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Spinor boson droplets stabilized by spin fluctuations
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Self-trapped droplets stabilized by quantum fluctuations have been experimentally realized in dipolar gases
and binary boson mixtures. In this paper, we propose spinor Bose gases as another candidate for droplet
formation. For spin-1 gas, we find that spin fluctuations give a dilute but self-trapped state for two different
order parameters where the mean-field picture predicts collapse. A polar droplet phase can be stabilized by
spin fluctuations for both antiferromagnetic and ferromagnetic spin-dependent coupling. An antiferromagnetic
droplet phase can be stabilized similarly with a negative quadratic Zeeman shift. Furthermore, the beyond
mean-field energy of the system depends on the quadratic Zeeman coupling, which provides a mechanism to
tune the droplet formation and its density. We discuss the parameters necessary for the experimental realization
of such spinor droplets.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) have generally been
modeled by the Gross-Pitaevskii (GP) mean-field (MF) ap-
proach to explain various experimental observations. Such
MF theories of interacting BECs provide both a reasonable
quantitative agreement and a qualitative understanding of
complex phenomena, including collapse or expansion dy-
namics of the condensate, collective modes, bright and dark
solitons, and shift of critical temperature due to interactions
[1–7]. The Bogoliubov theory of weakly interacting Bose gas
includes additional beyond MF processes, such as the scatter-
ing of two atoms in the condensate to states with momenta p
and −p. The calculated corrections to the energy dispersion
and the noncondensate depletion due to these quantum fluc-
tuations are experimentally verified through the measurement
of condensate excitations [8,9], which expose deviations from
the MF theory. However, a more striking manifestation of the
quantum fluctuations is the recently obtained by self-bound
Bose droplets [10–12].

The traditional repulsively interacting BECs are mechani-
cally stabilized and prevented from expansion with confining
potentials based on magnetic or optical traps [1]. For attractive
interactions, higher densities are energetically favorable, and
the collapse of the gas to a high-density nontrapped phase can
only be prevented in a metastable state, such as a bright soliton
[13]. The central point of novelty in the self-bound droplets
is the use of the quantum fluctuations to establish mechani-
cally stable BECs in a regime where the MF theories predict
collapse. This stability can be achieved without violating the
diluteness assumption for the gas, only if separate physical
parameters control the MF interaction energy and the quantum
fluctuation contribution [10].

*ayogurt@metu.edu.tr

Recent experiments have realized two classes of ultra-
cold droplets: Binary mixture droplets [11,14,15] and dipolar
droplets [12,16], both of which exhibit a tunable competition
among distinct interactions and relatively weak Lee-Huang-
Yang (LHY) corrections that can stabilize the residual MF
energy. In dipolar droplets, the long-range and short-range
interactions compete at the MF level, whereas in the binary
mixture droplets, the interspecies and intraspecies short-range
interactions combine to form two independent parameters,
which individually control the MF and quantum fluctuation
corrections. In the latter, if the s-wave scattering lengths
for intraspecies interactions are a11 > 0, a22 > 0, and the
interspecies scattering length is a12 < 0, the residual MF
interaction is proportional to n2δa, where δa = −|a12| +√

a11a22. For negative δa, the MF energy favors higher den-
sities and drive the system to collapse. The LHY interaction
energy is of the form (a+n)5/2, where a+ > 0 is the effective
scattering length for quantum fluctuations [10]. The LHY
term increases faster with density and prevents collapse. If the
equilibrium density does not violate the diluteness assumption
of the Bogoliubov theory, an ultradilute, yet liquidlike self-
bound droplet emerges.

The experimental results of the binary mixture droplets
in homonuclear [11,14] and heteronuclear [15] systems are
in fair agreement with theories based on GP approximation
with local LHY corrections. However, a deeper understand-
ing of such fluctuation stabilized states is desirable for two
reasons. First, better quantitative agreement with experiments
is required [11,17]. Second, these systems can be used to
test the validity of various theoretical proposals in quantum
many-body physics. As an example, consider the unstable soft
Bogoliubov modes in the theory of the binary mixture droplets
[17,18]. Whereas some recent work claim that these modes
can be stabilized due to exotic many-body effects, such as
bosonic pairing [17] or beyond LHY contributions [19,20],
other theories neglect them, claiming that the instability would
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YOĞURT, KELEŞ, AND OKTEL PHYSICAL REVIEW A 105, 043309 (2022)

be too slow to be observed in the experiment. Broadening
the family of droplets [21–26] by adding a new stabilization
mechanism may lead to novel phenomena and further enhance
droplet theories.

In this paper, we consider spin-1 BEC gas as a candidate
for self-bound droplet formation. We show that spin fluctua-
tions can stabilize the polar and the antiferromagnetic (AF)
phases of the spin-1 gas in the parameter regime for which
the MF theory predicts collapse. Spinor gas s-wave scattering
lengths cannot be changed using the standard Feshbach reso-
nances, and the currently obtained spinor gases in Na and Rb
are stable against density collapse within MF theory [27–29].
However, there are proposals, such as optical Feshbach reso-
nances [30,31], which may provide new ways to tune the gas
into the droplet regime in future experiments. As more and
more atom species are cooled to ultracold temperatures, it is
essential to investigate the hyperfine manifolds with unstable
MF ground states (GSs) and analyze the possibility of stable
self-bound droplets. Whether obtained by controlling scatter-
ing lengths or through naturally occurring scattering lengths, a
droplet stabilized with spin fluctuations offers additional tools
to investigate the nature of the beyond-MF equilibrium, such
as the quadratic Zeeman shift.

This paper is organized as follows. In Sec. II, we summa-
rize the Bogoliubov theory of spin-1 gas and discuss possible
MF magnetic orders and the stability when LHY corrections
are introduced. In Sec. III, we develop the formulation of
the spinor droplet within the polar spin-1 phase and present
our numerical results. In Sec. IV, we derive the parallel for-
mulation for the AF droplet phase. In Sec. V, we discuss
the experimental feasibility of spinor droplet formation and
present our conclusions.

II. SPIN-1 GASES: BOGOLIUBOV THEORY

We consider a BEC of spin-1 atoms with s-wave interac-
tions under an applied uniform and static magnetic field along
the z axis. We assume a low dipolar relaxation rate, which
conserves the overall magnetization along the z axis. We set
this conserved magnetization to zero and drop the linear Zee-
man terms from the Hamiltonian. Quadratic Zeeman energy q
is taken into account as in Refs. [32,33]. The Hamiltonian is
given by

Ĥ =
∫

dx �̂†
m(x)

(
− h̄2∇2

2M
+ qm2

)
�̂m(x)

+ c0

2

∫
dx �̂†

m(x)�̂†
m′ (x)�̂m′ (x)�̂m(x)

+ c1

2

∫
dx �̂†

m(x)�̂†
m′ (x) Fmn · Fm′n′�̂n′ (x)�̂n(x), (1)

where �̂†
m(x) and �̂m(x) are creation and annihilation op-

erators of spin-1 atoms with the magnetic quantum number
m, Fmm′ = (F x

mm′ , F y
mm′ , F z

mm′ ) are the set of spin-1 matrices,
represented in the basis of z-axis eigenstates, and summation
over −1, 0, and 1 is implied with repeated indices. Density
and spin coupling constants, c0 and c1, are written as c0 =
(g0 + 2g2)/3 and c1 = (g2 − g0)/3. Here, g0 and g2 are the
bare coupling constants of the s-wave collisions of two spin-1
bosons with total spin 0 and 2, which are given in terms of the

corresponding scattering lengths a0,2 as g0,2 = 4πa0,2 h̄2/M.
The bare coupling constants g0,2 are renormalized using the
standard T -matrix perturbation up to the second order to
remove the ultraviolet divergence in the beyond MF energy.
Note that both static magnetic fields and rf pulses can be
used to adjust the strength of the quadratic Zeeman energy
q [34,35].

Using Bogoliubov theory, we replace the operators â0,m

with the c-numbers
√

N0τm and keep the terms with âk �=0,m

and â†
k �=0,m up to the second order, where N0 is the number

of particles in the k = 0 state, τ is the GS order pa-
rameter in the spin-1 manifold, and âk,m’s are the Fourier
components �̂m(x) = V −1/2 ∑

k âk,meikx. Then, the effec-
tive Bogoliubov Hamiltonian for spin-1 Bose gas becomes
[33]

Ĥeff = V n2

2
(c0 + c1〈F〉2) + qN

〈
F 2

z

〉

+
∑
k �=0

{[
εk − nc1〈F〉2 + qm2 − q

〈
F 2

z

〉]
â†

k,mâk,m

+ nc1〈F〉 · Fmm′ â†
k,mâk,m′

+ nc0

2
(2D̂†

kD̂k + D̂kD̂−k + D̂†
kD̂†

−k )

+ nc1

2
(2F̂†

kF̂k + F̂kF̂−k + F̂†
kF̂†

−k )

}
, (2)

where εk = h̄2k2/2M is the free particle dispersion, 〈F〉 ≡∑
m,m′ Fmm′τ ∗

mτm′ is the expectation value of the spin-1 order

parameter, D̂k ≡ ∑
m τ ∗

mâk,m and F̂k ≡ ∑
m,m′ Fmm′τ ∗

mâk,m′ are
the density and spin-fluctuation operators, respectively. The
first line of (2) is the MF energy functional of the spinor
BEC,

EMF

V
= n2

2
(c0 + c1〈F〉2) + qn

〈
F 2

z

〉
, (3)

whereas, all the other terms within the summation constitute
the quantum fluctuations. Unlike the Bose-Bose mixtures, the
quantum fluctuations within the spinor gases involve not only
pseudospin labeling of different components, but also true
spin fluctuations.

The minimization of the spinor MF functional (3) reveals
the wide variety of magnetic orders and quantum phase tran-
sitions in spin-1 systems [32], which are briefly summarized
here for completeness. See Fig. 1 for a schematic phase
diagram. For c1 < 0 and q < 0, the MF ground state is fer-
romagnetic with order parameters τ F = (1 0 0) or (0 0 1)
resulting in 〈F〉2 = 1 and 〈F 2

z 〉 = 1. For c1 < 0 and q >

0, the ground state depends on the strength of q: If q >

2|c1|n, the order parameter becomes τ P = (0 1 0) which
is called the polar phase, and if 0 < q < 2|c1|n the order
parameter becomes τBA = (sin θ/

√
2 cos θ sin θ/

√
2) with

sin θ = √
1/2 − q/(4|c1|n), which is named as the broken-

axisymmetric phase. For c1 > 0 and q > 0, MF energy is
again minimized with the polar order parameter τ P. Finally,
for c1 > 0 and q < 0, the antiferromagnetic phase is obtained
with order parameter τAF = (1 0 1)/

√
2.

Let us now consider mechanical instabilities for all the
MF phases. In the ferromagnetic phase one can obtain the
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FIG. 1. Schematic phase diagram of spin-1 Bose condensate as a
function of quadratic Zeeman shift q and spin-spin interaction c1 for
vanishing linear Zeeman energy p = 0.

MF energy density as n2(c0 + c1)/2 + qn, which suggests
a density collapse for c0 + c1 ≡ g2 < 0. In the ferromag-
netic phase, either m = 1 or m = −1 spin state exist in
a uniform condensate with total conserved magnetization
along z axis. This means two spin-1 bosons each having
m = 1 (or m = −1) can only scatter in a single colli-
sion channel with total spin 2. Therefore, the ferromagnetic
spinor gas acts as a single component BEC with the well-
known LHY energy giving the following total beyond MF
energy,

EF
0

V
= qn + 2π h̄2n2

M
a2

(
1 + 128

15
√

π

√
na3

2

)
, (4)

which is written in terms of scattering length a2 for conve-
nience. It can be seen that the collapse in the MF level with
g2 ∝ a2 < 0 cannot be prevented with the LHY term which
comes with the same overall factor a2. For this reason, one
cannot obtain a stability mechanism due to the LHY energy
for the spinor gas in the ferromagnetic phase. We also note that
LHY correction for the ferromagnetic order is independent
of the quadratic Zeeman energy. A similar analysis carried
out for the broken-axisymmetric phase shows that droplet
formation is not possible as MF and LHY terms are controlled
by the same parameter.

Consider the polar phase with c1 > 0 and q > 0 (first quad-
rant in Fig. 1, which has the order parameter τP = (0 1 0)
and the MF ground-state energy EP

MF = V n2c0/2 resulting in
a density collapse for c0 < 0. Including the LHY corrections,
the total GS energy becomes for c1 > 0 and q > 0 [33],

EP
0

V
= n2c0

2

[
1 + α

√
nc3

0

]
+ αn2|c1|

√
n|c1|3I (t ), (5)

where α = 16
√

M3/15π2 h̄3, t ≡ q/n|c1| = |q|/n|c1| since
q > 0, and

I (t ) ≡ − 15

8
√

2

∫ ∞

0
dx x2

×
(

x2 + t + 1 −
√

(x2 + t )(x2 + t + 2) − 1

2x2

)
, (6)

as shown in the Appendix, I (t ) can be approximated analyti-
cally as

I (t ) ≈ 15π

32
√

2

[√
t + 1 − 1

32

1

(t + 1)3/2

]
, (7)

to great accuracy which will be used in the following.
Crucially, beyond MF correction in the polar phase in-

volves contributions from density and spin fluctuations, the
terms with α that are proportional to c0 and c1 in (5), respec-
tively, and it also depends on the quadratic Zeeman coupling
q, in stark contrast with the ferromagnetic phase discussed
above. In the limit q = 0, t → 0, and I → 1, and I monoton-
ically increases with q. Thus, spin fluctuations increase with
quadratic Zeeman energy q, increasing the total GS energy. In
the ultralow density limit, MF energy and density fluctuations
scale with n2, n5/2, respectively, whereas spin fluctuations
scale with n2 due to

√
t + 1 term in (7). Importantly, an

instability initiated in the density channel with attractive in-
teractions at the MF level, c0 < 0, can be countered with the
quantum fluctuations in the spin channel c1, which can be
controlled with the Zeeman field q whereas the fluctuations in
the density channel are subleading. This observation should
be compared with quantum-mechanical stabilization of Bose-
Bose mixtures in Ref. [10] where a weak attractive interaction
between the two components induces a MF-level instability,
which is balanced by one of the two terms in the total LHY
fluctuation. In contrast, the other LHY term gives a negligible
“soft-mode” contributions that are routinely neglected in the
literature of quantum droplets [10,14,18,36–38]. In the fol-
lowing, we will also ignore these fluctuations and investigate
the stability condition between the MF energy in the density
channel and the LHY correction in the spin channel. Our
approach is similar to the work on coherently coupled two-
component droplets [26,39] where the Rabi frequency plays a
role similar to the Zeeman shift.

III. POLAR SPIN-1 DROPLET

For an infinite homogeneous spinor gas in the polar phase,
the equilibrium between the MF and the spin-fluctuation LHY
can be calculated from the condition of vanishing pressure.
Using the thermodynamic identity P = −(∂E/∂V )N , we ob-
tain

P = n2c0

2
+ αn2|c1|

2

√
n|c1|3 f (t ) (8)

where f (t ) ≡ 3I (t ) − 2t I ′(t ) with f (0) = 3. Setting this ex-
pression to zero gives the condition for the equilibrium density
n0 as

n0 = |c0|2
α2|c1|5 f 2(t0)

, (9)
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FIG. 2. The ground-state wave functions of the spin-1 gas in polar phase for various values of particle number Ñ and Zeeman energy
t1 = q/n1|c1|. (Left) The wave functions for q = 0 (or t1 = 0) and different values of Ñ . Below Ñ = 20 droplet is no longer self-trapped.
(Right) The wave functions for fixed Ñ = 500 and varying t1, which shows a self-bound droplet until a critical value of the quadratic Zeeman
energy qc ≈ 1.5. The numerical calculation was performed in the radial region r̃ ∈ [0, 18].

which is an implicit equation with t0 = q/n0|c1|. Here, n0

also approximates the value of the saturation density in finite
droplets for which the kinetic energy is negligible. Since f (t )
is a monotonically increasing function of t , the equilibrium
density decreases with increasing quadratic Zeeman energy
q. Increasing q provides a stronger LHY energy from spin
fluctuations in the polar phase, and the equilibrium with the
negative MF energy is reached at lower densities.

Let us study the feasibility of a finite spinor gas in the
polar droplet phase more quantitatively. For a polar spinor
with wave-function �(r) = ψ (r)τP, we define the total en-
ergy functional as

E[ψ∗, ψ] = h̄2

2M
|∇ψ |2

+ c0

2
|ψ |4 + α|c1|5/2|ψ |5I

[
q

|c1||ψ |2
]
, (10)

and parametrize the wave-function ψ (r) = √
n1φ(r) with

n1 = |c0|2/9α2|c1|5 obtained from (9) in the limit q = 0. We
minimize the total energy in the grand canonical ensemble
E = ∫

d3r E[ψ∗, ψ] − μN where the chemical potential is
fixed by the total number of particles N = ∫

d3r|ψ |2. The
resulting modified GP equation is given by

μ̃φ = −1

2
∇̃2φ − 3|φ|2φ

+
[

5

2
I

(
t1

|φ|2
)

|φ|3 − I ′
(

t1
|φ|2

)
t1|φ|

]
φ, (11)

which is written in dimensionless form r̃ = r/ξ with ξ =√
3h̄2/M|c0|n1 and t1 = q/n1|c1|. Dimensionless chemical

potential μ̃ is determined from total particle number using
Ñ = ∫

d3r̃|φ(r̃)| and related to the total number in the droplet
as Ñ = N/n1ξ

3.
In the limit of vanishing Zeeman energy, q = 0, Eq. (11)

reproduces the modified GP equation of Ref. [10]. At this
point, it is helpful to examine the correspondence between the
polar spinor and the binary mixture droplet more closely: The
MF instability condition c0 < 0 in polar spinor corresponds

to δg < 0 in binary mixture, where δg = g12 + √
g11g22 is

written in terms of inter- and intracomponent coupling con-
stants g12 and g11–g22, respectively. The quantum fluctuations
stabilizing this instability n5/2|c1|5/2 in polar phase corre-
sponds to the out-of-phase term n5/2a5/2

+ in binary mixtures.
The soft modes that are neglected n5/2|c0|5/2 in the polar
phase corresponds to the in-phase term n5/2a5/2

− of binary
mixtures.

We numerically solve the modified GP Eq. (11) to obtain
the GS wave functions for various values of the quadratic
Zeeman coupling q and the total number of particles Ñ using
imaginary time propagation. Our results are shown in Fig. 2.
The left panel in Fig. 2 shows the wave functions for various
values of Ñ for fixed q = 0. The polar spinor gas forms a self-
bound quantum droplet for particle numbers above the critical
value near Ñc ≈ 19 as in the Bose-Bose mixtures [10]. Below
this critical level Ñc, the repulsive pressure due to the kinetic
energy dominates the MF attraction and causes the droplet to
expand to infinity. The right panel in Fig. 2 shows the GS
wave functions for various values of q or t for fixed Ñ = 500.
One can see that increasing q strengthens the LHY energy of
the spin fluctuations, which, in turn, decreases the maximum
density of the droplet. Above a critical value of the Zeeman
energy qc ≈ 1.5, repulsion from the LHY energy combined
with the kinetic-energy quantum pressure overwhelms the MF
attraction and the droplet again expands to infinity. Then, the
quadratic Zeeman coupling can be used to tune the particle
density at the center of the droplet. However, a finite Zeeman
energy q �= 0 also increases the critical value of Nc. Since the
droplet wave function is Gaussian to a good accuracy around
the critical region, we study the qc vs Nc using a Gaussian
ansatz and compare with the numerical solution for different
values of t1 = q/n1|c1|. As shown in Fig. 3, Nc increases with
t1 monotonically.

Polar droplet discussion has so far considered the parame-
ter region in which c1 > 0 and q > 0. However, the GS also
has polar order with ferromagnetic coupling c1 < 0 and strong
Zeeman shift q > −2nc1 (blue region within the second quad-
rant in Fig. 1). In this regime, the LHY energy is obtained by

043309-4



SPINOR BOSON DROPLETS STABILIZED BY SPIN … PHYSICAL REVIEW A 105, 043309 (2022)

FIG. 3. The critical particle numbers Ñc for different values of
t1 = q/n1|c1| calculated from the numerical solution of the GP equa-
tion (orange) vs from variational calculation with thr Gaussian ansatz
(blue). The density at the center of the droplet decreases with q; the
kinetic energy and LHY pressure eventually overcome MF attraction.

replacing I (t ) with I (t − 2) in all of our previous calculations.
We find that droplet formation is possible for all the parameter
regimes with a polar GS.

IV. ANTIFERROMAGNETIC SPIN-1 DROPLET

The AF phase realized for c1 > 0 and q < 0 with an or-
der parameter τAF = (1 0 1)/

√
2 has the following total GS

energy including the LHY correction:

EAF
0

V
= qn + n2c0

2

[
1 + α

√
nc3

0

]

+ αn2|c1|
2

√
n|c1|3[1 + I (t )], (12)

where t = |q|/nc1 ≡ |q|/n|c1| since c1 > 0 here. Following
the same steps given in Sec. III, we consider the collapse
induced in the MF level with c0 < 0 and the stabilization with
the fluctuations in the spin channel and ignore the soft-mode
fluctuations in the density channel. The pressure is calculated
similarly as

P = n2c0

2
+ αn2|c1|

4

√
n|c1|3 g(t ), (13)

where g(t ) ≡ 3 + 3I (t ) − 2t I ′(t ). The equilibrium density for
the AF droplet is obtained from vanishing pressure as

n0 = 4|c0|2
α2c5

1 g2(t0)
, (14)

where t0 = |q|/n0c1. The equilibrium density is positive and
finite since g(t ) is a monotonically increasing function of t for
t � 0.

The total energy functional in the AF phase with wave-
function �(r) = ψ (r)τAF can be written as

E[ψ∗, ψ] = h̄2

2M
|∇ψ |2 + q|ψ |2 + c0

2
|ψ |4

+ α

2
|c1|5/2|ψ |5

(
1 + I

[
q

|c1||ψ |2
])

. (15)

FIG. 4. Comparison of the ground-state droplet wave functions
for t1 = −0.5, 0, 0.5 with the particle number Ñ = 500. The LHY
energy dependence on the quadratic Zeeman shift depends on the
order parameter.

We express the droplet wave function as ψ (r) = √
n1φ(r)

where n1 = |c0|2/9α2|c1|5 is obtained from n0 by taking the
limit q → 0. Defining t1 = |q|/n1c1 similarly, the variational
minimization of energy in the grand canonical ensemble gives
the following modified GP equation:

μ̃φ = −1

2
∇̃2φ + 3t1

|c1|
|c0|φ − 3|φ|2φ

+
{

5

4

[
1 + I

(
t1

|φ|2
)]

|φ|3 − 1

2
I ′
(

t1
|φ|2

)
t1|φ|

}
φ.

(16)

This equation of motion also reduces to the same form with
Eq. (11) when q → 0, i.e., t1 → 0. Even though the AF phase
yields the same GS wave functions with the polar case when
q = 0, the effect of nonzero |q| values are different for AF
and polar cases. The AF phase stabilizes the droplet with
contributions from both density and spin fluctuations, whereas
the spin fluctuation is the only stabilizing mechanism in the
polar case.

To investigate the stability of a finite-size AF spinor
droplet, we solve the modified GP equation numerically and
calculate the GS wave functions in Fig. 4. The stronger
quadratic Zeeman shift again implies less density for the
droplet within the central region. A further increase in |q|
causes the expansion of the droplet similar to the polar phase.
Hence, the quadratic Zeeman effect can again be used to
control the density of the droplet.

V. DISCUSSION OF EXPERIMENTAL REALIZATION
AND CONCLUSION

The phase diagram and the stability of spin-1 Bose is
controlled by three parameters: density-density interaction
c0, spin-spin interaction c1, and quadratic Zeeman energy
q. A self-trapped droplet forms when the MF instability to-
wards mechanical collapse induced with c0 < 0 is balanced
with the LHY quantum fluctuations. The derivation of the
LHY energy is based on a perturbative expansion within the
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Bogoliubov theory and requires diluteness, which is satisfied
if |c0|/|c1| is sufficiently small. In the case of a finite droplet,
additional quantum pressure coming from kinetic energy, the
total particle number constraint, and the quadratic Zeeman
shift give rise to a rich but complex interplay to determine
the full stability.

Experimentally, the spinor BECs obtained so far are not
favorable for droplet formation since they are all mechan-
ically stable with c0 > 0 [27,28,32,34,40,41]. For the most
commonly used alkali-metal atoms Na and Rb, c0 is an or-
der of magnitude larger than |c1| [32], whereas for lithium
|c0|/|c1| ∼ 0.46 [42]. To our knowledge, there is no funda-
mental reason for c0 to be positive or much larger than c1

in a complicated atom-atom scattering process, and favorable
parameters may emerge in a novel hyperfine manifold as
more atomic gases are trapped and cooled with new species
and mixtures. Furthermore, the spinor gases lack the stan-
dard magnetic Feshbach resonance for tuning the interaction
strength, but there are theory proposals for scattering length
tuning with optical Feshbach resonances which may soon be
experimentally realized [30,31]. We want to stress that the
required change for the gas to go into the self-trapped droplet
regime is not extraordinarily large. Hypothetically, consider
an atom with 0-channel and 2-channel scattering lengths a0 =
−100aB and a2 = +45aB, which yields c0 = 4π h̄2

M (− 10
3 aB) <

0 and c1 = 4π h̄2

M ( 145
3 aB) > 0 with the ratio c0

c1
� −0.07. For an

atom with 23-amu mass, the expected density at the center of
a saturated droplet is n1 ≈ 13 × 1014 cm−3 when q = 0 and a
droplet with N = 25 000 particles would be self-trapped. The
correlation length becomes ξ � 1 μm. For the total number of
particles 130 000 (Ñ = 100), the droplet will be stable up to
t1 � 1, thus, the quadratic Zeeman shift can be varied between
0 and 20 kHz. The droplet size is in the 3–6-μm interval for
N ≈ 25 000 to 150 000 particles.

In conclusion, similar to the droplet formations in the dipo-
lar and binary mixture gases, we predict a self-trapped droplet

for the spin-1 gas in the polar and AF phases. The mechanism
behind this stability is the competition between the MF at-
traction and LHY repulsion induced by spin fluctuations. The
quadratic Zeeman effect can be used to control the stability
of the droplet and its density. We hope that parameters favor-
able to droplet formation can be experimentally realized in
new cold atom species or by adjusting the scattering lengths.
Our results can be extended to nonzero magnetization, spin-2
gases, and spinor mixtures. Furthermore, other manifestations
of the beyond MF interactions within the spinor BECs may
also provide an exciting research direction.
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APPENDIX: ANALYTICAL APPROXIMATION FOR I(t )

We use a change in variable y ≡ x2 + t + 1 in the integral
(5) and expand

√
1 − 1/y2 in Taylor series up to the second

order in the domain x � 0 and t � 0 and obtain

I (t ) = − 15

16
√

2

∫ ∞

0
dx

( −(t + 1)

x2 + t + 1
+ x2

4(x2 + t + 1)3

)
.

Each term above can be calculated to give

I (t ) ≈ 15π

32
√

2

[√
t + 1 − 1

32

1

(t + 1)3/2

]
. (A1)

Higher-order terms in the expansion of
√

1 − 1/y2 can im-
prove the accuracy, but we numerically checked that the
second-order expansion is sufficient up to less than 1% error
for all t values.
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