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Analog spacetimes from nonrelativistic Goldstone modes in spinor condensates

Justin H. Wilson ,1,2,3,4 Jonathan B. Curtis ,5 and Victor M. Galitski5
1Institute of Quantum Information and Matter and Department of Physics, Caltech, Pasadena, California 91125, USA

2Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 USA
3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

4Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
5Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics,

University of Maryland, College Park, Maryland 20742-4111, USA

(Received 2 January 2022; accepted 12 April 2022; published 25 April 2022)

It is well established that linear dispersive modes in a flowing quantum fluid behave as though they are coupled
to an Einstein-Hilbert metric and exhibit a host of phenomena coming from quantum field theory in curved
space, including Hawking radiation. We extend this analogy to any nonrelativistic Goldstone mode in a flowing
spinor Bose-Einstein condensate. In addition to showing the linear dispersive result for all such modes, we show
that the quadratically dispersive modes couple to a special nonrelativistic spacetime called a Newton-Cartan
geometry. The kind of spacetime (Einstein-Hilbert or Newton-Cartan) is intimately linked to the mean-field
phase of the condensate. To illustrate the general result, we further provide the specific theory in the context of a
pseudospin-1/2 condensate where we can tune between relativistic and nonrelativistic geometries. We uncover
the fate of Hawking radiation upon such a transition: it vanishes and remains absent in the Newton-Cartan
geometry despite the fact that any fluid flow creates a horizon for certain wave numbers. Finally, we use the
coupling to different spacetimes to compute and relate various energy and momentum currents in these analog
systems. While this result is general, present-day experiments can realize these different spacetimes including
the magnon modes for spin-1 condensates such as 87Rb, 7Li, 41K (Newton-Cartan), and 23Na (Einstein-Hilbert).
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I. INTRODUCTION

The marriage of quantum mechanics and general relativity
is one of the greatest outstanding problems in modern physics.
This is in part due to the fact that this theory would only
become truly necessary under the most extreme conditions—
the singularity of a black hole or the initial moments after
the big bang. As such, it is extremely difficult to theoretically
describe, let alone physically probe.

Despite the seeming intractability, some headway may be
made in the understanding of such extreme theories by way of
analogy. This idea traces back to Unruh, who in 1981 [1] sug-
gested that a flowing quantum fluid could realize a laboratory
scale analog of a quantum field theory in a curved spacetime.
Access to even the most rudimentary quantum simulator for
such a curved spacetime could provide valuable insights into
this otherwise inaccessible regime.

Since Unruh’s initial proposal, many systems have been
advanced as candidates for realizing analog spacetimes [2],
including liquid helium [3–5], Bose-Einstein condensates
[6–14], nonlinear optical media [15], electromagnetic waveg-
uides [16], magnons in spintronic devices [17], semiconductor
microcavity polaritons [18], Weyl semimetals [19,20], and
even in classical water waves [21]. Analog gravity systems are
no longer a theoretical endeavor; recent experiments have re-
alized the stimulated Hawking effect [22], and in the case of a
Bose-Einstein condensate a spontaneous Hawking effect [14].

In this paper we introduce an analog gravity system
that exhibits Newton-Cartan geometry [23,24]. This geom-
etry naturally arises from a full analysis of all Goldstone
modes in a flowing spinor (or multicomponent) condensate.
Spinor condensates [25] have been studied in the context
of analog curved space before [10,26]; however, a full ac-
counting of all gapless modes has not been done to the
best of our knowledge. The Goldstone modes which real-
ize the Newton-Cartan geometry exhibit a quadratic ω ∼ k2

dispersion, known as “Type-II” Goldstone modes [27,28].
For example, the spin wave excitations about an SU(2) sym-
metry breaking ferromagnetic mean field are such a mode.
Distinct from the linearly dispersing case (called “Type-I”
modes), Newton-Cartan spacetimes implement local Galilean
invariance, as opposed to local Lorentz invariance. These
results are general and summarized in Table I, where we
give a general prescription for separating out all Goldstone
modes into either Type-I (linearly dispersing) or Type-II
(quadratically dispersing) modes and assigning them either
an Einstein-Hilbert or Newton-Cartan spacetime geometry. In
the process of determining the analog spacetimes of various
Goldstone modes, we also generalize the existing proofs of
nonrelativistic Goldstone theorems [27,28] to allow for in-
homogeneous mean-field textures. To this end, we explicitly
show in very general terms, how the Goldstone modes couple
to the spacetime variations in the mean-field texture, which
in principle paves the way for the applications towards the
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TABLE I. Analog spacetimes which appear for the different
Goldstone modes in the presence of a background condensate flow.
These spacetimes emerge as effective field theories governing the
long-wavelength behavior. As we demonstrate in this work, the emer-
gent geometry is determined by the flow profile of the background
condensate. This is explicitly demonstrated in Sec. II D for the Type-I
modes and Sec. II E for the Type-II modes, where we also provide an
overview of the Newton-Cartan formalism.

Goldstone mode Dispersion Analog spacetime Lagrangian

Type-I ω ∼ k Einstein-Hilbert Eq. (37)
Type-II ω ∼ k2 Newton-Cartan Eq. (43)

study of nonequilibrium symmetry breaking dynamics beyond
the paradigm of analog gravity. It is of central importance to
our work that the symplectic structure which distinguishes the
different types of Goldstone modes still remains even in the
inhomogeneous case, and this explicitly shown in our proof.

Newton-Cartan geometry was developed by Cartan [23]
and refined by others [29] as a geometric formulation and
extension of Newtonian gravity. It has since found applica-
tion across different areas of physics, including in quantum
Hall systems [24,30,31] and effective theories near Lifshitz
points [32,33] with interest to the high-energy community
with implications for quantum gravity [34,35]. We extend
these applications here to flowing condensates for the case of
Type-II Goldstone modes.

Heuristically, one may view the quadratic dispersion rela-
tion ω ∼ |k|2 + · · · as the limit of a linear dispersion relation
ω ∼ v|k| + · · · with vanishing group velocity v → 0. In
terms of the analog spacetime, this corresponds to an apparent
vanishing of the speed of light. As such, the formation of event
horizons and their corresponding Hawking radiation ought
to be ubiquitous in such spacetimes; however, our results
contradict this intuition. Specifically, we find that fields prop-
agating in Newton-Cartan geometries exhibit an additional
conservation law which precludes the emission of Hawking
radiation. It is worth remarking that similar constraints on
magnon scattering amplitudes in an SU(2)-symmetric ferro-
magnet have been discussed in the context of nonequilibrium
kinetic theories [36,37]. It would be interesting to connect
these two observations in future works.

The immediate implication of this is that any Type-I mode
can have an effective event horizon and therefore a Hawking
effect (similar things have been noticed for specific other
Type-I modes), and further, no Hawking effect can occur for
Type-II modes, at least not without introducing quasiparticle
interactions (which corresponds to going being a quadratic
treatment of fluctuations).

Finally, we discuss the relationship between transport phe-
nomena and gravitational metrics in our theory [24,30,38,39].
Specifically, we obtain the stress-tensor, energy flux, and mo-
mentum density for theories both with the Einstein-Hilbert
and Newton-Cartan geometries. In particular, we relate the
energy-momentum tensor calculated in an analog Einstein-
Hilbert geometry to its nonrelativistic counterparts through
the use of Newton-Cartan geometry. This helps identify how
the analog Hawking effect results in nontrivial energy and
momentum currents in the underlying nonrelativistic system.

The outline of the paper is as follows. Section II con-
tains the generalization of Goldstone’s theorem to “curved”
mean-field profiles, and shows that in the presence of a flow-
ing background condensate Type-I and Type-II Goldstone
modes couple to Einstein-Hilbert (Sec. II D) and Newton-
Cartan (Sec. II E) geometries respectively. In Sec. III we
present a minimal model for these spacetimes and the phase
transition that connects them. In Sec. III A we develop the
Bogoliubov–de Gennes framework which we then use to an-
alyze this system. In Sec. IV we apply this to a specific
steplike flow geometry and show the effect of the geometry
on the emitted Hawking radiation. We then discuss transport
of energy and momentum in these different analog spacetime
systems in Sec. V. We conclude the paper in Sec. VI. Our
two Appendixes include Appendix A where we put the full
fluctuation calculation of the Lagrangian and Appendix B
where we review the Hawking calculation for the phonon
problem. Throughout, we take h̄ = kB = 1 and our relativistic
metrics have signature (+ − − −). We also indicate spatial
vectors with a boldface (e.g., r), while spacetime vectors are
indicated without boldface [e.g., x = (t, r)].

II. RELATIONSHIP BETWEEN SPACETIME
AND GOLDSTONE’S THEOREM

In this work we consider models of ultracold bosonic
spinor quantum gases described by an N-component field
variable �(r, t ) = [�1, �2, . . . , �N ]T residing in d spatial
dimensions (we do not make the distinction between “spinor”
and higher multiplet fields in this work). The Lagrangian
describing this system is taken to be of the general form

L = i

2
(�†−→∂t � − �†←−∂t �) − 1

2m
∇�† · ∇� − V (�†, �),

(1)

where m is the mass of the atoms in the gas and V (�†, �)
is a general potential energy function that includes interac-
tions with an external potential as well as local interparticle
interactions. Such a system may be realized by cold atoms,
where in addition to the inter-particle interactions external
potentials such as a harmonic trap, optical lattice, or magnetic
field may be present. For a comprehensive review regarding
the theory and experimental realization of spinor condensates
see Ref. [25].

We consider the case where the Lagrangian exhibits invari-
ance under an internal symmetry described by a Lie group
G, according to which � transforms under the fundamental
representation (we henceforth do not distinguish between the
symmetry group and its representation), such that the action
S = ∫

L dd+1x remains invariant, that is,

�(x) → U�(x) ⇒ S → S ∀U ∈ G. (2)

Recall that a Lie group G is generated by its corresponding Lie
algebra g, and this has a representation of R(g) when acting
on the field �. For ease of calculations, we use the mathe-
matical convention that Lie algebras consist of anti-Hermitian
elements. Hence, if A is an element of R(g), then A = −A†

and the corresponding group element is eA = ((eA)−1)†.
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We pursue a semiclassical analysis of our system by first
obtaining the classical equations of motion (i.e., the saddle
point of the action). Then we linearize the action around the
saddle point, obtaining a description of the symmetry-broken
phases in terms of their Goldstone modes. The primary point
of our work is that this linearized action admits a simple
description in terms of different emergent analog spacetimes
and depending on the nature of the saddle point, this analog
spacetime may develop nontrivial curved geometry.

The rest of this section is organized as follows. We perform
a quadratic fluctuation analysis in Sec. II A. In Sec. II B we
review the proof of the Goldstone theorem in nonrelativis-
tic settings [27,28] and show how this allows us to classify
Goldstone modes into Type I and Type II. Section II C then
presents the full Lagrangian for the Goldstone modes, while
Secs. II D and II E make explicit the connection to curved
space geometry.

A. Saddle-point expansion

We begin by looking for saddle points of the Lagrangian
Eq. (1), the spinor Gross-Pitaevskii equation

i∂t� = − 1

2m
∇2� + ∂V

∂�†
. (3)

Suppose that we have found a mean-field solution to this equa-
tion �0(r, t ) ≡ 〈�(r, t )〉 which describes the dynamics of a
mean-field condensate (neglecting fluctuation back-reaction);
for a general out-of-equilibrium system, the spacetime depen-
dence of �0(r, t ) may be nontrivial [8,25,40].

The presence of a nonzero mean-field solution �0 spon-
taneously breaks the internal symmetry group G down to a
subgroup H ⊂ G. Let h be the Lie algebra that generates the
subgroup H . This is defined by the set of generators

h = {τ ∈ g | τ�0 = 0}. (4)

We can form a complete basis for h = span{τk}. The original
Lie algebra then separates into two subspaces; g = h ⊕ hc,
where hc is simply the complement of h. It is useful to form an
explicit basis for hc ≡ span{σl} so that g = span{τk} ∪ {σl} =
span{σl , τk}. Formally, hc is isomorphic to the quotient alge-
bra g/h, and the basis elements σl are isomorphic to coset
spaces.

For the sake of simplicity, in this work we will only con-
cern ourselves with systems which have homogeneous spin
orders, and focus on the effects of inhomogeneous condensate
textures, as this is already very interesting and nontrivial.
However, our proof can be extended to include the most gen-
eral case which has both inhomogeneous spin and condensate
textures. The resulting expression for the Goldstone mode
effective action is given in Appendix A 1. Studying the ef-
fects of inhomogeneous spin order is both challenging and of
great interest, as it involves the introduction of a non-Abelian
connection in spacetime. We leave this problem open, to be
addressed in future works.

More precisely, we will assume that, although in general
the mean field �0(x) may break the symmetry group G down
to different subgroups H = H (x) at each spacetime point, we
will only consider mean fields which have subgroups H (x)
which only differ in the Abelian phase subgroup, and thus
have a homogeneous spin mean field.

We now examine the quadratic fluctuations of the field �

about the mean field by expanding the Lagrangian in powers
of δ�(x) = �(x) − �0(x). This separates into two distinct
contributions: the massless Goldstone modes θl (x) which cor-
respond to spontaneously broken symmetries, and massive
fields βn(x) which describe all the remaining modes. Each
Goldstone mode corresponds to a broken generator σl ∈ h̄

acting on the mean-field condensate �0(x). These contribute
to the fluctuation action as

(δ�(x))Goldstone =
∑

l

θl (x)σl�0(x) ≡ σ(x)�0(x), (5)

which serves to define the Goldstone matrix field σ(x). The
remaining degrees of freedom are generically massive and are
not amenable to a description in terms of the Lie algebra’s
generators. It is advantageous to parametrize the fluctuations
δ� in terms of real fields with massive terms orthogonal to
the massless terms in the sense described below. Within the
quadratic theory, this implies the fluctuations reside within a
real vector space R2N ∼ CN . The Goldstone modes σl�0(x)
form a subspace of this manifold while the remaining basis
elements are generically massive and are written as ξn(x).
We note that in general the basis elements are spacetime
dependent simply because the mean field is also spacetime
dependent.

In order to make the notion of orthogonality precise we lift
the standard complex (CN ) inner product onto our real vector
space R2N to obtain the real inner product g defined by

g(ξ, χ ) ≡ 1
2 (ξ †χ + χ†ξ ). (6)

In terms of the Goldstone manifold and its complement, the
variation δ�(x) takes the compact form

δ�(x) = σ(x)�0(x) + ξ (x), (7)

where we have defined the massive modes by

ξ (x) =
∑

n

βn(x)ξn(x). (8)

We proceed to the expansion of the Lagrangian in terms of
the variation δ�. First, we consider the potential. It is locally
invariant under under G, so we can write

V (�†, �) = V (�†eσ(x), e−σ(x)�). (9)

Furthermore, we can use our expansion of �(x) to obtain

e−σ� ≈ e−σ[�0 + σ�0 + ξ ]

≈ (
1 − σ + 1

2σ2
)
[�0 + σ�0 + ξ ]

≈ �0 + ξ − σξ − 1
2σ2�0, (10)

keeping terms up to quadratic order in fluctuations. This al-
lows us to expand the potential energy up to quadratic order
(dropping the terms constant and linear in the variation)

V (�†, �) = −
[

∂V

∂�

(
1

2
σ2�0 + σξ

)
+ c.c.

]

+ 1

2
ξ ∗ξ ∗ ∂2V

∂�†∂�†
+ ξ ∗ ∂2V

∂�†∂�
ξ

+ 1

2

∂2V

∂�∂�
ξξ, (11)
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where all derivatives of the potential are understood as being
evaluated at the mean field. The terms quadratic in ξ, ξ ∗
represent massive terms, and the first line of Eq. (11) drops
out when combined on-shell with similar terms from the
kinetic part of the Lagrangian. Deriving the full fluctuation
Lagrangian is not instructive and has been relegated to Ap-
pendix A; the final result is given below.

Focusing on the Goldstone modes, written in terms of the
“angle fields” θl (x), the resulting Lagrangian for fluctuations
is given by

Lfluc = θmPμ
mn(∂μθn) + βmQμ

mn(∂μθn) + (∂ jθn)T jk
mn (∂kθn)

+Lmass(βm, ∂μβm), (12)

where we have instituted the Einstein summation convention.
In this and the following, Roman indices i, j, k, . . . run over
spatial dimensions while Greek indices μ, ν, . . . run over
both temporal and spatial dimensions (with μ = 0 = t the
temporal index). The Roman indices n, m, . . . enumerate the
different Goldstone modes or massive modes and are similarly
summed. The terms Pμ

mn, Qμ
mn, and T jk

mn depend on both space
and time, and are given by

Pt
mn = i

2
�

†
0 [σn, σm]�0,

P j
mn = 1

4m
(∂ j�

†
0 [σm, σn]�0 − �

†
0 [σm, σn]∂ j�0),

Qt
mn = i(�†

0σnξm + ξ †
mσn�0),

Q j
mn = 1

2m
(ξ †

mσn∂ j�0 − ∂ j�
†
0σnξm

+�
†
0σn∂ jξm − ∂ jξ

†
mσn�0),

T jk
mn = 1

2m
δ jk�

†
0σnσm�0. (13)

As mentioned previously, it is also important to keep track of
the massive modes in the full Lagrangian, and we offer that
full analysis in Appendix A.

B. Proof of the nonrelativistic Goldstone theorem

Before proceeding to simplify the Lagrangian and derive
the curved space analogues, we need to understand and make
use of the nonrelativistic Goldstone theorem [27,28], provid-
ing a complementary proof in the process.

We consider the following ansatz for the mean field:

�0(x) =
√

ρ(x)eiϑ (x)χ, χ†χ = 1, ∂μχ = 0. (14)

Importantly the spinor structure given by χ is independent
of space and time. This ansatz is justified since if we pre-
pare a static mean-field state and quench it dynamically with
terms that only couple to mass (such that the Gross-Pitaevskii
equation describes its dynamics), there are no terms in the
hydrodynamics that generate spin texture (i.e., the dynamics
will preserve ∂μχμ = 0) [25,40,41]. The global U(1) symme-
try implies the phase and density obey a continuity relation
which can be conveniently written as

∂μJμ = 0, (15)

with the condensate four-current given by Jμ = ρvμ
s , where

the superfluid four-velocity field is vμ
s = (1, 1

m ∇ϑ ). This

simplifies the term

Pμ
mn = − i

2
Jμχ†[σn, σm]χ, (16)

which dictates which real fields θn are canonically conjugate
to each other. In nonrelativistic systems, the relationship be-
tween broken symmetry generators and Goldstone modes is
not one-to-one. Instead, we must separate out our modes into
Type-I and Type-II Goldstone modes, which is done by going
to the preferred basis of the matrix Pμ

mn.
To understand this, we return to the real vector space de-

fined by the Goldstone mode manifold, which we label AR,
that is,

AR = spanR{σl�0(x)}. (17)

The real dimension DR of this subspace is simply equal to the
number of broken generators. We can complexify this vector
space by allowing for complex-valued coefficients

AC ≡ spanC{σn�0}. (18)

It may be the case that two generators which are linearly
independent under real coefficients are linearly dependent
when multiplied by complex coefficients. For this reason, this
vector space has an associated complex dimension DC � DR.
The essence of the Goldstone mode theorem is that DR is
the number of broken generators and DC is the number of
modes, and these two quantities can be formally related by
classifying each basis element σl�0(x) ∈ AR due to whether
iσn�0 ∈ AR or not.

To establish this we need to return to our real inner product
g(·, ·). We can use the operation of multiplication by i to define
a symplectic bilinear form ω(·, ·) by

ω(η, ξ ) ≡ g(iη, ξ ) = i

2
(ξ †η − η†ξ ). (19)

The multiplication by i [acting on the basis vectors σl�0(x)]
can be restricted to the real vector space AR, which we define
by the notation

i|AR
≡ I:AR → AR. (20)

Similarly, we define rangeI ≡ AII ⊂ AR as the range of I .
The null space of I is then defined to be AI and represents
states η ∈ AR which leave the real vector space upon mul-
tiplication by i. As a simple example, consider unit vectors
ê1 = (1, 0)T and ê2 = (i, 0)T . As elements of a real vector
space these are linearly independent, however iê1 = ê2 and
so these are not linearly independent in a complex vector
space. In this case, we have DR = 2, DC = 1 and rangeI =
AR, nullI = 0. However, if ê1 = (1, 0)T and ê2 = (0, 1)T

then DR = 2 = DC and rangeI = 0, nullI = AR.
The classification of basis elements may be accomplished

by taking the real inner product of iη with the other elements
of A—if this vanishes, then η is in the kernel of I . But this is
exactly given by the symplectic bilinear form defined above
so that

AI ≡ nullI = {η ∈ AR | ω(η, χ ) = 0,∀χ ∈ A}. (21)

This condition can be simplified into a matrix condition if we
note that we can let η = ∑

n anσn�0 and χ = ∑
m bmσm�0,
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so that

0 = ω(η, χ ) = − i

2
an�

†
0 [σn, σm]�0bm. (22)

This relates the null space of I to the null space of the matrix
�

†
0 [σn, σm]�0 ∝ Pμ

mn, the term appearing in our Lagrangian
which determines the canonically conjugate pairs of modes.
Using the rank-nullity theorem, we have

AR = AI ⊕ AII. (23)

Since the matrix given by elements − i
2�

†
0 [σn, σm]�0 is real

and antisymmetric, we can block diagonalize the matrix with
a special orthogonal transformation. Going to this basis and
using our ansatz for the flowing mean field �0 = √

ρeiϑχ ,
the result is

(24)

with λ j > 0. This defines a preferred basis for the broken
generators {σl} which we henceforth assume is the basis we
are in. Note that in this basis AII takes the form of a direct
sum of decoupled symplectic forms.

This matrix provides a natural way to break up the gen-
erators. First, we can define σ II

n and its conjugate generator
σ II

n via − i
2�

†
0 [σ II

n , σ II
n ]�0 = ρλn. This implies that σ II

n �0 =
iσ II

n �0 (however, σ II
n �= iσ II

n ). Let nII be the number of λ j’s,
so that dim(AII ) = 2nII. As the coefficient of the temporal
derivative term in the Lagrangian, this matrix tells us that the
two Goldstone fields described by σ II

n �0(x) and σ II
n �0(x) are

canonically conjugate to each other and therefore describe the
same mode, a Type-II Goldstone mode. Finally, let dim(AI ) =
nI be dimension of the null space of I . This is the number
of Type-I Goldstone modes; they represent modes which are
canonically conjugate to a massive mode. It is evident by the
rank-nullity result that

2nII + nI = DR (25)

is the number of broken generators, while

nII + nI = DC (26)

is the number of Goldstone modes in the system.
With this particular grading into nII basis elements σ II

n �0

and nI basis elements σ I
n�0, we can rewrite our real vector

space

AR = span
{
σ II

n �0, σ II
n �0, σ

I
n�0

}
, (27)

and similarly, we can write the complexified vector space in
two equivalent ways

AC = spanC
{
σ II

n �0, σ
I
n�0

}
,

AC = span
{
σ II

n �0, σ II
n �0, σ

I
n�0, iσ I

n�0
}
. (28)

The modes represented by iσ I
n�0 are exactly the massive

modes conjugate to σ I
n�0 (by definition, they are not in A and

are thus not associated with a broken generator).
In fact, as we have shown Pt

mn = −ω(σn�0, σm�0)
while for the massive modes Qt

mn = −2ω(σn�0, ξm). These
two matrices have different images, as we can see since
by construction ω(σ I

n�0, σm�0) = 0 while ω(σ II
n �0, ξm) =

g(σ II
n �0, ξm) = 0. In other words, Pt has range AII, and Qt has

range AI due to the real fields being orthogonal by Eq. (6).
At low energies (below the relevant mass gaps), massive

modes that are not conjugate to Goldstone modes can be
trivially integrated out and do not contribute in the IR. This
then leaves the Goldstone modes, which are gapless, and a few
massive modes, which are canonically conjugate to the Type-I
Goldstone modes. These massive modes cannot be trivially
integrated out, and they are to be included in the low-energy
theory. Doing so amounts to adding the basis elements iσ I

n�0

to our fluctuation manifold.

C. Lagrangian for Goldstone modes

We now employ this classification into Type-I and Type-II
modes to our benefit by using it to simplify the fluctuation
Lagrangian. Recall that in this work we restrict ourselves to
flowing condensates which have a spatial texture to the phase
mode (and thus inhomogeneously break the global U(1) part
of the symmetry group), but have a homogeneous and static
spinor texture. For instance, one may consider a condensate
of pseudospin- 1

2 atoms in its ferromagnetic phase which has
a definite homogeneous magnetization 〈Sz〉 = χ†Szχ = 1

2 but
a nonzero density and phase profile. As remarked earlier, this
flow produces a nonzero spatial component for the Noether
current Jμ(x). Going to the preferred basis of Pμ

mn, obtained in
Sec. II B then yields the partitioning into the Goldstone modes
given by {σ II

n �0, σ II
n �0, σ

I
n�0}. Let us remind the reader that

Type-I modes are those for which iσn�0 cannot be written as a
broken generator σ ′

n�0, and therefore, the associated real field
comes with a massive term in the Lagrangian.

The basis elements {σ II
n �0, σ

I
n�0} have the property that

they are orthogonal in the conventional sense (e.g., η†χ = 0).
As a result of this,

�
†
0σ I

nσ
II
m �0 = 0,

−�
†
0σ II

n σ II
m �0 = λnδnmρ(x),

−�
†
0σ I

nσ
I
m�0 = μnδnmρ(x),

(29)

where we have defined μn ≡ −χ†(σ I
n )2χ > 0 and used the

fact that λn = −χ†(σ II
n )2χ > 0.

In this basis, the field variation δ�(x) may be described by
three real Goldstone fields θn, θ̄n, and φn along with the real
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massive field βn via

σ =
nII∑

n=1

(
θnσ

II
n + θ̄nσ II

n

) +
nI∑

n=1

φnσ
I
n,

ξ =
nI∑

n=1

βniσ I
n�0 + · · · ,

(30)

where “· · · ” represents other massive modes that can be triv-
ially integrated out. In this basis, the coefficient Pμ

mn simplifies
to

Pμ
mn = δnm̄λnρ(x)vμ

s , (31)

where m̄ is defined as the index of the conjugate field to the
field labeled by m. Similarly, we may simplify Qμ

mn which
connects Type-I Goldstone modes to their conjugate massive
fields. We indeed find

Qμ
mn = 2δnmμnρ(x)vμ

s , (32)

where the massive field with index m is indicated by the basis
element iσ I

m�0. Lastly, we have the kinetic energy term which
we can separate out into its contribution to Type-I and Type-II
fields

T jk
mn |I = − 1

2m
δ jkρ(x)μnδmn,

T jk
mn |II = − 1

2m
δ jkρ(x)λnδmn. (33)

Notice that λn or μn can be absorbed into a redefinition
of the oscillator strength of the field it corresponds to. There-
fore, we can simply absorb the λ’s into a redefinition of the
Type-II modes θn, θ̄n, and absorb the μ’s into a redefinition
of the Type-I modes φn, βn. In principle, this would effect
the coupling to external source fields, and in the case of
the Type-I modes also factors into determining the speed of
sound, but we are not concerned with these effects here. Then,
substituting the form of our fluctuations, the Lagrangian is

Lfluc =
nI∑

n=1

ρ(x)

[
−2βnv

μ
s (x)∂μφn − 1

2m

[
(∇φn)2 + (∇βn)2

] − 2mc2
n(x)β2

n

]

+
nII∑

n=1

ρ(x)

{
−vμ

s (x)(θ̄n
−→
∂μθn − θ̄n

←−
∂μθn) − 1

2m

[
(∇θn)2 + (∇ θ̄n)2

]}
. (34)

Since the basis for Type-I modes is not uniquely fixed by the
canonical conjugate structure of Eq. (24), this leaves us free to
diagonalize the mass tensor produced by the variation of the
potential in Eq. (11). Doing so produces the effective chemical
potential terms, mc2

n(x).
We end this section with a note about the validity of this

fluctuation Lagrangian: it can be seen that the overall size
of this action is set by the condensate density ρ(x), which
uniformly multiplies all terms. Thus, the condensate density
ρ(x) acts to enforce the saddle point in the sense that if it
is large, the fluctuation contribution from Lfluc is suppressed.
This tells us that our approach ought not be valid if either
the condensate density is strongly fluctuating or vanishing
altogether, as might happen at finite temperatures or near, e.g.,
the core of a vortex. Additionally, there may be breakdowns
in smaller dimensional systems, where long-range order is
prohibited by Mermin-Wagner [42–44]. Barring these consid-
erations, we proceed on to study the properties of the effective
field theory described in Eq. (34). We first consider the case
where the Goldstone mode is Type-I, and then we study the
case of a Type-II mode.

D. Type-I Goldstones: Relativistic spacetime

Consider an isolated Type-I Goldstone mode, with La-
grangian

LI = ρ(x)

[
−2βvμ

s (x)∂μφ − 1

2m

[
(∇φ)2 + (∇β )2

]

− 2mc2(x)β2

]
, (35)

we assume that mc2(x) is large enough to dominate over the
kinetic energy for β, so that β can be easily integrated out via
mc2(x)β = −2vμ

s ∂μφ. We get the resulting Lagrangian, valid
at long wavelengths and times

Leff
I = ρ(x)

2m

{[
vμ

s (x)∂μφ

c(x)

]2

− (∇φ)2

}
. (36)

This describes a scalar field propagating along geodesics of an
emergent spacetime metric Gμν with

Leff
I = 1

2

√−GGμν∂μφ∂νφ, (37)

and Gμν given by the line element

ds2 = ρ

c
[c2dt2 − (dx − vdt )2] = Gμνdxμdxν . (38)

This was first observed by Unruh in Ref. [1] where he showed
that metrics of the form given above can possess nontrivial
features including event horizons. Indeed, the metric for a
Schwarschild black hole can take a very similar form in cer-
tain coordinate systems. One of the central results of this paper
is the extension of this analog to include the Type-II modes,
which do not have emergent Lorentz invariance. This is shown
below.

E. Type-II Goldstones: Nonrelativistic spacetime

We focus on a single Type-II Goldstone mode, for which
there is no massive field to integrate out. We are left with the
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fluctuation Lagrangian

LII = ρ(x){−vμ
s (x)(θ̄

−→
∂μθ − θ̄

←−
∂μθ ) − 1

2m
[(∇θ )2 + (∇ θ̄ )2]}.

(39)
To simplify things, we group the two real fields into one
complex field

ψ = θ + iθ̄ , (40)

so that we have

LII = ρ

[
i

2
vμ

s (ψ∗−→∂μψ − ψ∗←−∂μψ ) − 1

2m
|∇ψ |2

]
. (41)

It turns out this too has a simple geometric description in
terms of an emergent curved spacetime. However, instead of
being an “Einsteinian” geometry, the resulting description is
in terms of a Newton-Cartan geometry [23,24,30,31,39].

Newton-Cartan geometry consists of three key objects:
(nμ, vμ, hμν ). These are not all independent, but rather must
satisfy the constraints

nμvμ = 1, nμhμν = 0. (42)

Also note that the indices on these objects are given as covari-
ant and contravariant specifically and cannot be freely raised
or lowered without the definition of a metric tensor (which we
describe how to construct in Sec. V).

To understand the geometry these objects encode, we begin
with the fundamental object that enforces time’s special status
within a nonrelativistic theory: nμ. As a one-form, nμ (collo-
quially, we call it the “clock” one-form) can be imagined as a
series of surfaces (foliations), and when a spacetime displace-
ment vector is contracted with it, it gives the elapsed time in
a covariant manner. In conjunction with the clock one-form,
we have the velocity field vμ, which must go forward a unit
of time (hence the constraint nμvμ = 1) as a four-velocity;
flow along vμ causally connects spatial surfaces. Lastly, the
spatial metric hμν is degenerate (nμhμν = 0) since it solely
describes the geometry confined to the d-dimensional spatial
foliations. While in what follows we describe hμν emerging
from intrinsic properties of the fluid flow, it can also inherit
extrinsic contributions (i.e., if the fluid is flowing on an actual
curved manifold).

In the presence of this curved Newton-Cartan geometry, the
Lagrangian for a massless scalar field takes the form

L = n0

√
h

[
i

2
vμ(ψ∗−→∂μψ − ψ∗←−∂μψ ) − hμν

2m
∂μψ∗∂νψ

]
,

(43)

where h = (| det hi j |)−1 [45] is the determinant of the metric
projected onto the nondegenerate subspace.

The Lagrangian of a Type-II Goldstone mode may be
brought into this form. Relating Eq. (41) to Eq. (43), we can
extract the geometric objects nμ, vμ, and hμν . We see that in
our systems h00 = 0 = h0i, and that hi j = h−1/dδi j in d spatial
dimensions. Therefore, we know ni = 0; hence, n0v

0 = 1.
Relating terms, we have

√
h = ρ,

n0

√
hvi = ρvi

s,

n0h(d−2)/(2d ) = ρ. (44)

This gives us the geometric quantities

h = ρ2, n0 = ρ2/d , (45)

and hence

nμ = [ρ2/d , 0],

vμ = ρ−2/dvμ
s ,

hi j = ρ−2/dδi j . (46)

One important aspect of Newton-Cartan geometry is the
notion of “torsion” [46]. Regarded as a differential form, the
clock one-form n = nμdxμ is in general not an exact differ-
ential. This is seen by taking the exterior derivative, which
defines the “torsion tensor” ω = dn. Explicitly,

ωμν = ∂μnν − ∂νnμ. (47)

It is straightforward to see that in general, the torsion tensor
in our geometry is nonzero,

ω0 j = ∂ jn0 = ∂ jρ
2/d . (48)

Were the torsion zero, we could define an absolute time co-
ordinate T , from which we would get the clock one-form as
n = dT . While the nonzero torsion implies there is no such
absolute time, we may confirm that the more general condition

n ∧ dn = 0 (49)

is satisfied. This is a necessary and sufficient condition for
the foliation of spacetime into “spacelike” sheets which are
orthogonal to the flow of time [46]. As such, there is still a
notion of causality in this geometry.

We conclude by commenting that the Newton-Cartan ge-
ometry we find here is in fact intimately related to the
gravitational field first considered by Luttinger in the context
of calculating heat transport [38]. In that limit nμ ∝ [e�, 0],
and so the gravitational potential (up to scale factor in the
logarithm) would be

� = 2

d
ln(ρ). (50)

Using this connection, quantities like energy current and the
stress-momentum tensor can be calculated as we discuss in
Sec. V. First, we explore a minimal realization of these ge-
ometries and the associated quantum phases in Sec. III as well
as the fate of the Hawking effect across such a transition in
Sec. IV.

III. MINIMAL THEORETICAL MODEL

In this section, we introduce a minimal model which
exhibits a transition between an Einstein-Hilbert and Newton-
Cartan spacetime. We begin by analyzing the ground state
within mean-field theory. Once this is understood, we study
the behavior of fluctuations about the mean field by employing
a Bogoliubov–de Gennes (BdG) description.

The model is that of a pseudospin- 1
2 bosonic field �(x) =

(�↑(x), �↓(x))T with the following Lagrangian density:

L = �†

(
i∂t + 1

2m
∇2 + μ

)
�

− 1

2
g0(�†�)2 − 1

2
g3(�†σ3�)2, (51)
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where σ j are the Pauli matrices for the pseudospin and μ

is the chemical potential, which controls the conserved den-
sity of the bosons, ρ = �†�. The coupling g0 > 0 describes
a U(2) = U(1) × SU(2) invariant repulsive density-density
contact interaction, as may be expected in a typical spinor
BEC, while the g3 parameter introduces anisotropy into the
spin exchange interaction. The g3 coupling explicitly breaks
the SU(2) symmetry down to U(1) ⊗ Z2 comprising rotations
of the Bloch vector by any angle about the z axis and reflec-
tions of the Bloch vector through the xy mirror plane. Note
that stability requires that g3 > −g0.

Let us briefly comment that, while Lagrangian (51) is a
perfectly valid model, a more natural setup may be realized
by the more experimentally available spin-1 systems such as
condensed 7Li, 23Na, or 87Rb. All of these atoms are bosons
which have a total hyperfine spin F = 1 manifold [25]. In this
case, the phase transition is between two phases which both
respect the full SU(2) spin-rotation symmetry—the ferromag-
netic phase and polar (nematic) phase [40,47,48]. In this case,
rather than being driven by anisotropy, the transition is driven
by the overall sign of the spin-exchange interaction. It turns
out that the different ground-state phases have different types
of Goldstone modes and therefore exhibit different analog
spacetimes for the spin waves once condensate flow is intro-
duced. The relevant coupling constant is the spin-exchange
coupling c2, which is given in terms of the scattering lengths
by

c2 = 4π

m

a2 − a0

3
.

For 7Li and 87Rb, c2 < 0 while for 23Na c2 > 0 [25]. Thus,
all else equal we can realize both the polar (nematic) phase
(which occurs for c2 > 0) as well as the ferromagnetic phase
(c2 < 0) by using two different species of trapped atom. All
this is to say that, while Eq. (51) is not as easily realized
experimentally, there may be more experimentally feasible
models which realize the same physics. We now move on to
the analysis of the technically simpler model proposed above.

The mean-field ground state of Eq. (51) is identified as the
homogeneous minimum of the energy density

V = 1
2 g0(�†�)2 + 1

2 g3(�†σ3�)2 − μ�†�.

For μ < 0 the ground state is trivial and there is no con-
densate. For μ > 0 there is Bose-Einstein condensation and
the ground state is a BEC with a uniform condensate density
which obeys the equation of state

ρ = �†� =
{ μ

g0
, g3 > 0,
μ

g0−|g3| , −g0 < g3 < 0.

A nonzero condensate density always spontaneously break the
overall U(1) phase symmetry. The corresponding Goldstone
mode corresponds to the broken generator iσ0 = i1 where 1

is the 2 × 2 identity matrix.
Depending on the value of g3, additional symmetries may

be broken, resulting in the phase diagram illustrated in Fig. 1.
We write the condensed � in the density-phase-spinor repre-
sentation as

� = √
ρei�χ, χ†χ = 1, (52)

FIG. 1. Illustration of the different ground-state Bloch-vector
manifolds as the parameter g3 is tuned. For g3 < 0 the ground-
state manifold consists of the north and south poles, and thus the
system realizes an Ising ferromagnet, spontaneously breaking the
Z2 symmetry while maintaining the U(1) symmetry. For g3 = 0
the full SU(2) symmetry is realized and the ground-state manifold
consists of the entire Bloch sphere. Thus, the system is a Heisenberg
ferromagnet which spontaneously breaks the full SU(2) down to
U(1) ⊂ SU(2). Finally, for g3 > 0 the ground-state manifold consists
of the equatorial plane, rendering the system an XY (easy-plane) fer-
romagnet. Thus, the initial symmetry is U(1), which is spontaneously
broken to the trivial group.

where χ yields the local magnetization density. It may be
parameterized in terms of one complex parameter ζ via

χ = 1√
2(1 + |ζ |2)

(
1 + ζ

1 − ζ

)
, ζ ∈ C. (53)

Alternatively, it may be represented in the more canonical
Euler angle representation as

χ =
(

cos θ
2

sin θ
2 eiϕ

)
, ϕ ∈ [0, 2π ) θ ∈ [0, π ).

We use both of these representations throughout. In terms of
ζ and θ, ϕ the anisotropic interaction is

V = 1

2
g3ρ

2 (ζ + ζ ∗)2

(1 + |ζ |2)2
= 1

2
g3ρ

2 cos2 θ.

We now proceed to study the mean-field phase diagram of the
ground state.

Ising phase. We begin by considering the case of g3 < 0,
i.e., the “Ising ferromagnet” phase. The interaction has a
U(1) × Z2 symmetry generated by i

2σ3 composed with inver-
sion of the z component of the magnetization. In this case
it is energetically favorable for the Bloch vector to align
with the z axis. This breaks the Z2 symmetry and preserves
U(1) so the ground-state manifold is the symmetric space
U(1) × Z2/U(1) ∼ Z2. This is depicted in the leftmost panel
of Fig. 1, which shows the ground-state manifold for the
spinor χ for various couplings. The Goldstone modes asso-
ciated with the broken-symmetry ground state, along with
their dispersions are shown in Table II. As the ground-state
manifold is discrete there is no additional Goldstone mode in
this phase and we no longer consider this portion of the phase
diagram in this work.

Heisenberg phase. When g3 = 0 the interaction term is
isotropic and the model has the full SU(2) invariance. The
ground state then spontaneously break the SU(2) symmetry
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TABLE II. Goldstone modes associated to each phase shown
in Fig. 1. All phases have a Type-I Goldstone mode associated to
the spontaneous breaking of the global U(1) phase, correspond-
ing to the conventional sound mode. Additionally, there may also
be Goldstone modes associated with spontaneous breaking of spin
symmetries, leading to spin waves. In the Ising phase, the broken
symmetry is discrete and there are no Goldstone modes. In the SU(2)
invariant Heisenberg phase there is a Type-II Goldstone mode de-
scribing transverse fluctuations of the magnetization, while in the XY
easy-plane phase there is a Type-I Goldstone describing equatorial
fluctuations of the magnetization.

Phase Sound waves Spin waves

Ising ferromagnet ω ∼ k Gapped
SU(2) ferromagnet ω ∼ k ω ∼ k2

Easy-plane ferromagnet ω ∼ k ω ∼ k

down to U(1) so that the ground-state manifold is the sym-
metric space SU(2)/U(1) ∼ S2—the full Bloch sphere. This
is illustrated in the middle panel of Fig. 1. Without loss of gen-
erality, we take the ground-state magnetization to point along
the positive x direction. Thus, ζ = 0 and χ = 1√

2
(1, 1)T . Then

the unbroken generators are { i
2 (σ1 − 1)} and the broken gen-

erators are { i
2 (σ1 + 1), i

2σ2,
i
2σ3, }. Using the formalism from

Sec. II, we find that the P matrix appearing in the Goldstone
mode Lagrangian is

Pt = ρ

⎛
⎝0 0 0

0 0 1
4

0 − 1
4 0

⎞
⎠, (54)

where the columns refer, in order, to the generators { 1
2 iσ0 +

1
2 iσ1,

1
2 iσ2,

1
2 iσ3}. In this case, we have one Type-II Goldstone

mode associated with the two generators { 1
2 iσ2,

1
2 iσ3} which

exhibits a quadratic dispersion relation and hence realize the
Newton-Cartan geometry in the presence of inhomogeneous
condensate flow. This is summarized in Table II.

XY phase. We now move on to the case where g3 > 0. In
this case there is an energy penalty associated with a nonzero z
component of the magnetization and thus the ground state lies
in the manifold defined by cos θ = 0 ⇒ θ = π/2. Thus, the
ground state breaks the U(1) symmetry but remains invariant
under reflections through the z = 0 plane. As such, the ground
state resides in the symmetric space U(1) × Z2/Z2 = U(1) ∼
S1, as depicted in the right panel of Fig. 1. Without loss of
generality we again take the Bloch vector to lie along the +x
direction. Thus, only two generators remain unbroken in the
Lagrangian {i1, 1

2 iσ3} and the mean field breaks both of them.
We again refer to Eq. (24) to obtain

Pt
mn = 0. (55)

Thus, there are no Type-II Goldstone modes in this system,
but instead two Type-I modes which are linearly dispersing
and therefore exhibit an analog Einstein-Hilbert spacetime,
summarized in Table II.

A. Bogoliubov–de Gennes analysis

We now proceed to examine the fluctuations about the
mean field by obtaining and diagonalizing the Bogoliubov–de
Gennes equations of motion. To see how the analog spacetime
emerges we consider a mean-field condensate ψ0 which is
inhomogeneous, but has a constant magnetization density.
Taking the spin to point in the +x direction, we obtain

ψ0 =
√

ρ(x)ei�(x)χ0 =
√

ρ(x)ei�(x)

( 1√
2

1√
2

)
. (56)

In this case, the mean field describes a flowing condensate
with superfluid density ρ(x) = ψ

†
0 (x)ψ0(x) and superfluid ve-

locity vs = 1
m ∇�(x). Fluctuations about this mean field can

be fully parameterized in terms of the two complex fields φ

and ζ as

δ� = (φσ0 + iζσ2)ψ0. (57)

To quadratic order, the Lagrangian from Eq. (51) decouples
into two quadratic BdG Lagrangians

Lφ = ρ

[
i

2
(φ∗Dtφ − φDtφ

∗) − |∇φ|2
2m

+ 1

2
g0ρ(φ + φ∗)2

]
,

Lζ = ρ

[
i

2
(ζ ∗Dtζ − ζDtζ

∗) − |∇ζ |2
2m

+ 1

2
g3ρ(ζ + ζ ∗)2

]
,

(58)

with Dt = ∂t + vs · ∇ the material derivative in the frame
comoving with the superfluid flow. These two Lagrangians are
specific examples of the more general Eq. (34). In particular,
for g3 > 0 at long wavelengths we can apply the analysis
of Sec. II D to obtain the relativistic analog spacetime. If
on the other hand, g3 = 0, then at long wavelengths we can
apply the analysis of Sec. II E to obtain the nonrelativistic
Newton-Cartan analog spacetime. Nevertheless, it is instruc-
tive to instead follow Ref. [49,50], and directly employ the
BdG equations when determining the consequences of the
changing spacetime structure. This is because the BdG equa-
tions provide us with a single unified description with which
we may capture both phases, as well as the transition between
them.

The BdG equations are obtained as the Euler-Lagrange
equations of Lagrangians Lφ,Lζ and are most transparently
expressed in terms of the Nambu spinors

�0 =
(

φ

φ∗

)
, �3 =

(
ζ

ζ ∗

)
(59)

for condensate and spin wave fluctuations, respectively. We
then find the BdG equations K̂0�0 = 0, and K̂3�3 = 0, with
the BdG differential operators

K̂0 = τ3(i∂t + ivs · ∇) + 1

2mρ
∇ · ρ∇τ0 − g0ρ(τ0 + τ1),

K̂3 = τ3(i∂t + ivs · ∇) + 1

2mρ
∇ · ρ∇τ0 − g3ρ(τ0 + τ1),

(60)
written in terms of the Nambu particle-hole Pauli matrices
τa. Let us emphasize that the only difference between K̂0 and
K̂3 is the coupling constant appearing in front of the τ0 + τ1
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term. For sound waves it is g0, while for the spin waves it
is g3. Thus, both Goldstone modes end up coupling to the
same background condensate density and velocity, albeit with
different speeds of sound. Sound waves end up propagating
with the local group velocity

c0(x) =
√

g0ρ(x)

m
,

while the spin waves have the local group velocity

c3(x) =
√

g3ρ(x)

m
.

Thus, we see that the coupling g3 allows us to independently
tune the two speeds of sound relative to each other.

For generic values of g3 > 0 and arbitrary condensate
flows we cannot find quantum numbers with which we can di-
agonalize K̂3. However, at the SU(2) symmetric point g3 = 0
we observe that the BdG kernel for spin waves obeys

K̂3 = τ3(i∂t + iv · ∇) + 1

2mρ
∇ · ρ∇τ0 ⇒ [τ3, K̂3] = 0.

Since τ3 now commutes with the kernel, the two components
of the BdG spinor decouple and each independently obeys
a Galilean-invariant dispersion relation. This also results in
an additional U(1) symmetry generated by τ3 which imposes
a selection rule for the allowed Bogoliubov transformations.
In particular, there is no matrix element which scatters a
“particle-like” Bogoliubov quasiparticle into a “holelike” par-
ticle. this process is the one responsible for Hawking radiation
and as such we find, counter-intuitively, that it is impossible to
generate Hawking radiation in the Newton-Cartan spacetime
despite the fact that all flow velocities vs are now supersonic.
This is explicitly demonstrated for the case of a steplike hori-
zon, which we analyze in the following section.

IV. STEPLIKE HORIZON

In order to get a more quantitative understanding of how
the changing spacetimes affect observable physics, we imag-
ine a specific flow profile and use the BdG equations to solve
for the spin-wave scattering matrix. We imagine a quasi-
one-dimensional stationary condensate flow with a superfluid
density and velocity which obeys ∂tρ = ∂tvs = 0. The conti-
nuity equation for the condensate then implies

∂x(ρvs) = 0 ⇒ ρ(x)vs(x) = const. (61)

The local speed of sound for the spin waves (henceforth sim-
ply written as c) is therefore c(x) = √

g3ρ(x)/m.
To further simplify calculations, we consider the case of a

steplike profile for ρ(x), v(x) of the form

ρ(x) =
{
ρl x < 0

ρr x � 0
,

v(x) =
{ − |vl | x < 0

− |vr | x � 0
. (62)

Note that continuity requires vlρl = vrρr ⇔ vl c2
l = vrc2

r . In
this work we adopt the convention that v is negative, so that
the condensate flows from the right to the left. With this setup,

we can employ the BdG techniques usually used for phonon
modes to these spin waves [49,50].

This steplike potential has the advantage that away from
the jump, momentum eigenstates solve the BdG equations,
and the scattering matrix reduces to a simple plane-wave
matching condition at the boundary. The details of this pro-
cedure may be found, e.g., in Appendix B. Here we simply
discuss the results of the calculation. We start by considering
g3 > 0 to be large and then decrease down to zero. As we do
so, while keeping the flow profile fixed, we pass through three
regimes.

The first regime occurs for large g3 so that cl > |vl | and
cr > |vr |. Thus, there is no sonic horizon and no Hawking
radiation.

Eventually as we continue decreasing g3 we enter the
regime where |vr | < cr but cl < |vl |. This exhibits a sonic
horizon at x = 0 and is thus accompanied by Hawking radia-
tion.

Finally, we reach the regime where |vl | > cl and |vr | > cr .
This is a regime wherein both the interior and exterior of the
jump are supersonic. However, due to the nonlinear Bogoli-
ubov dispersion, there are still some short-wavelength modes
for which one or both sides of the flow are not supersonic
(this is due to the convex dependence of the group-velocity on
momentum). Thus there is still Hawking radiation, however
we find that as we decrease g3 further, the total “flux” of
modes which are emitted decreases until we recover the result
that at g3 = 0 there is no radiation at all.

To see this, we define the “total number of Hawking
modes” at a given frequency to be N (ω) [see Eqs. (B20)
and (B22)]. This is obtained by calculating the “Hawking”
element of the scattering matrix for the BdG equations. From
N (ω) we can then define the total “luminosity” [51] leaving
the horizon by

LH =
∫ ∞

0
dω

ω

2π
N (ω). (63)

Note that in the conventional black hole case, N (ω) is the
number of photons at frequency ω seen at asymptotic infinity,
and thus this is simply the number flux per unit frequency of
the radiation.

The upshot is given by Fig. 2, which plots LH as a func-
tion of (cr/vr )2 = g3ρr/mv2

r . Thus, for fixed flow density
and velocity, this is essentially plotting as a function of the
control parameter g3. We see the three distinct regions and
importantly at g3 = 0 we see the Hawking effect vanish.

To understand this effect, we consider the dispersion
relation of the waves away from the horizon, for which mo-
mentum is a good quantum number. In the right and left
half-spaces we have the relations

(ω − vαk)2 = c2
αk2 + k4

4m2
, (64)

where α = l, r for the left and right regions, respectively.
This relates the laboratory-frame frequency of a wave ω to
the laboratory-frame momentum k. This dispersion relation is
plotted in Figs. 3 and 4. Due to the presence of a discontinuity
at x = 0 modes with different momenta mix and only ω can be
fixed globally. Thus, the dispersion relation is to be solved by
finding the allowed momenta at each fixed laboratory-frame
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FIG. 2. The total luminosity due to the Hawking radiation for
a fixed density profile ρ(x) and velocity profile v(x). We see that
there is no Hawking radiation when cr is sufficiently large so that
cl > vl (recall these are constrained by the continuity equation).
When cl < vl but cr > vr we get a region of subsonic flow that flows
into a supersonic region, and we begin seeing traditional Hawking
radiation. As we further tune g3, cr drops below vr and both regions
become supersonic at low frequencies. Evidently, there is still a chan-
nel for Hawking radiation emission as seen by the nonzero integrated
flux. However, as cr drops to zero this channel closes, vanishing
precisely at the quantum phase transition into the Newton-Cartan
geometry (cr = 0 = g3). In this plot, vl = 1.3, vr = 0.9, m = 10, and
ρ(x)v(x) = 1.

frequency. This amounts to finding the roots of a quartic poly-
nomial with real coefficients, and as such there are always four
solutions (which are either real or complex conjugate pairs).
The real momenta represent propagating modes while we
later find that the complex roots describe evanescent modes
localized around the horizon.

FIG. 3. The Hawking effect for g3 such that cr > vr and cl < vl

(subsonic to supersonic). In this situation, one side (left) flows faster
than the speed of some excitations, and the other side (right) flows
slower than the speed of any excitation. The dashed line represents
the constant laboratory frame energy ω. The mode that carries away
energy from the horizon is the “Hawking mode,” shown by the star
marker. Tracing this mode back in time (bottom of figure), we find
that it comes from a scattering process that includes positive (red) and
negative (blue) norm states. It is the negative norm state to the left of
the horizon that is responsible for particle creation in the Hawking
channel. Notice that for frequencies larger than those in the labeled
“Hawking region,” there is no Hawking effect due to lack of negative
energy modes to have scattered from at earlier times.

FIG. 4. The Hawking effect for g3 such that cr < vr and cl < vl

(supersonic to supersonic). With both regions flowing faster than the
speed of excitations (relative to the horizon), we still have a Hawking
region, but now we also have a “super-Hawking” region where the
positive and negative normalization modes from both regions can
scatter between one another.

A. Subsonic-supersonic jump

First, we consider the case of a jump between a subsonic
and supersonic flow, depicted graphically in Fig. 3. In this
case, we recover the well-known result that there is Hawking
radiation emitted. The dispersion relation in each half-plane
is plotted and intercepts with a constant ω > 0 are found.
These intercepts yield the momenta of the propagating modes
in each region for the given frequency. Each curve is depicted
with a color indicating the sign of the group velocity in the
comoving frame, which is what is used to distinguish between
“particle-like” (red) and “holelike” (blue), in accordance with
the BdG norm [see Appendix B and in particular Eq. (B3) for
definition]. We see that the outgoing Hawking mode (com-
bined with an evanescent piece at the horizon) is connected to
three incoming waves, one of which is a negative norm state
originating from the interior of the horizon. This particle-hole
conversion processes is the origin of the Hawking effect, as
this induces a Bogoliubov transformation which connects the
vacuum of the asymptotic past to a one-particle state in the
asymptotic future (and vice versa).

We see that due to the convex nonlinear Bogoliubov dis-
persion relation, there is a maximum frequency of the emitted
Hawking radiation obtained by finding the local maximum of
the negative norm dispersion relation. Above this frequency,
the flow is no longer supersonic since the group velocity of
modes depends nontrivially on the frequency.

B. Supersonic-supersonic jump

As we decrease g3 beyond a critical value the system enters
a parameter regime where both sides of the jump are super-
sonic flows. In this case, the dispersion relation still exhibits a
Hawking-like region, as we see in Fig. 4. However, we also
see a new region emerge at low energies (labeled “super-
Hawking” in the figure) in which now both a positive and
negative norm mode can be scattered into. This opens a new
channel in the scattering matrix which leads to a reduction
in the amplitude for scattering into the Hawking channel, as
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FIG. 5. Hawking flux N (ω) as a function of frequency for the
subsonic-to-supersonic case (red) and the supersonic-to-supersonic
case (blue). As we approach the Heisenberg symmetric point g3 = 0,
we find the Hawking flux disappears both in its overall magnitude
and singular behavior. The black arrow indicates the onset of the
“super-Hawking region” responsible for the absence of the singular
distribution.

per generalized unitarity constraints. This is seen in Fig. 5,
which compares N (ω) for the case of a subsonic-supersonic
(red) and supersonic-supersonic jump (blue). Both curves are
qualitatively similar at high frequencies, corresponding to the
“Hawking” region of frequencies in Fig. 4. On the other hand,
we see that at low ω, when we have subsonic-to-supersonic
flow, N (ω) diverges in the universal thermal manner, while
in the supersonic-to-supersonic regime, there is a noticeable
change in behavior between the Hawking and super-Hawking
regimes, cutting off this low ω divergence.

There are two effects occurring which are responsible for
decreasing the Hawking luminosity LH. First, in the Hawk-
ing region the incoming negative norm states now begin to
more strongly backscatter into their corresponding negative
norm state, occupying the evanescent mode on the right side
of the horizon. Second, in this super-Hawking region, the
appearance of an outgoing negative-norm mode provides an
opportunity for the ingoing negative norm channel to avoid
scattering into the positive norm channel. We indeed find that
the two channels begin to decouple from each other, diminish-
ing the amount of Hawking radiation that can be produced.

C. Absence of Hawking radiation for Type-II modes

This takes us directly into the point where g3 = 0, which
exhibits the Newton-Cartan spacetime geometry. One might
expect that there should be something akin to a Hawking
effect since some modes “see” a horizon for any difference
in |vl | and |vr |. However, this horizon does not translate into
a Hawking effect. As explained earlier, at this point the BdG
kernel K̂3 commutes with τ3. In terms of the BdG Lagrangian
of Eq. (58), we find that there is now a global U(1) symmetry
ζ → eiϑζ . We can see explicitly from the BdG analysis that
this conserved charge density is given by

QBdG =
∫

d3x ρ|ζ |2.

On the other hand, by applying Noether’s theorem directly
on the general Newton-Cartan action of Eq. (43), in the limit

FIG. 6. For g3 = 0 in the Newton-Cartan geometry there is an
excitation number conservation that protects negative norm states
from scattering into positive norm states and as a result, if we scatter
a negative norm state in what used to be the “Hawking region,” we
find it fully back scatters into a negative norm state and leaks past the
horizon only with an evanescent tail characteristic to a “classically
forbidden” region.

where n0 is the only nonzero component of nμ and the La-
grangian is independent of the x0, we find

QBdG =
∫

d3r
√

h|ψ |2. (65)

If we identify ψ = ζ and use the results of Eq. (46) we find
that these two indeed match each other. In particular, Eq. (65)
describes a conserved charge for the field ψ on a curved
manifold given by hμν .

Since, unlike the charge in Eq. (B3), this density is positive
definite it can be genuinely interpreted as the number of BdG
quasiparticles. This symmetry then imposes a selection rule
on the scattering matrix which prohibits the scattering pro-
cesses responsible for the Hawking process, which leads to a
creation of BdG quasiparticles. This is evident if we see that
when g3 = 0,[

i(∂t + v · ∇) + 1

2mρ
∇ · ρ∇

]
ζ = 0, (66)

and hence ζ and ζ ∗ do not mix. Indeed, as Fig. 6 illustrates,
though Hawking radiation is permissible by conservation of
energy and momentum, as seen by the dispersion relation in
Fig. 6, there is no permissible matrix element for any scatter-
ing process which mixes positive and negative norm modes.
Thus, at low frequencies (below the cutoff frequency on the
right), negative norm modes may be transmitted across the
horizon but only as outgoing negative norm modes. This is
analogous to the “super-Hawking” regime earlier, but since
there is no conversion between positive and negative norm
modes, there is no Hawking radiation effect.

Above the cutoff frequency on the right (in what we refer
to as the “regular Hawking regime”), all negative norm modes
incident from the interior of the horizon must be reflected
back. Even in this case, there is still a finite penetration of the
negative norm state across the event horizon in the form of an
evanescent mode which is decaying away from the horizon, as
originally predicted in Ref. [49]. In fact, this evanescent tail is
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also present when g3 > 0, but now it is not accompanied by
any other outgoing mode. Again, let us emphasize that this
evanescent mode is associated with a negative norm mode
and therefore does not couple to positive norm modes. Thus,
it cannot be spontaneously excited from the ingoing vacuum.
Ultimately, as the negative norm mode must be reflected, all
the amplitude which initially went into the outgoing positive
norm states when g3 > 0 is now transferred into the reflected
negative norm state and the evanescent tail.

V. TRANSPORT IN NEWTON-CARTAN GEOMETRY

In this section we take up the issue of energy transport
in systems exhibiting Newton-Cartan geometry. Building on
Luttinger’s work on computing heat transport via coupling to
a gravitational field [38], there has been a well-established
method of coupling systems to Newton-Cartan geometry in
order to extract their heat transport properties [24,30,31,39].
With these methods, we can begin with the results in Sec. II E
and find the stress tensor T μν , energy current εμ, and momen-
tum density pμ. However, as we have mentioned previously,
we can also reformulate the relativistic Lagrangian in Sec. II D
in terms of a Newton-Cartan geometry with an additional
external field. Therefore, in the bulk of this section, we make
that precise and use the energy transport machinery to relate
the relativistic stress-energy tensor of Type-I modes to its
nonrelativistic counterparts.

We begin by noting that the variations in the geometry are
not independent as they must satisfy the constraints imposed
by Newton-Cartan geometry that nμvμ = 1 and nμhμν = 0.
Parameterizing the variations so as to respect these constraints
is done by introducing the perturbations δnμ, δuμ and δημν

such that

δvμ = −vμvλδnλ + δuμ,
(67)

δhμν = −(vμhνλ + vνhμλ)δnλ − δημν,

where nμδuμ = 0, and nμδημν = 0 so that δuμ and δημν are
orthogonal to the clock one-form nμ.

To find the full Lagrangian it is useful to formally define a
nondegenerate metric in the full spacetime by

gμν ≡ vμvν + hμν. (68)

Note that unlike relativistic metrics, this Newton-Cartan has
no invariant distinction between spacelike and timelike sep-
arations (simultaneity is a global concept imposed by nμ).
As gμν is nondegenerate, we may proceed to take the inverse
which is defined by

gμαgαν = δν
μ, (69)

where δν
μ is the usual Kronecker delta. This also serves to

define the inverse of the degenerate metric hμν by

gμν ≡ nμnν + hμν. (70)

Note that the constraints on the geometry then imply hμν

obeys

hμσ hσν = δμ
ν − vμnν . (71)

The right-hand side essentially acts to project onto the mani-
fold upon which hμν is not degenerate. These are the “spatial”
three-surfaces which are in some sense “isotemporal.”

Introducing g is helpful in particular because we then
find that if take the determinant g = det(gμν ), we find that√

g = n0

√
h [52]. This is exactly the volume measure of the

Lagrangian Eq. (43). This assists in taking the variation

δ[
√

g] = √
g

[
vμδnμ + 1

2
hμνδη

μν

]
. (72)

We can then use the variations to find the stress tensor Tμν ,
energy current εμ, and momentum density pμ via [39]

δS =
∫

dd+1x
√

g

(
1

2
T μνδημν − εμδnμ − pμδuμ

)
. (73)

Due to the constraints on δuμ and δημν , these values of pμ

and T μν are not unique. In fact, we can make any substitution
pμ → pμ + anμ or T μν → T μν + bμvν + bνvμ. We impose
uniqueness by requiring pμvμ = 0 and T μνnν = 0. Lastly,
one can derive continuity equations for these quantities by
considering how these objects change under a diffeomorphism
(see Ref. [39]).

We now compute these quantities for both the Type-I and
Type-II modes. It is worth noting that these models describe
the free propagation of Goldstone modes and thus are in a
sense “noninteracting.” By this, we mean there are no addi-
tional terms due to interactions [53]. For Type-II modes, the
resulting transport quantities are known [24,30,31,54,55]. We
briefly recapitulate this calculation here.

A. Energy transport for Type-II modes

We proceed to vary the Newton-Cartan geometry in action
Eq. (43). This straightforwardly yields the momentum density
as

pμ = − i

2
[ψ̄ (∂μ − nμvα∂α )ψ − ψ (∂μ − nμvα∂α )ψ̄]. (74)

The limit works out as expected: if we let nμ = (1, 0) and
vμ = (1, 0)T , only the spatial components survive, and we
obtain the momentum current for a nonrelativistic theory with
conserved density |ψ |2. Next, we compute the stress tensor,
which describes the momentum flux. We find

T μν = − i

4
vα[ψ̄∂αψ − ψ∂αψ̄]hμν

+ 1

4m
∂αψ̄∂βψ (hαμhβν + hανhβμ − hμνhαβ ) (75)

and the energy current as

εμ = − 1

2m
(∂αψ̄ )(∂βψ )[vαhβμ + vβhαμ − vμhαβ]. (76)

Both have sensible flat-space limits as well.

B. Energy transport for Type-I modes

For Type-I modes, an analog relativistic theory emerges
from a nonrelativistic theory, and in both the cases, we can
compute energy densities, momentum densities, and the stress
tensor. The objective of this section is to compute how the
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quantities in the analog relativistic system are related to their
nonrelativistic counterparts, motivated by the spacetime rela-
tions derived in Sec. II.

We have shown the Type-I modes can be thought of as
residing in a relativistic analog spacetime, equipped with an
analog metric tensor Gμν . If we vary with respect to this ten-
sor, we obtain a Lorentz-invariant stress-energy-momentum
tensor, T μν . Note Lorentz invariance constrains this to be
symmetric, relating the energy current and momentum den-
sities to each other.

On the other hand, we have shown that one can obtain
the Type-I modes by gapping out one of the generators of
a Type-II mode. Thus, we can also consider varying the
Newton-Cartan geometry that the Type-II mode resides in
before including a mass gap. This yields for us the Newton-
Cartan stress tensor, momentum density, and energy current
and provide for us a general relationship between the rel-
ativistic energy-momentum tensor and the nonrelativistic
counterparts.

First, we return to Eq. (36) and rewrite the Lagrangian in
terms of the Newton-Cartan geometry prior to integrating out
the massive mode (recall that unlike a Type-II mode, a Type-I
mode is canonically conjugate to a massive mode). We obtain

L = √
g

(
−2βvμ∂μφ − hμν

2m
[∂μφ∂νφ + ∂μβ∂νβ]

− 2mC2(x)β2

)
, (77)

where c2 = ρ2/dC2 is the speed of sound of the Goldstone
mode (the factor of density essentially accounts for the units
of hμν). If we integrate out the massive mode β in the limit
where we can neglect the dispersion (i.e., at long wave-
lengths), we recover the Type-I relativistic Lagrangian

Leff =
√

g

2m

(
(vμ∂μφ)2

C2
− hμν∂μφ∂νφ

)
. (78)

From this, we can identify the relativistic metric Gμν by ob-
serving that this Lagrangian must be of the form in Eq. (6)
such that

√−GGμν =
√

g

m

(
vμvν

C2
− hμν

)
. (79)

This yields an equation relating the relativistic metric to the
Newton-Cartan object and the gap of the massive mode. We
find

Gμν = (mC)−
2

d−1 (C2nμnν − hμν ),
(80)

Gμν = (mC)
2

d−1

(
vμvν

C2
− hμν

)
,

where d is the spatial dimension. As we can see, the relativis-
tic metric depends crucially on the potential C(x).

This is helpful since, on the one hand, we can easily obtain
the stress-energy tensor in the relativistic theory by varying
δGμν . On the other hand, we can use the above formulas
to connect this result to the actual stress tensor and energy

current or momentum density of the nonrelativistic model. In
particular,

δGμν = (mC)
2

d−1

[(
vμhνλ + vνhμλ − 2

vμvν

C2
vλ

)
δnλ

+ 1

C2
(vμδν

λ + vνδ
μ

λ )δuλ + δημν

]
. (81)

Thus, we can directly relate the relativistic energy-momentum
tensor Tμν to its nonrelativistic counterparts by expanding

δS =
∫

dd+1x
1

2

√−GTμνδGμν (82)

in terms of the geometric objects in the NC geometry. Doing
so, we obtain

T μν = 1

m(mC)
4

d−1

(
δμ
α − nαvμ

)
T αβ

(
δν
β − nβvν

)
,

ελ = 1

m(mC)
2

d−1

vμ
↔
T λ

μ,

pλ = − 1

mC2
(Tλμvμ − vμTμνv

νnλ). (83)

where the indices on T μν and
↔
T λ

μ are raised with Gμν while
all Newton-Cartan objects use the metric gμν . Ignoring the
factors in front of these expressions, one can think of vν as a
timelike vector with respect to the metric Gμν . In this case, vμ

is directly related to the field of the fluid flow and the object
Eλ ∝ vν

↔
T λ

μ is the energy current measured by an observer
comoving with that flow (not the laboratory observer). By the
same token Pλ ∝ Tλνv

ν is the momentum density measured
by the comoving observer as well. Relativistically, these are
strictly related Eλ = GλμPμ. However, momentum is imposed
by the underlying nonrelativistic field theory to be orthogonal
to flow vλ pλ = 0. The form of pλ that accomplishes this
includes the comoving energy density vμTμνv

ν and subtracts
it off. Lastly, T μν is directly related to T αβ projected to live
only on spatial slices nμT μν = 0, again as imposed by the
underlying nonrelativistic theory.

In effective, relativistic, analog systems, there is a preferred
(lab) frame that is captured by the Newton-Cartan geometry
(in particular nμ specifies the laboratory frame’s “clock”).
This preference is hidden in the high-frequency dispersion
of the Type-I modes and, as we have shown here, results in
nontrivial momentum currents and stress tensors.

As a particular example, a Hawking flux against the flow in
an analog system should result in a real energy and momen-
tum current away from the analog black hole. Far from the
horizon (considering the effective 1+1D problem where the
other two spatial dimensions are trivial) we obtain

Tμν =
( TH −TH

−TH TH

)
, (84)

for a constant TH [56] (for the radiation flowing to +∞). If
we apply this to the above, and assume that at +∞ we have
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no velocity so that vμ = (v0, 0) and a flat hi j = δi j/h1/3
0 , we

have

T xx = 1

mh2/3
0

TH,

ελ = v0

m
TH

[
(v0)2

C2
, h−1/3

0 , 0, 0

]
,

pλ = v0

mC2
TH[0, 1, 0, 0]. (85)

Importantly, we see that there is a finite energy current ε1 and
momentum p1 away from the horizon; there is no p0 compo-
nent due to the constraint pμvμ = 0. While related to what is
computed relativistically, these quantities are not exactly the
same.

VI. DISCUSSION AND CONCLUSIONS

The primary result of this paper is establishing the con-
nection between the different types of Goldstone modes
and different types of analog spacetimes, as summarized
in Table I. This is done by revisiting the proof of the
nonrelativistic Goldstone theorem and allowing for the pos-
sibility of an inhomogeneous mean-field solution. We then
find that the conventional Type-I Goldstone modes come
equipped with an Einstein-Hilbert metric as appears in general
relativity while Type-II Goldstone modes couple to a Newton-
Cartan geometry. The geometry itself is determined by the
spacetime dependence of symmetry-breaking mean-field—
inhomogeneous symmetry breaking ultimately produces the
nontrivial spacetime metric. In this work we have restricted
ourselves to the case where only the overall U(1) symmetry
is inhomogeneously broken. This corresponds to an overall
condensate flow.

Another key result of this paper is establishing the connec-
tion between quantum phase transitions and changes in the
nature of the spacetime. To elucidate this, we present a simple
model where the analog geometry can be tuned by a sin-
gle parameter. This drives a quantum phase transition which
accompanies the transition between the Einstein-Lorentz ge-
ometry and Newton-Cartan geometry. As the phase transition
is approached, the Hawking radiation produced by an event
horizon changes, as encapsulated in Fig. 2. One key result is
that the Newton-Cartan geometry exhibits no Hawking radi-
ation, even though all fluid flows are supersonic (the group
velocity of Goldstone modes vanishes at long wavelengths).

While Sec. III is a minimal theoretical model, the exper-
imental system that most readily realizes these geometries
are spin-1 condensates. In this case, for the scattering lengths
a0 and a2 (for s-wave collisions into the spin-0 and spin-2
channels, respectively), there are two phases that break the
spin SU(2) symmetry: a0 > a2 gives a ferromagnetic phase
with one Type-II magnon and a0 < a2 gives a polar phase
(antiferromagnetic interactions) with two Type-I magnons.
Upon flow, these two phases naturally realize the two different
spacetimes described here. In fact, 7Li, 41K, and 87Rb realize
the ferromagnetic phase [25] with 87Rb specifically already
being used for Hawking-like experiments with the phonon
mode [14]. Additionally, 23Na realizes the polar phase and

critical spin superflow has been studied [57] (necessary for
Hawking-like experiments). The magnon excitations in these
systems can be probed by observing correlations in the spin
density, and the most basic proposal would be to establish
the vanishing Hawking radiation in the ferromagnetic phase.
Though we assume that the spin state is initially homoge-
neous, while the condensate is flowing, this is a reasonable
assumption provided that the condensate can be initially
prepared into the homogeneous spin-polarized ground state.
Once this is achieved, accelerating the condensate flow will
not produce spin currents and we will obtain the setup we
envision in this work [40,41]. The progress in current spinor
condensate experiments highlights that these more exotic ana-
log spacetimes may already be in reach.

On a more abstract level, our work points to the deep
connection between the emergent geometry, codified by the
objects of the Newton-Cartan geometry, and the superfluid
state, characterized by the superfluid density and current.
Indeed, it seems that even in the presence of an enlarged
internal symmetry group, such as the SU(2) × U(1) sym-
metry of the system we consider here, the spatial variations
in the U(1) condensate phase play a special role. Whereas
nontrivial spacetime textures of the spin components can
generate extremely interesting non-Abelian synthetic gauge
fields (see Appendix A 1), only the overall condensate phase
can produces a nontrivial analog spacetime. In particular, it
would be interesting to study how the identification of the
Newton-Cartan velocity field vμ with the superfluid veloc-
ity vs possibly leads to novel constraints or techniques for
the calculation of transport phenomena in superfluids, essen-
tially expanding upon the framework we have laid out in
Sec. V.

Finally, by considering the response of the Goldstone
modes to variations in the analog geometries, we relate
the analog stress-energy-momentum tensor in relativistic ge-
ometries directly to their nonrelativistic counterpart. This is
summarized by the equations below, which shows how the
metric tensor in both analog spacetimes may be constructed
from the underlying geometric objects of the Newton-Cartan
geometry along with an additional field C = C(x):

gμν = nμnν + hμν, nonrelativistic,

Gμν ∝ C2nμnν − hμν, relativistic. (86)

We also provide a direct connection between the energy and
momentum currents of an analog relativistic system and the
more fundamental Newton-Cartan geometry which describes
the laboratory-frame.

Within spinor Bose-Einstein condensates, there are other
phenomena to include such as inhomogeneous broken non-
Abelian symmetry (including textures like spiral magnetiza-
tion, Bloch domain walls, and skyrmions) and synthetic gauge
fields. The construction presented here also considers just
the quadratic excitations, but these Goldstone modes realize
more complicated nonlinear sigma models for which there is
extra intrinsic geometry at play and would need to be incor-
porated into a full theory of these excitations. This analog
also raises questions of the so-called back-reaction effects
of quantum fields on the corresponding analog spacetime.
This has been studied in the relativistic case [8,58], and the
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nonrelativistic case leaves us with the tantalizing prospect of
a system with a dynamical Newtonian gravity. Finally, while
in this work we exclusive focused on the context of flowing
spinor Bose-Einstein condensates, the phenomenon should be
more general. An interesting future direction to pursue would
be to try and extend these results to include more diverse
platforms including electrons in solid-state systems, liquid
helium, superconductors, magnetic systems. The wide variety
of systems which exhibit symmetry-breaking means there is
a wide variety of systems which might exhibit this analog
spacetime and its consequences.
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APPENDIX A: CALCULATING THE FLUCTUATION
LAGRANGIAN

In this Appendix we give all of the algebra and Lagrangian
manipulation that we left out of Sec. II.

Our starting point is Eq. (1) upon substituting � = �0 +
δ� where �0 solves the Euler-Lagrange equations (3) and
δ� can be written in terms of broken generators and massive
fields (7).

Most of the simplifying algebra comes from g(σ�, ξ ) = 0
and integration by parts. To facilitate the integration by parts,
all equalities are be understood to be up to a full derivative.
Furthermore, by construction the linear terms cancel, so we

keep second-order terms only, indicated by
fluc= .

To deal with the term linear in derivatives, we use the object

f
←→
∂t g ≡ f (∂t g) − (∂t f )g, (A1)

and for simplicity we sometimes replace ∂t f with ḟ for time
derivatives. We further take advantage of the Einstein summa-
tion convention (sum over indices is implied). The first term
we investigate is

i

2
�†←→∂t �

fluc= − i

2
�

†
0 (σ

←→
∂t σ )�0

+ i(−�
†
0σξ̇ + ξ †σ̇�0 + ξ †σ�̇0)

− i

2
�

†
0σ2�̇0 + i

2
�̇

†
0σ2�0. (A2)

Performing integration by parts on the �
†
0σξ̇ term, we get

i

2
�†←→∂t �

fluc= − i

2
�

†
0 (σ

←→
∂t σ)�0 + i(�†

0 σ̇ξ + ξ †σ̇�0) + i�̇†
0

(
1

2
σ2�0 + σξ

)
− i

(
1

2
�

†
0σ2 − ξ †σ

)
�̇0 + i

2
ξ †←→∂t ξ . (A3)

The kinetic energy term takes the form

∂ j�
†∂ j�

fluc= − 1
2∂ j�

†
0σ2∂ j�0 − ∂ j�

†
0σ∂ jσ�0 − ∂ j�

†
0σ∂ jξ − 1

2∂ j�
†
0σ2∂ j�0 − �

†
0 (∂ jσ )σ∂ j�0 + ∂ jξ

†σ∂ j�0

−�
†
0∂ jσ∂ jσ�0 + ∂ jξ

†∂ jξ − �
†
0∂ jσ∂ jξ + ∂ jξ

†∂ jσ�0. (A4)

We perform integration by parts on the two instances of − 1
2∂ j�

†
0σ2∂ j�0 above in opposite ways to obtain

∂ j�
†∂ j�

fluc= 1
2∇2�

†
0σ2�0 − 1

2∂ j�
†
0σ∂ jσ�0 + 1

2∂ j�
†
0 (∂ jσ )σ�0 + 1

2�
†
0σ2∇2�0 − 1

2�
†
0 (∂ jσ )σ∂ j�0 + 1

2�
†
0σ(∂ jσ)∂ j�0

− ∂ j�
†
0σ∂ jξ + ∂ jξ

†σ∂ j�0 − �
†
0∂ jσ∂ jσ�0 + ∂ jξ

†∂ jξ − �
†
0∂ jσ∂ jξ + ∂ jξ

†∂ jσ�0. (A5)

If we further use integration by parts on −∂ j�
†
0σ∂ jξ and ∂ jξ

†σ∂ j�0, we obtain (after some reordering)

∂ j�
†∂ j�

fluc= −�
†
0∂ jσ∂ jσ�0 − 1

2∂ j�
†
0σ∂ jσ�0 + 1

2∂ j�
†
0 (∂ jσ)σ�0 − 1

2�
†
0 (∂ jσ )σ∂ j�0 + 1

2�
†
0σ(∂ jσ )∂ j�0

+ ∂ jξ
†∂ jξ + ∂ j�

†
0∂ jσξ − ξ †∂ jσ∂ j�0 − �

†
0∂ jσ∂ jξ + ∂ jξ

†∂ jσ�0

+∇2�
†
0

(
1
2σ2�0 + σξ

) + (
1
2�

†
0σ2 − σξ

)∇2�0. (A6)

We observe that, along with Eq. (11), the equation of motion cancels the last lines in Eqs. (A3) and (A6) with the first line of
Eq. (11).
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All together, we can combine these equations to get the full fluctuation Lagrangian

L fluc= − i

2
�

†
0 (σ

←→
∂t σ )�0 + i(�†

0 σ̇ξ + ξ †σ̇�0)+ i

2
ξ †←→∂t ξ − 1

2m

[
−1

2
∂ j�

†
0σ∂ jσ�0 + 1

2
∂ j�

†
0 (∂ jσ)σ�0 − 1

2
�

†
0 (∂ jσ )σ∂ j�0

+ 1

2
�

†
0σ(∂ jσ)∂ j�0 + ∂ jξ

†∂ jξ + ∂ j�
†
0∂ jσξ − ξ †∂ jσ∂ j�0 − �

†
0∂ jσ∂ jξ + ∂ jξ

†∂ jσ�0 − �
†
0∂ jσ∂ jσ�0

]

− 1

2
ξ ∗

a

∂2V

∂�
†
a∂�

†
b

∣∣∣∣
0

ξ ∗
b − ξ ∗

a

∂2V

∂�
†
a∂�b

∣∣∣∣
0

ξb − 1

2
ξa

∂2V

∂�a∂�b

∣∣∣∣
0

ξb. (A7)

We can now expand our fluctuations in terms of their fields σ�0 = θnσn�0 and ξ = βnξn, and we obtain

L fluc= − i

2
�

†
0 [σm, σn]�0θm∂tθn + 1

4m
θm∂ jθn(∂ j�

†
0 [σm, σn]�0 − �

†
0 [σm, σn]∂ j�0) + iβn∂tθn(�†

0σmξn + ξ †
n σm�0)

+ 1

2m
βm∂ jθn(ξ †

mσn∂ j�0 − ∂ j�
†
0σnξm + �

†
0σn∂ jξm − ∂ jξ

†
mσn�0) + 1

2m
�

†
0σnσm�0∂ jθn∂ jθm

+ i

2
βm∂tβn(ξ †

mξm − ξ †
n ξm) + i

2
βnβm(ξ †

m∂tξn − ∂tξ
†
mξn) + βm∂ jβn(ξ †

n ∂ jξm + ∂ jξ
†
mξn)

− 1

2m
ξ †

n ξm∂ jβm∂ jβn − 1

2
βnβm

[
ξ †

n

∂2V

∂�†∂�†

∣∣∣∣
0

ξ ∗
m + ξT

n

∂2V

∂�∂�

∣∣∣∣
0

ξm + 2ξ †
m

∂2V

∂�†∂�

∣∣∣∣
0

ξn

]
. (A8)

The first three lines of Eq. (A8) lead to the Lagrangian presented in the text (12), while the last two lines represent the massive
modes neglected in the main text.

One can then easily check that once the full Lagrangian
in Eq. (34) is derived that the massive modes conjugate to
Goldstone modes no longer have the term that goes as βm∂μβn,
only keeping the kinetic term and mass matrix (which we
diagonalize to find the Type-I basis states).

1. Spin textures

To incorporate spin textures into this theory, we need to
make a looser assumption on our mean-field state. In this sit-
uation, we allow for the broken generators to depend on space
and this can be easily accomplished with the introduction of a
new field Aμ(x) ∈ g(x)/[u(1) × h(x)] such that the mean field
satisfies

�0(x) =
√

ρ(x)eiϑ (x)χ (x),
(A9)

χ (x)†χ (x) = 1, ∂μχ (x) = Aμ(x)χ (x),

and in terms of the (spatially dependent) broken genera-
tors Aμ(x) = θ j (x)σ j (x). As a concrete example, consider
a simple spin wave in two dimensions such that χ (x, y) =
eiSxxeiSyyχ0, then Ax(x, y) = iSx and Ay(x, y) = cos(x)iSy −
sin(x)iSz. Aμ(x) represents infinitesimal spin rotations in the
dxμ direction. The removal of the U(1) subgroup from G/H
corresponds to the generator iI, which is accounted for with
the phase ϑ (x). We separate out phase and density since this
generator is always broken for a nonzero mean field, and its
explicit relation to fluid flow leads to implications for Galilean
boosts; in particular, the gradient of ϑ (x) is exactly related to
fluid velocity.

The field Aμ(x) helps us to determine the spatial de-
pendence of the broken generators. To understand this, the
definition of an unbroken generator is that it must annihilate
the mean field

τa(x)χ (x) = 0, (A10)

and by taking a derivative, one can show that τa(x) [and hence
σb(x)] obey the unitarity-preserving differential equations

∂μτa(x) = [Aμ(x), τa(x)],

∂μσb(x) = [Aμ(x), σb(x)]. (A11)

We further need to define the (spatially independent) structure
constants, for which we have

[τa(x), τb(x)] = hc
abτc(x),

[σa(x), τb(x)] = g̃c
abτc(x) + gc

abσc(x),

[σa(x), σb(x)] = f̃ c
abτc(x) + f c

abσc(x). (A12)

To define a covariant derivative for the Goldstone modes,
we write Aμ(x) = An

μ(x)σn(x) and σ = iθ0(x) + θn(x)σn(x)
(sum over n, from 1 to the number of broken generators) and
evaluate

(∂μσ)�0 = (i∂ jθ0 + [∇ jθ ]nσn)�0, (A13)

where we have defined the covariant derivative

[∇μ]m
n ≡ δm

n ∂μ + Ab
μ(x) f m

bn, (A14)

and we use the shorthand [∇μθ ]m ≡ [∇μ]n
mθn.

This gives us enough to deal with the first term in Eq. (A7)

− i

2
�

†
0 (σ

←→
∂t σ )�0 = − i

2
ρχ†[σm, σn]χ θm[∇tθ ]n. (A15)

Just as before, the matrix �mn ≡ − i
2χ†[σm, σn]χ is playing

a central role, but the existence of the non-Abelian covariant
derivative makes it impossible to use it to label the fields θn as
Type-I or Type-II without further structure (we return to this
below). Furthermore, �mn = f 0

mn is spatially independent.
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Moving on, we can evaluate the following terms in the
Lagrangian Eq. (A7):

− 1
2∂ j�

†
0σ∂ jσ�0 + 1

2∂ j�
†
0 (∂ jσ )σ�0 + c.c.

= 2iρ∂ jϑθn[∇ jθ ]mχ†[σn, σm]χ − 2ρθn[∇ jθ ]m
(
νb f b

nmAb
j

)
+ ρθnθqAb

j f̃ m
bqAc

jg
n
cmνn, (A16)

where we have defined νn > 0 via ψ
†
0 {σn, σm}ψ0 = −2νnδnm

[this is just the inner product we defined in Eq. (B3)]. While
the distinction between mode types is less clear, we can still

use ψ
†
0 [σn, σm]ψ0 to break up generators into Type-I and

Type-II just as we did in Sec. II B. For Type-I generators
νn = μn and for Type-II νn = λn [see Eq. (29)]. Next, we note
that

−�
†
0∂ jσ∂ jσ�0 = ρ∂ jθ0∂ jθ0 + ρ[∇ jθ ]n[∇ jθ ]nχ

†σnσnχ.

(A17)

Lastly, we need to take into account the terms that couple
massive modes with Goldstone modes. In this situation, it is
useful to begin to separate Type-I generators from Type-II:

−ξ †∂ jσ∂ j�0 + ∂ j�
†
0∂ jσξ + ∂ jξ

†∂ jσ�0 − �
†
0∂ jσ∂ jξ

= −4ρ∂ jϑβ0∂ jθ0 + 2ρβn∂ jθ0(χ†Ajσ
I
nχ + χ†σ I

nA jχ ) + 2ρβ0[∇ jθ ]n(χ†Ajσnχ + χ†σnA jχ )

− 2ρ∂ jϑβn[∇ jθ ]m(χ†σ I
nσmχ + χ†σmσ I

nχ ) + iρ[∇ jβ]n[∇ jθ ]mχ†[σn, σm]χ

− iρβn[∇ jθ ]m(χ†Ajσ
I
nσmχ + χ†σmσ I

nA jχ + χ†Ajσmσ I
nχ + χ†σ I

nσmAjχ ). (A18)

We can add all of these terms together and use − i
2χ†[σn, σm]χ = λnδmn̄ = �nm to obtain our effective Lagrangian for Goldstone

modes:

Le f f = ρ
1

2
θn�nm[Dtθ ]m − 1

2m
ρ[∇ jθ ]n[∇ jθ ]n − 1

2m
ρ[∇ jβ]n[∇ jβ]n − ρM2

mnβnβm − ρF2
nmθnθm + 2ρβ0Dtθ0

− 1

2m
ρ∇ jθ0∇ jθ0 + 2ρμnβn[Dtθ ]n − 1

2m
ρθn[∇ jθ ]m� j,nm + 2

m
ρβ0An

j [∇ jθ ]nνn + 2

m
ρβnAn

j∂ jθ0μn

− ρ

2m
βn[∇ jθ ]mXj,nm − 1

m
ρ f q

bnβqAb
j�nm[∇ jθ ]m, (A19)

where � j,nm = −2νb f b
nmAb

j ,

X j
nm = −i(χ†Ajσ

I
nσmχ + χ†σmσ I

nA jχ + χ†Ajσmσ I
nχ + χ†σ I

nσmAjχ ),

and F2
nm = Ab

j f̃ m
bqAc

jg
n
cmνn + Ab

j f̃ m
bnAc

jg
q
cmνn, with no sum over n on the right. We can now introduce Newton-Cartan geometry as

we did before, and by absorbing factors of the density into terms appropriately, the Lagrangian takes the form

Le f f = n0

√
h(2β0v

μ∂μθ0 − hμν

2m
(∂μθ0∂νθ0 + ∂μβ0∂νβ0) + 2ρμnβnv

μ[∇μθ ]n + θn�nmvμ[∇μθ ]m

− 1

2m
hμν{[∇μθ ]n[∇νθ ]m + [∇μβ]n[∇νβ]m)} − M̃2

mnβnβm − F̃2
mnθnθm − hμν

2m
θn�μ,nm[∇νθ ]m

+ 2hμν

m
β0An

μ[∇νθ ]nνn − hμν

2m
βnXμ,nm[∇νθ ]m − hμν

m
f q
bnβqAb

μ�nm[∇νθ ]m). (A20)

There are now new fields that encode the effect of the spin texture. The major structural difference though is the introduction of
a covariant derivative ∇ j with a non-Abelian, artificial gauge field. This is the usual artificial gauge field discussed in the cold
atomic context [59] and represents the natural generalization of that concept to analog curved spaces: all derivatives become
covariant in the natural way. We speculate that the extra terms (new fields) might be able to be folded back into a new geometry,
especially if we place restrictions on the allowable spin texture, but we leave that exploration to future work.

Importantly, this shows that the Newton-Cartan formalism can accommodate spin-textures with a defined covariant derivative
but at the cost of added fields and masses.

APPENDIX B: BOGOLIUBOV THEORY
FOR HAWKING EMISSION

As per Eq. (60), the magnon field [written in terms of
the complexified spinor �3(x) = (ζ , ζ ∗)T ] obeys the BdG
equation

[
iτ3D̂t + 1

2mρ
∇ · ρ∇ − g3ρ(τ0 + τ1)

]
�3(x) = 0, (B1)

written in terms of the comoving frame material derivative
D̂t = ∂t + vs · ∇.

Before proceeding, there are two properties of this equa-
tion that prove useful. First is the charge conjugation
symmetry: if ϒ solves Eq. (B1), then so does

ϒ ≡ τ1ϒ
∗. (B2)

In particular, this is important since the Nambu spinor should
obey the self-conjugate property that �3 = (ζ , ζ ∗)T = �3.
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Thus, it is important that this is respected by the equations of
motion, which we see it is.

Furthermore, provided the density ρ(x) is time indepen-
dent, we can define the conserved pseudoscalar product on
the solution space

(ϒ1, ϒ2) ≡
∫

dd r ρ(r)ϒ†
1 (r)τ3ϒ2(r). (B3)

This scalar product has a number of useful features including
that the charge conjugation operation changes the sign, so that

(ϒ1, ϒ2) = −(ϒ2, ϒ1). (B4)

We use this pseudo-inner product to define a notion of norm
for solutions. Because of the τ3, this is not the usual L2(Rd )
norm, and in fact is not a norm at all since it is not positive
semidefinite. There are nontrivial negative norm states which
we loosely refer to as “holelike” states, in contrast to the
“particle-like” solutions with positive norm. As remarked ear-
lier, holelike solutions can be related to particle-like solutions
by charge conjugation since if ϒ has negative norm we find

(ϒ,ϒ) < 0 ⇒ (ϒ,ϒ ) > 0.

To proceed further, we utilize the (assumed) time indepen-
dence of the kernel to further separate the solution ϒ(x) =
ϒ(r, t ) into energy eigenmodes

ϒ(x) =
∫

dω

2π
Wω(r)e−iωt , (B5)

where Wω(r) = [Uω(r),Vω(r)]T is a two-component spinor
which obeys the eigenvalue problem[

ω + ivs · ∇ + 1

2mρ
∇ · ρ∇τ3 − g3ρ(τ3 + iτ2)

]
Wω(r) = 0.

(B6)
We refer to [9,49] for more details of solving this system.
What is important for our discussion are the details of the
dispersion relation, which are used to analyze the asymptotic
scattering states at spatial infinity.

We now focus on the case of a one-dimensional ho-
mogeneous flow. In this case both the momentum k and
laboratory-frame frequency ω are good quantum numbers and
obey the standard Bogoliubov dispersion relation (using that
mc2 = g3ρ) of

ω = vsk ±
√

c2k2 +
(

k2

2m

)2

≡ ω±(k), (B7)

where the last equality is used to define the laboratory fre-
quency ω±(k). At a particular frequency ω > 0, we may
determine which scattering states are available by finding the
real momenta k which obey ω = ω±(k).

Considering a steplike variation in the flow, the flow profile
is as given in Eq. (62). For x < 0 and x > 0 the solutions to
the BdG equations are still plane waves which obey the Bo-
goliubov dispersion relation, albeit with different parameters
ρ and v. These two dispersion relations are shown in Figs. 3
and 4 for fixed values of the condensate velocities |vl | > |vr |
and densities ρl , ρr .

Instead of the laboratory frame, we may measure frequency
with respect to the frame comoving with the fluid flow. This is

implemented by Doppler shifting to the (positive) comoving
frequency

�(k) ≡
√

c2k2 + k4

4m2
, (B8)

so that ω±(k) = vk ± �(k) (vk amounts to a Galilean boost).
For |v| < c (right dispersion in Fig. 3), there are only two

real momenta at any positive frequency, which correspond
to a right- and left-moving quasiparticle. For |v| > c (left
dispersion in Fig. 3) a new scattering channel opens whereby
a wave packet with negative free-fall frequency [ω−(k)] may
have positive laboratory-frame frequency ω.

We find the eigenfunctions for the step potential by em-
ploying matching equations at the step. These impose the
continuity requirements

[Wω(x)]x=0+
x=0− = 0,

[ρ∂xWω(x)]x=0+
x=0− = 0. (B9)

Additionally, we choose them to satisfy (Wω,W ω ) = 0 and
can be normalized such that (Wω,Wω ) > 0 if ω = ω+(k) (pos-
itive comoving frequency) and (Wω,Wω ) < 0 if ω = ω−(k)
(negative comoving frequency).

Combining all of this, we can express the full solution in
terms of positive-frequency components only via

�3(x, t ) =
∫ ∞

0

dω

2π

∑
α

[A(Wωα )Wωα (x)e−iωt

+ A∗(Wωα )W ωαe+iωt ], (B10)

where the A(Wω,α ) are the Fourier coefficients of the expan-
sion and α is a set of quantum numbers which are used to
label the different degenerate modes at each energy ω > 0. At
this point, we can second quantize the system and promote ϒ

to an operator. In such a case, the operator equation looks like

ϒ̂ (x, t ) =
∫ ∞

0

dω

2π

∑
α

[a(Wωα )Wωα (x)e−iωt

+ a†(Wωα )W ωαe+iωt ], (B11)

where now a(Wωα ) are operators satisfying

[a(Wωα ), a†(Wω′α′ )] = (Wωα,Wω′,α′ ). (B12)

All Wωα are orthogonal with respect to this inner product, and
so a(Wωα ) is either a creation or annihilation operator based
on the sign of the norm.

The system may be exactly solved when the flow is ho-
mogeneous, in which case the momentum k is also a good
quantum number. Assuming a solution of the form

Wω(x) = wkeikx

produces the momentum space eigenvalue problem[
ω − vk − 1

2m
k2τ3 − g3ρ(τ3 + iτ2)

]
wk = 0. (B13)

In principle, the momentum k depends in the energy ω, but we
usually suppress this dependence for brevity.
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To evaluate (Wωα,Wω′α′ ), we establish a couple of facts. If
we let wk = [uk, vk]T , then we have

mc2vk =
[
±�(k) − k2

2m
− mc2

]
uk, (B14)

and hence

m2c4|vk|2 =
{

m2c4 ∓ 2�(k)

[
mc2 + k2

2m
∓ �(k)

]}
|uk|2,

(B15)
this relation between |uk|2 and |vk|2 allows us to evaluate

(Wωα,Wω′α′ ) = ±�(k)
2ρ

m2c4

[
mc2 + k2

2m
∓ �(k)

]

× |uk|2δαα′δ[kα (ω) − kα′ (ω′)]

= ±�(k)
2ρ|vg|
m2c4

[
mc2 + k2

2m
∓ �(k)

]

× |uk|2δαα′δ(ω − ω′). (B16)

The term in brackets mc2 + k2

2m − �(k) > 0, so the sign of
the normalization depends exclusively on whether we have
positive [+�(k)] or negative [−�(k)] comoving frequency.
The terms with negative comoving frequency (or negative
norm) are represented by the blue curves in Figs. 3 and 4.

We can now perform the Hawking calculation to determine
the Bogoliubov transformation giving rise to excitation pro-
duction. This is presented first in Fig. 3, where we consider
a wave packet moving away from the horizon to +∞ and
frequency ω, this is the Hawking mode. If we trace it back
in time, it was related to a scattering process at the horizon
itself, so in terms of three other positive frequency modes

WH = αRWR,1 + αLWL,2 + βLW L,1, (B17)

where WH includes the far propagating right-moving mode
along with the evanescent near horizon solution, WR,1 is the
left-moving mode on the right, and WL,(1,2) are the right-
moving modes on the left (counted left to right in Fig. 3). This
immediately gives us how to relate the creation operators of

the out-vacuum to the in-vacuum

a(WH) = αRa(WR,1) + αLa(WL,2) + βLa†(WL,1). (B18)

This implies that for WH at a particular frequency ω, we can
find the number of Hawking modes leaving the horizon by
considering the expectation value

〈0in|a(WH)†a(WH)|0in〉 = |βL|2(WL,1,WL,1). (B19)

With the proper normalization and putting back in the de-
pendence on frequency, the number of particles leaving the
horizon at frequency ω is

N (ω) = |βL(ω)|2 (WL,1(ω),WL,1(ω))
(WH (ω),WH (ω))

. (B20)

This same analysis can be done for the supersonic-to-
supersonic case presented in Fig. 4. For lack of a better term,
we call the region where there are multiple positive and nega-
tive norm channels the “super-Hawking” region. In this case,
we have two modes in the Hawking process that need to be
backwards scattered: one positive norm and the other negative
norm. The result of the scattering process is

WH = βRW R,1 + αRWR,2 + βLW L,1 + αLWL,2,

W H′ = α′
RW R,1 + β ′

RWR,2 + α′
LW L,1 + β ′

LWL,2. (B21)

These equations can be similarly related to a Bogoliubov
transformation, and we can find the number of Hawking par-
ticles leaving the horizon at frequency ω by considering

N (ω) = |βL(ω)|2 (WL,1(ω),WL,1(ω))
(WH (ω),WH (ω))

+ |βR(ω)|2 (WR,1(ω),WR,1(ω))
(WH (ω),WH (ω))

+ |β ′
L(ω)|2 (WL,2(ω),WL,2(ω))

(WH ′ (ω),WH ′ (ω))

+ |β ′
R(ω)|2 (WR,2(ω),WR,2(ω))

(WH ′ (ω),WH ′ (ω))
. (B22)

Despite there being more terms, there is generally less of a
Hawking flux due to a decoupling of the negative and positive
norm channels as we can see in Fig. 2.
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