed for small d due to increased
broadening of the oscillating motion. We compare the results
of vc with the Bogoliubov estimate of the sound velocity in
a cigar-shaped cloud. A sound wave in the axial direction
propagates with velocity vB = √

gneff/m near the trap center.
The effective density neff = n0/2 is determined by averaging
the Thomas-Fermi profile in the radial direction [45]. This re-
sults in vB,0 = 1.18 mm/s at the trap center and vB,d=20 μm =
1.0 mm/s at d = 20 μm. The values of vc for d = 20 μm are
in the range 0.45–0.55 mm/s, which are approximately half
of vB,d=20 μm. This reduction of vc is due to increased thermal
fluctuations and the creation of vortices as we show below.

To understand the role of vortices in the onset of heating we
analyze the time evolution of the phase φ(x, y) of the central
plane of a single trajectory belonging to the same system
as above. We choose the stirring velocity v = 1.1 mm/s,
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FIG. 7. (a) Simulated heating rate R(v) of the trapped cloud for
d = 20 μm and V0/μ = 1, 2, and 5. (b) Plot of R(v) for d = 5 μm
and the same V0/μ as in (a). (c) Plot of vc as a function of d for the
same V0/μ as in (a). The vertical dashed line in (a) and (b) denotes
the Bogoliubov velocity vB,0 (see the text for details).

V0/μ = 2, and the same 2σ as above. In Figs. 8(a)–8(d) we
show φ(x, y) for d = 20 μm at the stirring time t of 14.5,
36.2, 57.9, and 72.4 ms. For t = 14.5 ms the phase is weakly
fluctuating in the condensate cloud, indicating global phase
coherence of the system. The stirring motion induces fluc-
tuations of the phase of the system. For long stirring times
these phase fluctuations are increased and result in the creation
of vortex pairs. This is confirmed by the calculation of the
phase winding around each plaquette, following the method
described in Sec. IV. The resulting phase windings are shown
in Fig. 8. Since the phase fluctuates strongly in the thermal
cloud we observe a vortex plasma outside the Thomas-Fermi
region. For t = 14.5 ms the stirring process creates no vortex
pairs in the condensate region. For t = 36.2 ms and longer
times, vortex pairs are nucleated from the regions of low
density near the stirrer. In addition to this vortex shedding,
vortex pairs in the thermal cloud travel to low-density regions

of the condensate cloud. In Figs. 8(e)–8(h) we show the time
evolution of the phase and vortices for d = 5 μm. The vortex
shedding mechanism is suppressed as no vortex creation is ob-
served near the stirrer. Vortex pairs in the thermal cloud travel
to the condensate, which is similar to the case at d = 20 μm.

To compare the simulations with the experiments [7], we
follow the experimental method of stirring, which includes
varying d and keeping f fixed for determining the stirring
velocity v = 4 f d . This differs from our method employed
above, where we keep d fixed and vary f to determine
v. We choose V0/μ = 6.36 and 2σ = 3.25 μm, which are
comparable to the experiments. In Fig. 9(a) we show R as
a function of d for f = 56, 83, and 167 Hz. R(d ) shows
a frequency-dependent behavior as expected. We show this
result as a function of v = 4 f d in Fig. 9(b). The different
frequency results approximately collapse at low velocities,
while they differ at intermediate and high velocities. R(v) is
not suppressed at low velocities and increases continuously
with increasing v. This results in a vanishing vc = 0 for the
results in Fig. 9(b). The reason for this vanishing vc is the
broadening induced by the oscillating motion, which results
in a different velocity dependence in Figs. 9(b) and 9(c). The
low-velocity regime v < vB,0 includes stronger contributions
of this broadening for v, or equivalently d , approaching 0.
This vanishing vc for the parameters comparable to those of
the experiment is in disagreement with the measurement of
a nonzero vc [7]. As we show below, a nonzero vc occurs
in a nonequilibrium cloud which is used in the experiments,
providing consistent results with the experiments. To rule out
a strong stirrer effect, we calculate the heating rate for a weak
stirrer of V0/μ = 0.2 and various f . We show these results in
Fig. 9(c). Here R(v) increases continuously with increasing v

for the same f as in Fig. 9(b) and hence the critical velocity
is zero. In this weak stirrer regime we recover the maximum
of the heating rate, which was broadened by strong V0 in
Fig. 9(b). We also show R(v) determined at a lower frequency
of f = 14 Hz and V0/μ = 0.2 in Fig. 9(c). This result shows
suppressed heating at low velocities since the oscillating mo-
tion includes larger d and the resulting broadening is reduced.
This yields a critical velocity of vc = 0.32 mm/s, contrary to
the results of high f in Figs. 9(b) and 9(c).

To understand the observation of a nonzero vc in the ex-
periment, we expand on our analysis for determining vc from
the thermal fraction of the stirred cloud rather than the anal-
ysis based on the total energy E = 〈H0〉, as up to now. The
measured vc is determined by analyzing the thermal fraction
(1 − N0/N) as a function of the stirring velocity v = 4 f d . We
extract the condensate fraction N0/N from the central region
of the in situ density profile after trelax = 100 ms relaxation
time, such as in Fig. 10(b), via fitting it with a Thomas-Fermi
profile. This also enables us to determine the relative temper-
ature T/Tc via T/Tc = (1 − N0/N )1/3 [3]. In Fig. 10(a) we
show the thermal fraction as a function of v for f = 56 Hz and
various relaxation times in the range trelax = 100–5000 ms.
The results show a dependence on the relaxation time, im-
plying that the system is not relaxed at short trelax as in the
experiment. For trelax = 100 ms, the thermal fraction response
is similar to the measurements and yields a critical velocity
of vc = 0.73 ± 0.44 mm/s. The high uncertainty of vc is a
consequence of the nonequilibrium behavior of the stirred
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FIG. 8. Time evolution of the phase φ(x, y) of the central plane of a single trajectory during stirring at v = 1.1 mm/s and the stirring times
t = 14.5, 36.2, 57.9, and 72.4 ms for (a)–(d) d = 20 μm and (e)–(h) d = 5 μm. The circles and the crosses represent vortices and antivortices,
respectively. The black disk indicates the stirrer moving back and forth in the x direction. The color transparency outside the Thomas-Fermi
radius is chosen according to the density of the thermal cloud.

cloud. In Fig. 10(b) we show the density distribution of the
cloud after trelax = 100 ms for v = 0.83 and 3.45 mm/s. Both
low- and high-velocity density profiles are not equilibrated
and differ substantially from a thermalized cloud, due to the
excitations induced by stirring. This is confirmed by the time
evolution of the extracted thermal fraction shown as a function
of trelax in Fig. 10(c). The thermal fraction fluctuates at short
trelax and then slowly relaxes to the equilibrium value for trelax

of about 3–5 s. We elaborate on this in Sec. VII. This slow
relaxation is also reflected in the thermal fraction shown as
a function of v in Fig. 10(a), where the result converges as
trelax approaches 3 and 5 s. In Fig. 10(a) we also show the
thermal fraction obtained from the heating rate based on the
total energy of the system for f = 56 Hz in Fig. 9(b). For this,

we numerically invert the energy change of the temperature
of the equilibrium system (see also Ref. [13]). This result
agrees with the thermal fraction determined after trelax = 3 and
5 s. This confirms that the thermal fraction of the equilibrium
system increases continuously at low stirring velocities and
hence no critical velocity is observed, as in the case of results
in Fig. 9(b).

VII. RELAXATION DYNAMICS

To understand the relaxation dynamics we analyze the time
evolution of the density and the energy of the system after
stirring. We use the same system and stirrer parameters as
above and stir the cloud using v = 3.45 mm/s and f = 56 Hz.

FIG. 9. (a) Plot of R as a function of d for V0/μ = 6.36 and f = 56, 83, and 167 Hz. (b) R(v) determined using v = 4 f d and the results
of (a). (c) R(v) for V0/μ = 0.2 and f = 14, 56, 83, and 167 Hz.
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FIG. 10. (a) Thermal fraction as a function of v for various relaxation times in the range trelax = 100–5000 ms. The black solid line shows
the thermal fraction determined from the heating rate of the system given in Fig. 9(b). (b) Density profile n(x) of the cut in the x direction after
trelax = 100 ms for v = 0.83 and 3.45 mm/s. (c) Time evolution of the thermal fraction as a function of trelax for the same v as in (b).

We calculate the density profile n(x, y) of the central plane
and average it over the ensemble. In Figs. 11(a)–11(d) we
show the time evolution of n(x, y) after stirring for trelax =
100, 500, 1000, and 3000 ms. For trelax = 100 ms the density
distribution shows strong fluctuations that are notably distinct

from a Thomas-Fermi profile, for this choice of the stirring
parameters, which are motivated by the experiments [7]. Since
the stirring potential is large and the stirring velocity is above
the phonon velocity, strong depletion of the condensate region
is observed for trelax = 100 ms. The density distribution shows

c.
m

.

FIG. 11. Recondensation dynamics of the density profile n(x, y) for the relaxation times (a) trelax = 100, (b) trelax = 500, (c) trelax = 1000,
and (d) trelax = 3000 ms. The cloud was stirred using v = 3.45 mm/s and f = 56 Hz. (e) Density cut n(x) in the x direction showing the
thermal wing of the same cloud as in (a)–(d). Also shown is n(x) of a nearly equilibrated system at trelax = 5000 ms. (f)–(i) Time evolution of
the energy difference �E (x, y) = [Etrelax (x, y) − Ef (x, y)]/n0 for the same system as in (a)–(d). Here Etrelax (x, y) is the energy at time trelax and
Ef (x, y) is the final energy of the equilibrated system. (j) Center-of-mass motion xc.m.(t ) of the corresponding system as a function of trelax.
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slow recondensation dynamics and we recover a Thomas-
Fermi distribution for trelax = 500 ms. The density of the
condensate region increases and finally reaches the equilib-
rium value for trelax ∼ 3000 ms. In Fig. 11(e) we show the
thermal wing of the central cut in the x direction of the density
profiles in Figs. 11(a)–11(d). The thermal wing is strongly
fluctuating at short trelax and then reaches the equilibrium
value for trelax ∼ 3 s. We also show the result at trelax = 5 s,
which supports trelax to be about 3–5 s. This slow relaxation is
the origin of the higher thermal fraction than the equilibrium
result in Fig. 10(a).

We now analyze the energy flow dynamics of the stirred
cloud. We calculate the local energy difference per particle,
i.e., �E (x, y) = [Etrelax (x, y) − E f (x, y)]/n0, where Etrelax (x, y)
is the energy at time trelax and E f (x, y) is the final energy of
the equilibrium system. Both Etrelax (x, y) and E f (x, y) are in-
tegrated over the z direction and averaged over the ensemble.
Specifically, E (x, y) is obtained via

E (x, y) = 〈Hkin(x, y)〉 + 〈Hpot (x, y)〉 + 〈Hint (x, y)〉 , (17)

with

〈Hkin(x, y)〉 = −J

2

∑
r′,z

〈ψ∗(r)ψ (r′) + ψ (r)ψ∗(r′)〉, (18)

〈Hpot (x, y)〉 =
∑

z

V (r)〈|ψ (r)|2〉, (19)

〈Hint (x, y)〉 = U

2

∑
z

〈|ψ (r)|4〉, (20)

where r′ represents the neighboring sites of r = (x, y, z),
V (r) is the harmonic trapping potential, and U = g/l3 and
J = h̄2/2ml2 are the Bose-Hubbard parameters, with l the
discretization length. In Figs. 11(f)–11(i) we show �E (x, y)
corresponding to the results presented in Figs. 11(a)–11(d).
The stirred cloud reveals slow energy flow dynamics between
the condensate and the thermal cloud of the system. For
trelax = 100 ms most of the stirring-induced excess energy lies
within the condensate region. The system then slowly relaxes
by transporting this excess energy to the thermal wings of the
cloud and finally achieves equilibration for trelax ∼ 3000 ms.
The energy dynamics also indicates a sloshing motion that is
associated with the dipole mode of the trap, which was excited
by the stirring process even though the stirring frequency was
detuned above the axial trap frequency. To investigate this
dipole motion we calculate the center of mass of the cloud by
xc.m. = ∑Nl

i=1 nixi/
∑Nl

i=1 ni, where Nl is the number of lattice
sites and ni is the density at site i = (xi, yi, zi ). We average
xc.m. over the radial direction and the ensemble. In Fig. 11(j)
we show the time evolution of xc.m.(t ) as a function of trelax.
Here xc.m.(t ) oscillates at the axial trap frequency as expected.
After stirring, xc.m.(t ) shows a fast decay initially and then a
slow relaxation occurring above 5 s. The energy of this dipole
mode Ec.m. = mω2x2

c.m./2 is approximately 0.004 nK, which is
small compared to the energy induced by the stirring process
�E = 23.57 nK. However, for low stirring velocities this
energy becomes comparable to the stirring-induced energy
and the relaxation of this dipole mode essentially governs the
relaxation dynamics of the system. This is responsible for the

fluctuations of the thermal fraction at low stirring velocities in
Fig. 10(a).

VIII. CONCLUSION

We have determined the superfluid behavior of a cigar-
shaped condensate by stirring it with a repulsive Gaussian
potential oscillating back and forth in the axial direction.
Using both classical-field simulations and perturbation theory,
we have analyzed the induced heating rate, based on the total
energy of the system, as a function of the stirring velocity
v = 4 f d , where f is the frequency and d is the displace-
ment. As the key result, we have shown that the onset of
dissipation, identified via a critical velocity vc, is influenced
by the oscillating motion, the strength of the potential, the
temperature, and the inhomogeneous density of the cloud. The
range of these features that we studied includes the regime
of large stirring potential and high temperature, which are
similar to the experimental parameters of Ref. [7]. For this
regime we found a vanishing critical velocity, if the heating
rate was based on the total energy. In contrast to this result, we
found a nonzero critical velocity if the heating rate was based
on the thermal fraction of the cloud after 100 ms relaxation,
which is consistent with the experimental findings. This dis-
crepancy derives from the slow relaxation of the cloud, which
is significantly out of equilibrium at 100 ms. We found that
the relaxation occurs on a timescale of 5 s. Furthermore, we
have mapped out the regimes of vortex- and phonon-induced
dissipation and have identified a long-lived dipole oscillation
contributing to the slow relaxation of the cloud.

The central points of our study are system features and
phenomena in cold-atom clouds that apply to any study of su-
perfluidity in these systems and have relevance to the studies
in polariton condensates [46,47] and photonic fluids [48–50].
As such, our study supports the further exploration and under-
standing of superfluidity.
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APPENDIX A: NUMERICAL SIMULATION

1. Heating rate

In the following we elaborate on how we determine
the simulated heating rate R from the induced energy
change during stirring. As an example, we consider the
same system and stirrer parameters as in Fig. 2(b), i.e.,
a homogeneous cloud at low temperature T/Tc = 0.05 is
stirred with a weak stirrer of strength V0/μ = 0.087 and
displacement d = 10 μm. In Fig. 12(a) we show the time
evolution of the energy change �E (t ) during the stir-
ring process at the stirring velocity of v/vc = 0.5. Here
�E = E f − Ei is the difference between the initial energy
Ei and the final energy E f of the system. In particular,
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FIG. 12. Time evolution of the induced energy change �E (t )
during the stirring process for a homogeneous cloud and stirring
with a weak stirring potential. The stirring velocity (a) v/vc = 0.5,
where vc is the critical velocity for the onset of dissipation, and
(b) v/vc = 1.5. The linear increase of the energy change is deter-
mined using a linear fit (solid line) (see the text for details).

we determine Ei, f by E = −(J/2)
∑

〈i j〉(ψ
∗
i ψ j + ψiψ

∗
j ) +

(U/2)
∑

i |ψi|4 + ∑
i Vi|ψi|2, which is averaged over the ini-

tial ensemble. Here ψi is the complex field at site i and
the trapping potential is set to Vi = 0 for the homogeneous
system. In addition, J and U are the tunneling and on-site in-
teraction energy, respectively (see Sec. VII). The value of the
critical velocity vc is based on the results shown in Fig. 2(b).
�E (t ) increases linearly during stirring and we fit this linear
increase with the function f (t ) = a + bt to determine the
heating rate dE/dt = b. For v/vc = 0.5 we obtain the dimen-
sionless heating rate R = 0.006 (see Sec. II for the definition
of R). The value of R is small, as it is expected for stirring
below vc. In Fig. 12(b) we show �E (t ) for the stirring velocity
at v/vc = 1.5. This results in R = 1.537, which is large com-
pared to the heating rate below vc in Fig. 12(a). We note that
on top of a global linear increase of the energy change there
are small-amplitude oscillations, which come from the direc-
tion change of the stirrer when the stirrer completes the 2d
displacement and returns. These oscillations are averaged out
by our linear fitting function and hence a global heating rate R
is determined.

2. Discretization length

In this section we demonstrate that the simulation results
are not affected by the choice of discretization length of the
numerical lattice. For this, we vary the discretization length
ldis/l in the range 0.5–1.5, which constitutes a change by a
factor of 3. The value l = 1 μm is the discretization length
that was used for our simulations in this work. We consider
the same system and stirrer parameters as in Fig. 2(b). We
simulate systems with various ldis/l and stir them with a weak
stirrer, where the system and stirrer parameters are chosen
to be the same for all systems. From the induced heating

FIG. 13. Critical velocity vc as a function of the discretization
length ldis/l for n ≈ 10 μm−3 and T/Tc ≈ 0.05. The discretization
length l = 1 μm is used throughout the paper and the corresponding
result is shown as a horizontal line.

rate we determine the critical velocity vc, which is the main
observable of our study. In Fig. 13 we show vc as a func-
tion of ldis/l . The different ldis/l results fluctuate within an
uncertainty of 2% and hence give a consistent critical velocity
within numerical uncertainty of the simulation. This confirms
that the simulation results are robust and not affected by the
choice of the discretization length.

APPENDIX B: BOGOLIUBOV THEORY OF THE BOSE GAS

Within second quantization the Hamiltonian of a weakly
interacting Bose gas in momentum space is given by

Ĥ0 =
∑

k

εkâ†
kâk + g

2V

∑
k,p,q

â†
k+pâ†

q−pâqâk, (B1)

where V is the volume and εk = h̄2k2

2m . At T = 0 we as-
sume macroscopic occupation of the ground state. Then we
diagonalize this Hamiltonian with a Bogoliubov transforma-
tion b̂k = ukâk − vkâ†

−k, where u2
k = (h̄ωk + εk + gn)/2h̄ωk

and v2
k = (−h̄ωk + εk + gn)/2h̄ωk . The diagonalized Hamil-

tonian is approximately

Ĥ0 =
∑

k

h̄ωkb̂†
kb̂k, (B2)

where h̄ωk =
√

εk (εk + 2mv2
B).

APPENDIX C: ANALYTIC HEATING RATE

Let us expand the periodic motion into a Fourier series of
the form

x(t ) =
N∑

λ=0

aλ cos(ωλt ). (C1)

We write the Fourier transform of the stirring potential as

Vk(t ) = Vk

N∏
λ=0

ei[kxaλ cos(ωλt )], (C2)

043317-11



KIEHN, SINGH, AND MATHEY PHYSICAL REVIEW A 105, 043317 (2022)

where Vk = 2πV0σ
2

A δkz e
−k2σ 2/2eikyy0 is a time-independent pref-

actor. We substitute Ak = − i
h̄ (uk + vk )

√
N0 to write the

equation of motion in the simple form

∂t Ak(t ) = VkAke−iωkt
N∏

λ=0

ei[kxaλ cos(ωλt )]. (C3)

To integrate this expression we first use the Jacobi-Anger
expansion

ei[kxaλ cos(ωλt )] =
∞∑

ν=−∞
iνJν (kxaλ)eiνωλt (C4)

to get

∂t Ak(t ) = VkAke−iωkt
N∏

λ=0

∞∑
ν=−∞

iνJν (kxaλ)eiνωλt . (C5)

To carry out the time integration we combine the exponentials

∂t Ak(t ) = VkAk

∞∑
ν0,...,νN =−∞

N∏
λ=0

[
iνλJνλ

(kxaλ)
]

× ei(ωeff −ωk )t , (C6)

where we substituted ωeff = ∑N
λ=0 νλωλ. We employ the inte-

gral

∫ t

0
dt ei(ωeff−ωk )t = 2e−i(ωk−ωeff )t/2 sin[(ωk − ωeff )t/2]

ωk − ωeff
. (C7)

Thus the solution for Ak(t ) is

Ak(t ) = 2VkAk

∞∑
ν0,...,νN =−∞

N∏
λ=0

[
iνλJνλ

(kxaλ)
]
e−i(ωk−ωeff )t/2

× sin[(ωk − ωeff )t/2]

ωk − ωeff
. (C8)

Taking the absolute square, we obtain

|Ak(t )|2 = 4|Vk|2|Ak|2
∞∑

ν0,ν
′
0,...,νN ,ν ′

N =−∞

N∏
λ=0

[iνλ−ν ′
λ ]

×
N∏

λ=0

[
Jνλ

(kxaλ)Jν ′
λ
(kxaλ)

]

× sin[(ωk − ωeff )t/2]

ωk − ωeff

sin[(ωk − ω′
eff )t/2]

ωk − ω′
eff

, (C9)

where ω′
eff = ∑N

λ=0 ν ′
λωλ. We approximate this expression by

only considering terms with ωeff = ω′
eff. This restriction re-

duces the number of summation indices by 1. We drop the sum
over ν ′

0 and write ν ′
0 = ν0 + ∑N

ξ=1(1 + 2ξ )(νξ − ν ′
ξ ). Thus

we get

|Ak(t )|2 = 4|Vk|2|Ak|2
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
(−1)

∑N
m=1 m(νm−ν ′

m )

× Jν0 (kxa0)Jν0+
∑N

ξ=1(1+2ξ )(νξ −ν ′
ξ )(kxa0)

×
N∏

λ=1

[
Jνλ

(kxaλ)Jν ′
λ
(kxaλ)

] sin2[(ωk − ωeff )t/2]

(ωk − ωeff )2
.

(C10)

We define the function

B(kx ) = Jν0 (kxa0)Jν0+
∑N

ξ=1(1+2ξ )(νξ −ν ′
ξ )(kxa0)

×
N∏

m=1

(−1)m(νm−ν ′
m )Jνm (kxam)Jν ′

m
(kxam) (C11)

and write the energy change in the system as

〈�E (t )〉 =
∑

k

h̄ωk4|Vk|2|Ak|2

×
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
B(kx )

sin2[(ωk − ωeff )t/2]

(ωk − ωeff )2
.

(C12)

Using the approximation sin(αt/2)2

α2 = π
2 tδ(α), we obtain an

expression for the heating rate

dE

dt
=

∑
k

2π h̄ωk|Vk|2|Ak|2

×
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
B(kx )δ(ωk − ωeff ). (C13)

We convert the sum to an integral
∑

kx,ky
= A

(2π )2

∫
dkxdky,

where A is the area (x − y plane) of the system. Furthermore,

we simplify 2π h̄ωk|Vk|2|Ak|2 = 4π3V 2
0 σ 4N0

mA2 δkz k
2e−k2σ 2

, where

we used (uk + vk )2ωk = h̄k2

2m . Thus we are left with

R = h̄σ 2

m

∫
dkxdkyk2e−k2σ 2

×
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
B(kx )δ(ωk − ωeff ). (C14)

We choose to scale the heating rate as R = h̄ dE
dt /(V 2

0 Ncyl ),
where Ncyl = πNσ 2/A. The Bogoliubov spectrum is ωk =
h̄−1

√
h̄2k2

2m ( h̄2k2

2m + 2mv2
B), where vB is the sound velocity. To

simplify the following calculation we define ṽB = vBmσ/h̄,
k̃i = kiσ , and ω̃i = ωi

mσ 2

h̄ as dimensionless quantities. Thus
the scaled heating rate is

R =
∫

dk̃xdk̃yk̃2e−k̃2
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
B

(
k̃x

σ

)
δ(ω̃k − ω̃eff ),

(C15)
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where we used a property of the delta distribution δ( h̄
mσ 2 (ω̃k −

ω̃eff )) = mσ 2

h̄ δ(ω̃k − ω̃eff ). In these units ω̃k =
√

k̃2

2 ( k̃2

2 + 2ṽ2
B),

ω̃eff = ∑N
λ=0 νλω̃λ, and ω̃λ = mσ 2

h̄ ωλ.
The zeros of the δ function lie at

k̃2
c = −2ṽ2

B +
√

4ṽ4
B + 4ω̃2

eff. (C16)

We use the δ function to solve the k̃y integral. The zeros are at

k̃y,0 = (−2ṽ2
B − k̃2

x +
√

4ṽ4
B + 4ω̃2

eff

)1/2
. (C17)

Using the property δ( f (x)) = δ(x−x0 )
| f ′(x0 )| and the identity k̃2

c =
k̃2

x + k̃2
y,0, we obtain

R=
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
k̃2

c e−k̃2
c

∫ k̃c

−k̃c

dk̃xB

(
k̃x

σ

)(
∂ω̃k

∂ky

∣∣∣∣
k̃y=k̃y,0

)−1

.

(C18)

Finally, we solve the derivative and substitute κ = k̃x

k̃c
to get

R =
∞∑

ν0,ν1,ν
′
1,...,νN ,ν ′

N =−∞
k̃2

c e−k̃2
c

√
k̃4

c + 4ṽ2
Bk̃2

c

k̃2
c + 2ṽ2

B

∫ 1

−1
dκ

B̃(k̃cκ )√
1 − κ2

,

(C19)
where

B̃(k̃cκ ) = Jν0 (k̃cκ ã0)Jν0+
∑N

ξ=1(1+2ξ )(νξ −ν ′
ξ )(k̃cκ ã0)

×
N∏

m=1

(−1)m(νm−ν ′
m )Jνm (k̃cκ ãm)Jν ′

m
(k̃cκ ãm). (C20)

The integral cannot be solved analytically in general. Numeri-
cally we evaluate the expression for N = 5. For our stirring
setup the Fourier parameters are ãλ = 8d̃

π2(1+2λ)2 and ω̃λ =
mσ 2

h̄ (2λ + 1)πv
2d = (2λ + 1)π ṽṽB

2d̃
, where we rescaled d̃ = d

σ

and ṽ = v
vB

.
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