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Four-body system of 4He atoms: Dimer-dimer scattering
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(Received 28 February 2022; accepted 28 March 2022; published 13 April 2022)

The strong short-range repulsion, characteristic to realistic interatomic potentials, complicates the description
of weakly bound few-body systems such as those of 4He atoms. The present work proposes an approach
for solving this problem and applies it to a realistic system of four 4He atoms. The potential is gradually
softened such that rigorous four-body equations for bound and scattering states can be accurately solved in
the momentum-space framework, and the results are extrapolated back to the limit of the original potential.
Linear correlations between three- and four-body quantities are observed, and the accuracy of the procedure is
improved by extrapolating in one of the three-body quantities. Results for the 4He tetramer ground-state and
excited-state binding energies and atom-trimer scattering agree well with at least some of earlier determinations
and shed light on the existing disagreements. An additional case of the Phillips correlation line is established for
the dimer-dimer scattering length. The trimer production rate via the ultracold two-dimer collisions is estimated;
it exhibits significant finite-range effects despite the weak binding of the dimer.
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I. INTRODUCTION

Cold 4He atoms constitute one of the simplest quantum
systems exhibiting the phenomenon of the Efimov physics
[1,2] (see Refs. [3,4] for recent reviews). In contrast to atomic
systems of alkali metals, no external fine-tuning is needed
since the interatomic 4He interaction supports a single shallow
dimer bound state in the S wave. Consequently, the two-atom
scattering length is large compared to the interaction or ef-
fective range, ensuring conditions for the realization of the
Efimov physics. It manifests itself by the existence few-body
states. In systems consisting of N = 3 (4) atoms of 4He this
leads to two bound trimer (tetramer) states, a more tightly
bound ground state, and a shallow excited state located near
the two-cluster breakup threshold.

The system of three 4He atoms has been studied in a
large number of works employing realistic interaction models,
and a good agreement between different theoretical methods
has been achieved, not only for binding energies but also
for the atom-dimer scattering length [5–12]. Several existing
calculations for the ground-state 4He tetramer also agree well,
but significant differences show up in the excited tetramer
binding energy [5,7,10,11]. The latter is correlated with the
atom-trimer scattering length, the few existing results being in
sizable disagreement, thereby calling for further studies with
alternative methods. Furthermore, all available four-atom cal-
culations with realistic 4He potentials are limited to energies
very close to the atom-trimer threshold, with no predictions
at higher energy where inelastic scattering channels become
open, enabling rearrangement reactions such as the dimer-
trimer conversion.

The most important reason for the abovementioned dis-
agreements and limitations is the form of the realistic
interaction between two 4He atoms, namely, the weakly at-
tractive van der Waals tail and the very strong repulsion
at short distance. For spatially extended weakly bound or

scattering states the physical observables result from a very
subtle interplay of those two features, rendering the numerical
solution very sensitive to fine details and eventually lead-
ing to a significant accuracy loss. For example, to overcome
these difficulties when solving the coordinate space Faddeev-
Yakubovsky equations, Lazauskas and Carbonell [7] had to
impose additional boundary conditions in the hard-core region
and apply extrapolation in the grid size. The momentum-
space method based on the Alt, Grassberger, and Sandhas
(AGS) equations [13] for the four-particle transition opera-
tors, although very efficient in realistic four-nucleon reaction
calculations [14], has not yet been successfully applied to the
problem of four 4He atoms with realistic potential models.

The aim of the present work is to develop the momentum-
space method for the four-body calculation in the multichan-
nel regime with a realistic interatomic 4He potential, to show
its reliability and evaluate the complex dimer-dimer scatter-
ing length. The idea is to reduce gradually the strength of
the short-range repulsion, such that accurate solutions of the
integral equations for transition operators or wave-function
components can be obtained, and then perform extrapolation
of the results back to the original potential.

Section II introduces the scheme for reducing the short-
range repulsion, whereas Sec. III demonstrates its validity in
the three-body system. Section IV shortly recalls the equa-
tions for the four-body system together with the essential
aspects of calculations. Section V presents results for tetramer
binding energies and atom-trimer and dimer-dimer scattering.
Summary and conclusions are collected in Sec. VI.

II. TRANSFORMATION OF THE POTENTIAL

All realistic interatomic 4He potentials have in common
the weakly attractive van der Waals tail and strong repulsion
at short distances r < 2.5 Å [15,16]. Though the potential
[16] is considered to be one of the most sophisticated, the
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FIG. 1. The function λ(ρ ) controlling the momentum-dependent
reduction in the potential (3). The inset compares the original
LM2M2 potential (solid curve) and the auxiliary potential (1) at
ρ = 1.7 and 2.5 Å, given by the dashed-dotted curve and the dotted
curve, respectively.

older parametrization LM2M2 by Aziz and Slaman [15] bet-
ter reproduces the experimental 4He binding energy and the
bond length [17]. LM2M2 is probably the most widely used
parametrization, especially for benchmarks; it is adopted also
in the present work with the h̄2/m = 12.119 28 K Å2 value
recommended in Ref. [9], slightly different from the approx-
imation h̄2/m = 12.12 K Å2 used in Ref. [7] and many other
works, where m is the mass of the 4He atom. Anyway, as
Refs. [9,11] demonstrated, the changes in three- and four-
body results due to different h̄2/m are small and can be
accounted for by a simple perturbative correction.

In nuclear physics, the short-range repulsion in the
two-nucleon potentials can be softened by the similarity renor-
malization group (SRG) method [18], which is a unitary
transformation decoupling low- and high-momentum compo-
nents while preserving the deuteron binding and two-nucleon
phase shifts. However, in the interatomic 4He force the relative
impact of the short-range repulsion is considerably stronger
than in the nuclear force, precluding the application of the
SRG or similar method; no successful attempt has been re-
ported so far.

The present work will, therefore, use a different strategy.
Following Ref. [12], an auxiliary potential V (r, ρ) with the
strength of the short-range repulsion reduced at distances r <

ρ is defined as

V (r, ρ) = �(ρ − r)V (ρ)[2 − e(ρ−r)κ (ρ)] + �(r − ρ)V (r).
(1)

Here V (r) is the original potential, �(x) is the step function
equal to 1 (0) for the positive (negative) argument x, while
κ (ρ) = V ′(r)/V (r)|r=ρ ensures the smoothness of the auxil-
iary potential by the continuity of itself and its first derivative.
The comparison of the original LM2M2 potential with V (r, ρ)
is shown in the inset of Fig. 1. While the LM2M2 potential
rapidly increases towards r = 0, V (r, ρ) remains quite flat for
r < ρ.

For momentum-space partial-wave calculations the poten-
tial has to be transformed into the corresponding representa-
tion, i.e.,

〈p′|VL(ρ)|p〉 = 2

π

∫ ∞

0
jL(p′r)V (r, ρ) jL(pr)r2dr, (2)

where p (p′) is the initial (final) relative two-particle mo-
mentum, L is the orbital angular momentum, and jL(x) is
the spherical Bessel function. The upper integration limit is
formally infinite, but Ref. [12] showed that at least five-digit
accuracy for observables is achieved with a finite upper limit
of 75 Å; the present work uses 100 Å, which is fully suffi-
cient, since the integral equation formulation of the scattering
theory in momentum space includes the asymptotic boundary
conditions implicitly. Reference [12] investigated also the ρ

dependence of the three-body binding energy and atom-dimer
phase shifts and demonstrated that within the five-digit ac-
curacy the results remain unchanged for ρ ranging from 0
to 1.7 Å. This means that practically there is no penetration
into the ρ � 1.7 Å region even if the potential is reduced by
more than two orders of magnitude at r = 0, as the inset of
Fig. 1 indicates. On the other hand, it is quite obvious that
the proposed approach will fail beyond ρ ≈ 2.5 Å, where the
barrier height and the minimum depth become of comparable
size. However, already beyond ρ = 1.7 Å, a further increase
of ρ reduces the short-range repulsion to the extent that it
becomes insufficient to preserve the fine-tuned balance with
the longer-range attraction. As a consequence, the binding
energies of few-body bound states start to increase with ρ for
ρ > 1.7 Å. To keep the same energy scale for all considered
ρ, I choose to fix the dimer binding energy B2 = 1.3094 mK.
For this, a further modification of the potential is needed
that removes the overbinding. In effective field theories this
is achieved by a repulsive short-range counterterm, but such
a solution is unwanted in the present context as it would
increase again the short-range repulsion. Therefore I propose a
different approach, rendering the potential (2) weaker. There
are many ways to achieve this goal, e.g., to rescale the po-
tential (2) by a constant or a momentum-dependent factor,
or even by a combination of them. My primary choice is the
modified potential

〈p′|vL(ρ)|p〉 = e−[λ(ρ)p′]2 〈p′|VL(ρ)|p〉 e−[λ(ρ)p]2
, (3)

where the function λ(ρ) controls the momentum-dependent
reduction. It is determined by fitting the dimer binding energy
B2 = 1.3094 mK in the L = 0 partial wave, but the same
λ(ρ) is used for all partial waves. Thus, none of the phase
shifts are explicitly fitted, and therefore, they may deviate
from their original values. Nevertheless, this deviation is not
really important as long as no new bound or resonant states
appear. Since λ(ρ) smoothly approaches zero with decreasing
ρ and vanishes for ρ < 1.7 Å as shown in Fig. 1, the potential
(3) smoothly converges towards the original potential and all
observables should do so as well. Further important advantage
of the potential (3) is the suppression of high-momentum
components that is favorable for the stability of numerical
calculations. Low-momentum components corresponding to
the long-range tail are barely affected. Though the potential
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FIG. 2. Atom-dimer scattering length and trimer ground- and
excited-state binding energies, all normalized by the respective pre-
dictions obtained with the original LM2M2 potential, are shown
as functions of the softening parameter. Insets display correlations
between trimer binding energies and atom-dimer scattering length.
Crosses label data points with ρ = 2.3 Å, and the lines result from
linear fits to data points at 2.3 Å � ρ � 2.5 Å.

(3) becomes nonlocal in the coordinate space, this presents no
additional difficulty for momentum-space calculations.

In summary, few-body equations have to be solved for a
series of potentials (3) with different values of the softening
parameter ρ, large enough for a numerically stable solution,
and the obtained results are extrapolated towards smaller ρ

values until the independence of ρ is achieved. For brevity, the
method is referred to as “softening and extrapolation” (SE).

III. TEST CASE: THREE-BODY SYSTEM

The bound state and scattering problem of three 4He atoms
with realistic interaction in the momentum-space framework
was solved using the original potential or the one of Eq. (2)
with ρ � 1.7 Å [12]. Thus, the SE is not needed to obtain
physical results, but it is a good test case to demonstrate its
validity.

The considered three-body observables are the atom-dimer
scattering length A12 and binding energies for the trimer
ground and excited states, B3 and B∗

3, respectively. More
details of calculations can be found in Ref. [12], the only
difference here being the updated h̄2/m value and the modified
potential (3). At ρ � 1.7 Å the predictions A12 = 115.39 Å,
B3 = 126.50 mK, and B∗

3 = 2.2784 mK agree perfectly with
the benchmark calculation [9].

Figure 2 presents the dependence of the atom-dimer scat-
tering length and trimer binding energies on the softening
parameter ρ. The quantities are normalized by their original
values taken at ρ = 0 and listed above, in order to keep a
single scale. The ratios start deviating from the unity above

ρ = 2.0 Åand reach nearly 4% difference at ρ = 2.5 Å. As
functions of ρ, the deviations grow with increasing rate, which
makes the extrapolation in ρ problematic if data points near
the plateau regime are not available. However, a closer in-
spection reveals that for all three quantities in Fig. 2 the
shapes of the deviations are very similar. The consequence
of this feature are linear correlations between trimer binding
energies and atom-dimer scattering length; two pairs, A12(B3)
and B∗

3(B3), are shown in the insets of Fig. 2, and the third
pair A12(B∗

3 ) correlates equally well. These correlations are
expected in the context of Efimov physics; they are known as
Tjon and Phillips lines also in nuclear physics [3,4].

The observed correlations suggest an alternative way of
extrapolation by changing the extrapolation variable, instead
of ρ considering one of the three-body quantities, for example,
B3(ρ), given that it can be reliably calculated for small ρ,
reproducing the original limit B3 = B3(0). Other three-body
quantities like A12(ρ) and B∗

3(ρ) show (nearly) linear depen-
dence on B3(ρ) and, therefore, even if calculated only at ρ

values beyond the plateau region, as functions of B3(ρ) can
be reliably extrapolated to the point B3(0), thereby yielding
A12(0) and B∗

3(0) estimations. The lines in the insets of Fig. 2
are linear fits to data in the regime 2.3 Å � ρ � 2.5 Å. The
extrapolation towards the B3(0) value reproduces the A12(0)
and B∗

3(0) within 0.01% accuracy, confirming the reliability
of the proposed extrapolation approach.

At a first glance it may appear that shapes of observable
deviation in Fig. 2 and of λ(ρ) in Fig. 1 are similar, suggesting
λ(ρ) as a suitable extrapolation variable. However, this is not
true since in the regime 1.7 Å < ρ < 2.0 Å there are small
but visible changes in λ(ρ), in contrast to A12(ρ), B3(ρ),
and B∗

3(ρ). Consequently, their dependence on λ(ρ) is nearly
linear at ρ > 2.3 Å, but bends for smaller ρ, preventing reli-
able extrapolation. One could find perhaps a better behaving
function of ρ like (ρ − ρ0)n or [λ(ρ)]n that could be more
suitable as an extrapolation variable, but it is not trivial to
achieve the linearity as good as with B3(ρ).

IV. FOUR-BODY EQUATIONS

The momentum-space integral-equation approach to the
four-body problem starts with the two-body transition oper-
ator

t = v + vG0t (4)

that sums up the respective pair interaction v to all orders.
The dependence on the available energy E arises via the
free resolvent G0 = (E + i0 − H0)−1 with the kinetic energy
operator H0. The bound-state energy in the system of four
identical bosons can be obtained from symmetrized Faddeev-
Yakubovsky equations [19] for wave-function components

|ψ1〉 = G0tP1[(1 + P34)|ψ1〉 + |ψ2〉], (5a)

|ψ2〉 = G0tP2[(1 + P34)|ψ1〉 + |ψ2〉], (5b)

where t acts within pair (12) and Pab interchanges particles a
and b, while P1 = P12 P23 + P13 P23 and P2 = P13 P24.
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The scattering processes are described using AGS equa-
tions [13] for four-particle transition operators Uβα . In the
symmetrized form they read as follows:

U11 = P34(G0tG0)−1 + P34U1G0tG0U11 + U2G0tG0U21,

(6a)

U21 = (1 + P34)(G0tG0)−1 + (1 + P34)U1G0tG0U11, (6b)

U12 = (G0tG0)−1 + P34U1G0tG0U12 + U2G0tG0U22, (6c)

U22 = (1 + P34)U1G0tG0U12. (6d)

Here the subscripts α, β = 1 (2) label the 3 + 1 (2 + 2) clus-
tering, while

Uα = PαG−1
0 + PαtG0Uα (7)

are the 3 + 1 or 2 + 2 subsystem transition operators.
Physical transition amplitudes for two-cluster collisions

are calculated as special on-shell matrix elements of transition
operators Uβα between the channel states |φα (pα )〉 with the
relative two-cluster momenta pα . The primary interest of the
present work is the atom-trimer and dimer-dimer scattering
lengths

A13 = 3π (3m/4)〈φ1(0)|U11|φ1(0)〉|J=0, (8a)

A22 = 2πm〈φ2(0)|U22|φ2(0)〉|J=0, (8b)

where the matrix elements are taken between states with
vanishing relative two-cluster momentum and total four-body
angular momentum J = 0 at energies E = −B3 (atom-
trimer) and −2B2 (dimer-dimer).

The momentum-space partial-wave basis
|kxkykz[(lxly)Jlz]JM〉α is used to solve AGS equations (6)
where they build a system of coupled integral equations with
three continuous variables kx, ky, and kz, the magnitudes of
Jacobi momenta [20]. The associated orbital angular momenta
lx, ly, and lz via J are coupled to J with the projection M.
Discretization of three Jacobi momenta results in a large
system of linear algebraic equations. More details on the
solution methods are given in Ref. [20].

V. RESULTS FOR THE FOUR-ATOM SYSTEM

A. Tetramer ground-state energy

To validate the proposed SE method in the four-atom sys-
tem I start with the calculation of the tetramer ground-state
binding energy B4 where several well-established results are
available [5,7,10,11]. The Faddeev-Yakubovsky equations (5)
are solved including partial waves with orbital angular mo-
menta lx, ly, lz � 8 and about 70 to 100 grid points for the
discretization of Jacobi momenta; the trimer binding energy
is calculated using the same model space. The results are
obtained for 2.2 Å � ρ � 2.5 Å; for brevity the dependence of
binding energies on ρ is suppressed in the notation. Figure 3
shows the dependence of the tetramer ground-state binding
energy on ρ, indicating that the extrapolation in ρ is problem-
atic. Some particular function of ρ could be more suitable.
As the inset of Fig. 3 demonstrates, extrapolation in B3 works
very well since B4(B3) in the considered regime is nearly a
linear function, as should be expected in the context of Efimov
physics [3,4] and was shown for 4He atoms in Ref. [21].
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FIG. 3. 4He tetramer ground-state binding energy B4 as a func-
tion of the softening parameter ρ. The curve is obtained by the
extrapolation in the variable B3. The inset shows the B4 dependence
on the trimer ground-state binding energy B3. The dashed-dotted
line represents the linear fit to data points 2.2 Å � ρ � 2.43 Å, while
the dotted curve represents the quadratic fit to all data points up to
ρ = 2.5 Å. The cross labels the data point ρ = 2.43 Å. Extrapolation
to the B3 prediction of the original LM2M2 potential is given by the
black square.

However, a slight deviation from the linearity is seen for
ρ � 2.45 Å. A probable reason is that a tetramer, being more
compact and therefore more sensitive to the short-range force
than a trimer, starts to “feel” the softening of the barrier at
lower ρ values. Nevertheless, a high-quality fit is obtained by
the inclusion of the quadratic term, as shown by the dotted
curve. Alternatively, a linear fit (dashed-dotted curve) in the
reduced region 2.2 Å � ρ � 2.43 Å also works well. In both
cases the extrapolation to the limit of the original LM2M2 po-
tential yields the tetramer ground-state binding energy value
B4 = 559.3(1) mK. This result is in good agreement with the
most accurate available prediction B4 = 559.22 mK obtained
using the variational Gaussian expansion method [11]. The re-
sults obtained with other methods [7], perturbatively corrected
for the updated h̄2/m value as in Ref. [11], range from 557.2
to 559.3 mK. The observed agreement confirms the reliability
of the proposed SE method.

B. Dimer-dimer scattering length

In contrast to A12, the presence of a lower-lying threshold,
atom plus trimer, renders the dimer-dimer scattering length
A22 complex. It is obtained by solving the AGS equations (6c)
and (6d) at the energy E = −2B2. Since the solution proceeds
via the double Padé method [20], its convergence and accu-
racy are limited by a bad divergence of the Neumann series for
four-body transition operators. This difficulty is characteristic
to Efimovian systems owing to a rich spectrum of states,
corresponding to transition operator poles, that spoil down the
convergence [22]. The results therefore are shown with their
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3 prediction of the original LM2M2 potential are given by
full squares. The points shown by open triangles are obtained using
potentials of type (10) and are not included in the fit.

numerical error bars, typically below 0.5% for the real part,
but above 5% for the much smaller imaginary part. Within
those error bars, the real and imaginary parts of A22 are con-
sistent with the typical ρ dependence, already seen in the case
of three-body observables and tetramer binding energy; it is
therefore not presented here again. Instead, Figure 4 displays
Re A22 and Im A22 as functions of the binding energy B∗

3 of
the excited trimer state. The calculated data points are shown
as full circles, and the lines are linear fits to those results.
Extrapolation to the limit of the LM2M2 potential yields

A22 = [100.5(5) − i0.75(5)] Å. (9)

Thus, Fig. 4 suggests the existence of the Phillips line also
for the dimer-dimer scattering. To strengthen this conclusion
additional calculations are performed using a slightly different
scheme for the softening of the potential, namely,

〈p′|v̄L(ρ)|p〉 = e−[λ̄(ρ)p′]2
[1 − νλ̄(ρ)](〈p′|VL(ρ)|p〉e−[λ̄(ρ)p]2

.

(10)

λ̄(ρ) for each value of the parameter ν is again determined
by fitting the dimer binding energy B2. Introducing ν offers
the flexibility to explore a broader range of A22 and B∗

3, both
above and below the LM2M2 value. The additional data points
in Fig. 4 represented by open triangles are obtained with ν

ranging from 0.1 to 0.5 Å−1 and ρ between 2.45 and 2.52 Å.
Within the error bars the additional data points obtained using
softened potentials of type (10) are consistent with the linear
correlation determined using the potential (3).

In the above study the extrapolation was performed in the
binding energy of the excited trimer state, the state closest to
the two-dimer threshold. On the other hand, given that the
linear correlations demonstrated in Sec. III are accurate to
the level of 0.01%, one could chose B3 or A12 equally well
without affecting numerical results within that accuracy, that
is, without any changes of the numerical values presented in
this work for all considered four-body observables, includ-
ing those of next subsections. The associated inaccuracy is
entirely irrelevant compared to other sources of numerical
solution errors.

It is also interesting to compare the dimer-dimer scattering
length (9), obtained for the realistic potential, with the uni-
versal zero-range prediction. From Fig. 2 of Ref. [22], at the
physical B∗

3/B2 ratio one gets A22/a ≈ 0.945 − i0.004. Thus,
with the LM2M2 two-atom scattering length a = 100.0 Å, the
zero-range limit A22 ≈ (94.5 − i0.4) Å reproduces reasonably
the real part but fails significantly for the imaginary part.
This is not very surprising since Im A22 is determined by the
transition to the ground-state trimer that is more affected by
finite-range corrections.

The collision of two dimers has an inelastic channel, i.e.,
rearrangement leading to the atom plus trimer state. In the gas
consisting of dimers of the density n2, this reaction would lead
to the trimer density n3 increase in time as

dn3

dt
= β22→31

n2
2

2!
. (11)

In the ultracold limit corresponding to the vanishing relative
dimer-dimer momentum p2 → 0, the inelastic cross section
σ 0

22→31 ∼ |〈φ1(p1)|U12|φ2(0)〉|2 p1/p2 is formally infinite, but
the reaction rate β0

22→31 ∼ p2σ
0
22→31 is finite. Using the opti-

cal theorem it can be expressed via the imaginary part of the
dimer-dimer scattering length as

β0
22→31 = −8π h̄

m
Im(A22). (12)

The numerical value is β0
22→31 = 3.0(2) × 10−11 cm3/s; the

zero-range limit would underestimate it by a factor of 2.

C. Atom-trimer scattering and excited tetramer state

Atom-trimer scattering calculations follow the same pro-
cedure as described in the previous subsection for the
dimer-dimer scattering except that the AGS equations (6a)
and (6b) around the energy E = −B3 are solved. The extrap-
olation to the limit of the original LM2M2 potential yields
the 4He atom-trimer scattering length A13 = 108.8(5) Å and
the effective range R13 = 29.2(2) Å. The latter agrees well
with the only available prediction R13 = 29.1 Å in Ref. [7].
In contrast, there is nearly 5% difference with the prediction
A13 = 103.7 Å of Ref. [7] and a strong disagreement with
A13 = 56 Å of Ref. [5].

The binding energy of the excited tetramer state B∗
4 is

obtained looking for the energy corresponding to the pole
of four-body transition operators at E = −B∗

4 in Eqs. (6a)
and (6b). The extrapolation to the LM2M2 point yields B∗

4 =
127.46(2) mK or B∗

4 − B3 = 0.96(2) mK. The weak binding
of the excited tetramer state with respect to the ground-state
trimer causes a number of methods to fail heavily on B∗

4 − B3,

043310-5



A. DELTUVA PHYSICAL REVIEW A 105, 043310 (2022)

despite quite accurate predictions for B4 [5,10]. Even the two
most advanced calculations differ by 15%, with B∗

4 − B3 =
1.087 mK in Ref. [7] and 0.93 mK in Ref. [11]. The former
is the estimation based on the effective-range expansion. The
same approach using A13 and R13 of the present work yields
a smaller value of B∗

4 − B3 = 0.97(2) mK, mainly due to
a larger A13 than in Ref. [7]. Thus, the present results for
B∗

4 − B3 tend to support those of Ref. [11].

VI. SUMMARY AND CONCLUSIONS

Calculations of weakly bound few-body atomic 4He sys-
tems with realistic potentials are complicated due to the very
strong repulsion at short distances. While the three-body
system is still manageable using a number of methods, the
four-body system requires a special treatment, especially in
the continuum. The present work proposed a softening and
extrapolation approach for dealing with the short-range re-
pulsion and implemented it in the rigorous momentum-space
framework for transition operators.

The strength of the short-range repulsion was gradually
reduced by introducing one softening parameter, at the same
time suppressing the high-momentum components by a non-
local extension of the potential, adjusted to reproduce exactly
the original dimer binding energy. This ensured that also other
few-body observables deviate only mildly, within a few per-
cent, from their original values. Furthermore, those deviations
evolve smoothly with the softening parameter, allowing for
the extrapolation back to the limit of the original potential.
Sufficiently accurate solutions of momentum-space three- and
four-body equations were obtained using the softened realistic

LM2M2 potential. Binding energies of trimer and tetramer
ground and excited states as well as the atom-dimer, atom-
trimer, and dimer-dimer scattering lengths were calculated
for a range of softening parameter values. Nearly linear cor-
relations between all those three- and four-body quantities
were observed, suggesting to use one of the easily calculable
three-body quantities as the extrapolation variable, thereby
essentially improving the accuracy of the extrapolation pro-
cedure. In particular, the linear correlation between the trimer
binding energy and the dimer-dimer scattering was demon-
strated, establishing an additional case of the Phillips line.

The tetramer ground-state energy, extrapolated to the limit
of the original LM2M2 potential, agrees well with previous
determinations by other methods. In the more controversial
case of the excited tetramer state, my prediction for its binding
energy is less than 1 mK with respect to the atom-trimer
threshold, clearly supporting the results of Refs. [7,11] over
those of Refs. [5,10]. There is a reasonable agreement with
Ref. [7] in the case of the atom-trimer scattering length and
effective range, though my slightly larger A13 value implies
a slightly weaker binding for the excited tetramer state, in a
better agreement with Ref. [11].

The most important result is the complex dimer-dimer
scattering length. Its real part turns out to be very close to
the atom-atom scattering length, while the imaginary part is
smaller by more than a factor of 100. The latter determines
the rate of 4He trimer production via two-dimer collisions in
ultracold gases. The universal zero-range theory is unable to
reproduce accurately the imaginary part of the dimer-dimer
scattering length and the trimer production rate, thereby indi-
cating the importance of finite-range corrections.
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