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Suppressing reactivity in a degenerate Fermi molecular gas via the statistical potential

Yan-Peng Bai ,1 Jing-Lun Li ,1,2 Gao-Ren Wang,1,* Zhong-Bo Chen,1 Bo-Wen Si ,1 and Shu-Lin Cong 1,†

1School of Physics, Dalian University of Technology, Dalian 116024, China
2Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST),

Universität Ulm, 89069 Ulm, Germany

(Received 26 November 2021; revised 14 March 2022; accepted 11 April 2022; published 21 April 2022)

We present a simple theoretical model used for describing the suppressing reactivity of an ultracold Fermi
molecular gas in a degenerate regime via the statistical potential. The statistical potential originates from the
symmetry properties of the wave function of identical particles, and is derived by using the density matrix. We
use our theoretical model to well reproduce recent experimental results of a potassium-rubidium molecule gas in
the deep quantum degenerate regime reported by De Marco et al. [Science 363, 853 (2019)]. The suppression of
the chemical reaction rate observed in the experiment is quantitatively reproduced by using the p-wave scattering
volume as an adjusting parameter. The strength of spatial correlation can be intuitively captured by the statistical
potential.
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I. INTRODUCTION

The achievement of quantum degeneracy [1–7] in ultracold
gases provides an ideal platform to study many-body phenom-
ena and chemical reactions in molecular physics. Though the
quantum degeneracy in a trapped Fermi atomic gas has been
observed 20 years ago [4], the preparation of a degenerate
molecular gas in the ground state has been one of the most
challenging goals due to the complex internal degree of free-
dom of the molecules [8–10].

Recently, De Marco et al. reported the creation of an
ultracold potassium-rubidium molecule gas in the deep quan-
tum degenerate regime [10]. A significant suppression of the
reaction rate was observed below 0.6 times the Fermi temper-
ature, and the Bethe-Wigner threshold law no longer works
[10,11]. In order to explain this suppression, one has to go
beyond the pure two-body loss model to include additional
mechanisms, such as the statistical behavior of the molecular
gas, etc. [12–14]. In the degenerate regime, the de Broglie
wavelength of a particle is comparable to or greater than the
interparticle spacing, so there is a strong spatial correlation
between the particles even in an ideal gas. For Fermi gases,
the collision between particles has to overcome the effective
repulsive potential according to the Pauli exclusion princi-
ple. This repulsive potential is generally called the statistical
potential, and its formula can be derived by comparing the
spatial probability density of particles in quantum mechanics
with that in classical mechanics [15]. This work aims to study
the effect of the statistical behavior of a Fermi molecular gas
on the reaction rate in a degenerate regime. To understand
and interpret the experimental observations, we introduce the
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statistical potential in the two-body scattering. We find that
the suppression of the reaction rate can be well reproduced.

II. THE STATISTICAL POTENTIAL
OF A NONIDEAL FERMI GAS

The radial Schrödinger equation for two-body scattering is
written as(

− d2

dr2
+ L(L + 1)

r2
+ Veff

)
ψ (r) = Eψ (r), (1)

where L is the relative orbital angular momentum. r and E are
the scaled radius and collision energy, respectively. The length
scale is defined as βα = (2μCα/h̄2)1/(α−2) with μ = m/2 be-
ing the reduced mass [16]. Cα is the dispersion coefficient, and
α > 2 is the exponent of the model potential −Cα/rα . The en-
ergy scale is sE = h̄2/(2μβ2

α ). The effective potential, Veff =
V (r) + Vsta (r), contains the interparticle interaction V (r) and
the statistical potential Vsta (r) originating from the symmetry
properties of the wave function of identical particles [15].

The statistical potential is obtained by using the density
matrix. The diagonal element of the density matrix ρ̂0 of an
ideal gas ensemble in the coordinate representation is given
by

〈r1, . . . , rN | ρ̂0 |r1, . . . , rN 〉

= 〈r1, . . . , rN | e−βĤ0 |r1, . . . , rN 〉
Z0

N (V, β )
, (2)

where ri is the coordinate of the ith particle, and Ĥ0 is the
total Hamiltonian of N free particles. Equation (2) repre-
sents the probability density, where the particles in gas are
located at r1, . . . , rN . The partition function for the ideal gas is
given by

Z0
N (V, β ) =

∫
d3N r 〈r1, . . . , rN | e−βĤ0 |r1, . . . , rN 〉 , (3)
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FIG. 1. The statistical potential Vsta as a function of temperature
T for the average interparticle spacing r = 17.92β6 (solid line) and
20.00β6 (dashed line). The magnitudes of statistical potential cal-
culated from the experimental data at different Fermi temperatures
(squares and triangles) [10] (see Table I). Squares and triangles
correspond to T/TF < 0.60 and >0.60, respectively. The p-wave
scattering volume a1 is taken to be −12.97a3

0.

where d3N r = dr1 · · · drN , V is the volume of gas, and β =
1/kBT with kB being the Boltzmann constant. The classical
version of Eq. (2) is expressed as∫

ρ0d3N p = 1

N!h3N

1

Zc
N

∫
e−βHd3N p, (4)

where Zc
N = 1/(N!h3N )

∫
e−βHd3N rd3N p is the classical par-

tition function, d3N p = dp1 · · · dpN , and H is the classical
Hamiltonian. In order to obtain the same result as Eq. (2)
from Eq. (4), a statistical potential needs to be added to the
classical HamiltonianH . For an ideal Fermi gas, the statistical
potential V 0

sta is expressed as [15]

V 0
sta = − 1

β
ln[VN 〈r1, . . . , rN | ρ̂0 |r1, . . . , rN 〉]. (5)

However, the hypothesis of an ideal gas is insufficient to deal
with the decay of molecular gas in the quantum degenerate
regime. When the interaction between particles is included,
the statistical potential for the Fermi gas in the interacting
regime is given by

Vsta = − 1

β
ln[VN 〈1, . . . , N | ρ̂ |1, . . . , N〉], (6)

with

〈1, . . . , N | ρ̂ |1, . . . , N〉 = 〈1, . . . , N | e−βĤ |1, . . . , N〉
ZN (V, β )

, (7)

where Ĥ is the Hamiltonian of the nonideal gas. r1, . . . , rN in
Eq. (5) is replaced by 1, . . . , N in Eq. (6) in order to distin-
guish from the wave function of the ideal gas. The partition
function for a nonideal gas is given by

ZN (V, β ) =
∑
{ml }

N∏
l=1

1

ml !

(
V
λ3

bl

)ml

, (8)

where bl is the l-cluster integral, namely,

bl (V, β ) = 1

l!λ3l−3V

∫
d3r1d3r2 · · · d3rlUl (1, 2, . . . , l ),

(9)

where Ul (1, 2, . . . , l ) is the cluster function [15]. {ml} is
a set of integers that satisfies the condition

∑N
l=1 lml =

N . In the following, we take N = 2 as an exam-
ple. For the ideal Fermi gas, 〈r1, r2| e−βĤ0 |r1, r2〉 = [1 −
exp(−2πr2/λ2)]/(2λ6) and Eq. (5) is reduced to V 0(2)

sta (r) =
−kBT ln[1 − exp(−2πr2/λ2)] [15], where λ = h̄(2πβ/m)1/2

is the average thermal wavelength with mass m. For
the Fermi gas in the interacting regime, 〈1, 2| ρ̂ |1, 2〉 =
〈1, 2| e−βĤ |1, 2〉 /Z2(V, β ) with Z2(V, β ) = 1/2(V/λ3)2 +
Vb2/λ

3. Then the statistical potential of a nonideal Fermi gas
is given by

V (2)
sta (r) = −kBT ln

2λ6 〈1, 2| e−βĤ |1, 2〉
1 + 2b2λ3/V

r�1≈ −kBT ln
1 − e−2πr2/λ2

1 + 2b2λ3/V
. (10)

In the asymptotic region of r � 1, the potential V (r) → 0,
and 〈1, 2| e−βĤ |1, 2〉 can be approximatively replaced by
〈r1, r2| e−βĤ0 |r1, r2〉 in Eq. (10). The 2-cluster integral b2 can
be expressed in terms of a two-body scattering phase shift as

b2 = 2−5/2 + 23/2 λ2

π2

∑
L=odd

(2L + 1)
∫ ∞

0
dkkηL(k)e−β h̄2k2/m,

(11)
where ηL is the energy-dependent partial phase shift [15]. For
the Fermi gas, the reaction rate is given by

K = g

k

∑
L=odd

(2L + 1)(1 − |SL|2), (12)

where SL is the S matrix for the L-partial wave. For the
universal case, the S matrix is expressed as SL = (−1)L+1roi,
where roi is the quantum reflection coefficient induced by the
long-range potential [16]. The quantum reflection coefficient
roi can be obtained by solving Eq. (1) [16,17]. g = 1 for dis-
tinguishable particles and g = 2 for identical particles in the
same internal state [17–21]. The thermally average reaction
rate is expressed as

K (T ) = 2√
π

T −3/2
∫ ∞

0
E1/2e−E/T KdE . (13)

III. APPLICATION TO THE EXPERIMENT

We take V (r) to be the hard-core plus −1/r6 potential. The
effective potential is given by

Veff =
{∞, r < r0,

−1/r6 + Vsta (r), r > r0,
(14)

where r0 is the position of the potential wall. The statistical
potential V (2)

sta (V 0(2)
sta ) for the case N = 2 is equivalent to the

first-order quantum correction to the classical gas, namely
the first-order approximation of the statistical potential Vsta

(V 0
sta). We use formulas V (2)

sta and V 0(2)
sta in the numerical cal-

culation. For convenience, in the following, V (2)
sta and V 0(2)

sta are
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TABLE I. Fermi temperature TFi and r̄i (units of β6) calculated according to the experimental data (the first two columns) [10].

Temperature T (nK) [10] T/TFi [10] Fermi temperature TFi (nK) r̄i (units of β6)

65 0.23 282.61 19.01
71 0.32 221.88 21.45
90 0.36 250.00 20.21
97 0.39 248.72 20.26
110 0.48 229.17 21.11
136 0.55 247.27 20.32
138 0.45 306.67 18.25
146 0.68 214.71 21.81
180 0.56 321.43 17.83
200 0.81 246.91 20.34
240 0.99 242.51 20.52
270 1.08 249.73 20.22
270 0.57 473.68 14.68
290 0.90 322.22 17.80
320 1.29 248.06 20.29
400 0.70 571.43 13.37
440 0.60 733.33 11.80

referred to as Vsta and V 0
sta, respectively. The dispersion coeffi-

cient C6 = 17 720 a.u. [22] for the 40K 87Rb molecule and the
length scale β6 = 253.08 a.u. [16]. The statistical potential
Vsta exhibits a repulsive property in the Fermi gas and vanishes
at high temperature, as shown in Fig. 1. In our calculation,
the relative distance r in Vsta (r) and V 0

sta (r) is replaced by the
average interparticle spacing r, which is treated as an input pa-
rameter. The effect of the statistical potential on the scattering
property is equivalent to that of a collision energy change. It
is more unambiguous to write Eq. (1) as [−d2/dr2 + L(L +
1)/r2 + V (r)]ψ (r) = [E − Vsta (r)]ψ (r). The volume is esti-
mated to beV = Nr3.

Table I lists the Fermi temperature TFi and r̄i calculated
according to the experimental data [10]. r̄i is obtained by using
the relation (3π2)2/3h̄2/(2mr̄2

i ) = kBTFi with T → 0 [15]. In
particular, r = 17.92β6 corresponds to the average Fermi tem-

perature of the experimental data [10], TF = ∑17
i=1 TFi/17 =

318 nK, according to the relation (3π2)2/3h̄2/(2mr2) = kBTF

with T → 0 [15]. As shown by the blue solid line and red
dashed line in Fig. 1, the smaller the distance r, the stronger is
the statistical potential Vsta. Squares and triangles represent the
magnitudes of the statistical potential Vsta (r̄i ) for T/TF < 0.6
and >0.6, respectively. For the points at 270 nK with T/TF <

0.6 (square), 400 and 440 nK, their magnitudes are larger than
those at low temperatures, and deviate from curves. This is
caused by the small interparticle spacing, as shown in Table I.

In the spin-polarized Fermi gas of 40K 87Rb molecules,
the collisions are dominated by the p-wave scattering at ul-
tralow temperature. The reaction rate is calculated by using
Eq. (12). Figure 2 shows the thermally average reaction rates.
The blue dotted-dashed and red solid lines show the calcu-
lated results with and without the statistical potential Vsta,

(a) (b)

FIG. 2. (a) Thermally averaged reaction rates and (b) temperature-normalized reaction rates in theory (lines) and in experimental data
(squares and triangles) [10]. Red solid lines show the calculated results without the statistical potential (universal case), orange dashed
lines show the calculated results with the statistical potential V 0

sta (noninteracting case, r = 17.92β6), and blue dotted-dashed lines show the
calculated results with the statistical potential Vsta (interactional case, r = 17.92β6, a1 = −12.97a3

0). TF = 318 nK.
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respectively. The latter is a universal reaction rate. Our result
for a universal reaction rate agrees well with the measured
value in experiment for T/TF > 0.6 (red triangles), and with
a theoretical prediction by the capture dynamics model based
on the statistical quantum mechanical approach [14]. The
temperature-normalized reaction rate for T/TF > 0.6 is a con-
stant of 0.82×10−5 cm3 s−1 K−1. The universal case obeys
the Bethe-Wigner threshold law [10,11], indicating that the
spatial correlation between particles has little effect on the
reaction rate outside of the degenerate regime. The orange
dashed lines show the results calculated by using V 0

sta for an
ideal gas. Though the interaction is not included, the suppres-
sion of the reaction rate has emerged, as shown in Fig. 2.

At ultralow temperature, the phase shift related to the p-
wave scattering volume a1 is given by

tan ηL=1(k) = −k3a1. (15)

It is noted that the p-wave scattering volume a1 is dif-
ferent from the complex scattering volume ã1 defined in
Refs. [23,24]. The reaction rate scales with the inelastic part
of the complex scattering volume ã1 in the universal case,
and the relation between the complex scattering volume ã1

and the S matrix is given by ã1 = (1 − SL=1)/[ik(1 + SL=1)]
[23,24]. The p-wave scattering volume a1 is treated as a fitting
parameter. For a fixed a1, the phase shift ηL=1(k) in Eq. (15)
is substituted into Eq. (11) and an integration with respect to
k is performed in order to obtain b2. When the interaction
between particles is taken into account, the suppression of
the reaction rate is well reproduced, as shown in the blue
dotted-dashed line in Fig. 2, where a1 is fitted to be −12.97a3

0
with a0 being the Bohr radius. With increasing tempera-
ture, the temperature-normalized reaction rate approximates a
constant, 0.82×10−5 cm3 s−1 K−1. Thus the degenerate case
gradually evolves into the universal case. Furthermore, the
magnitude of the statistical potential represents the strength of
spatial correlation, and is calculated for all of the experimental
data marked by red triangles (T/TF > 0.6) and blue squares
(T/TF < 0.6), which are distributed around the blue solid line
r = 17.92β6 in Fig. 1. Obviously, the correlated strengths
between particles in the quantum degenerate regime (blue
squares) are larger than those outside of the regime (red trian-
gles). Therefore the reaction rates at T/TF < 0.6 significantly
deviate from those predicted by the threshold law.

The ratio of the reaction rate in the interaction case to the
universal reaction rate is labeled as γ , which reflects the sup-
pression of chemical reaction rate. For a fixed value of p-wave
scattering volume (a1 = −12.97a3

0), Fig. 3 shows the ratios
as a function of temperature when the average interparticle
spacing r is fixed at 20.00β6, 17.92β6, and 15.00β6. The sup-
pression disappears when the ratio approaches unity. Because
the density of the gas is proportional to 1/r3, the suppression
enlarges as the density increases. This is consistent with the
experimental observation in which the chemical reaction is
strongly suppressed in the center of the trap [10]. On the
up axis of Fig. 3, the Fermi temperature TF is taken to be
318 nK, which is the average value of the experimental data
[10]. The black dotted line in Fig. 3 corresponds to the blue
dotted-dashed line in Fig. 2. The increase of the magnitude

FIG. 3. The ratio γ as a function of temperature for the p-wave
scattering volume a1 = −12.97a3

0 and −15.00a3
0 and the average

distance r = 20.00β6, 17.92β6, and 15.00β6. TF = 318 nK.

of the p-wave scattering volume is also beneficial to the sup-
pression, as shown in the blue solid and green dashed lines of
Fig. 3. Though the calculation is performed for the 40K 87Rb
molecule, the results are also applicable to other Fermi molec-
ular systems, where the variations are only mass m and
coefficient C6. According to the relation (3π2)2/3h̄2/(2mr2) =
kBTF [15], the suppression for the heavy molecular system
is stronger than that for the light one when TF is fixed. In
addition, the formation of a complex is an important fac-
tor [25–30]. The effect of the short-range interaction on the
molecular collision was discussed in our previous work [17].

IV. CONCLUSION

In summary, we present a simple model used for exploring
the suppressing reactivity in a degenerate Fermi gas. The
influence of the interaction between particles is important in
the degenerate regime. The formula of the statistical potential
for a nonideal Fermi gas is derived. The suppression of the
reaction rate is reproduced quantitatively by fitting the p-wave
scattering volume to a specific value. From the magnitudes
of the statistical potential, we can intuitively see that the
spatial correlation strength in the quantum degenerate regime
is larger than that outside the degenerate regime.
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