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We investigate the dynamics of heavy impurities embedded in an ultracold Fermi gas by using a generalized
Langevin equation. The latter—derived by means of influence functional theory—describes how the stochastic
classical dynamics of the impurities and the quantum nature of the fermionic bath manifests in the emergent
interaction between the impurities and in the viscosity tensor. By focusing on the two-impurity case, we predict
the existence of bound states, in different conditions of coupling and temperature, whose lifetime can be
analytically estimated. Our predictions should be testable using cold-gases platforms within current technology.
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I. INTRODUCTION

The concept of mediated interactions between particles due
to the medium they are immersed in is ubiquitous in physics.
Notable examples include the phonon-mediated interaction
between electrons [1], giving rise to Bardeen-Cooper-
Schrieffer superconductivity, the interaction between cluster
or nuclear pasta structures mediated by the surrounding neu-
tron fluid in the inner crust of neutron stars [2–4], and the
interaction between heavy quarks mediated by a plasma of de-
confined quarks and gluons, in super-hot hadronic matter [5].

Highly imbalanced mixtures of ultracold gases provide
clean and tunable platforms to study medium mediated in-
teractions. In these systems, the quasiparticles resulting from
dressing impurities by the polarization of the bath are usually
referred to as polarons. The study of polaron physics in cold
gases was initiated by seminal experimental works on the
normal-to-superfluid phase transition in imbalanced Fermi-
Fermi mixtures [6,7] and the identification of the normal
phase as a weakly interacting gas of polarons, in the spirit
of Landau Fermi liquid theory (see, e.g., [8,9] and reference
therein). Shortly after, also the case of impurities immersed in
a Bose gas was experimentally realized [10,11].

Presently, the static and dynamical properties of a single
polaron have been relatively well understood, at least for the
case of a degenerate polarized Fermi bath, at zero temperature
[12]. On the other hand, the experimental and theoretical char-
acterization of the effect of the mediated interaction between
impurities is, in general, much more challenging [13]. How-
ever, two very recent experiments have measured the effect
of the mediated interaction on a Bose condensed gas in a
Bose-Fermi mixture, in which the Fermi gas plays the role
of the bath [14,15].

The present work aims at exploring the dynamics of heavy
impurities in a Fermi bath at finite temperature, within the
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framework of a generalized Langevin equation (GLE) [16]
that is derived from a chain of well-controlled approxima-
tions, starting from a microscopic Feynman-Vernon influence
functional [17]. In this way, we are able to provide semi-
analytical expressions for both the mediated interimpurity
interaction and the configuration-dependent friction tensor.

Within our approach, the effective stochastic dynamics
of the heavy impurities is treated at the classical level.
On the other hand, quantum effects must be fully taken
into account when deriving the mediated interaction, which
corresponds to a finite temperature Ruderman-Kittel-Kasuya-
Yosida (RKKY) [18–20] potential, and the friction tensor.

As a case study, we analyze the dynamics of two heavy
impurities. By numerically integrating their stochastic equa-
tions of motion starting from configurations in which they
are close to each other, we find evidence for the formation of
a transient bound state. Numerical estimates of the lifetime
of this state at different temperatures agree well with the
analytic calculations of the dissociation rate performed within
Kramers’ theory (see, e.g., Ref. [21] and references therein),
thus demonstrating that the impurity pair dissociation is a
thermally activated rare event.

We also find that the position-dependent off-diagonal el-
ements in the friction tensor have important implications on
the dynamics of the pair. In particular, the relative motion of
two close impurities is almost frictionless, yet the presence of
off-diagonal elements in the friction tensor leads to a rapid
dissipation of the relative orbital angular momentum [see
Fig. 3(b)].

The paper is organized as follows: In Sec. II, we derive
the Feynman-Vernon influence functional for our system; in
Sec. III, we describe the quantum mediated interaction and
friction and derive the GLE for the dynamics of the impurities,
focusing on the one- and two-impurity cases; in Sec. IV, we
discuss the numerical results obtained for the dynamics of two
impurities which are initially close to each other. A summary
of our findings is the content of Sec. V.
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FIG. 1. Two heavy impurities (red) in a bath of fermions (cyan).
The bare impurity-bath interaction g is responsible for the induced
forces between impurities F1,2 and for the low friction region
(yellow).

II. THEORETICAL SETUP

We consider a system composed by a bath of degenerate
ultracold Fermi atoms of mass m and chemical potential μ,
interacting with N impurities of mass mI � m. At the en-
ergy scales we consider, particles interact only via s-wave
scattering and therefore the interaction between the atoms of
the bath can be neglected. For the sake of clarity, we also
consider that there is no direct interaction between the im-
purities. The interaction between the bath and the impurities
is characterized in the following by a contact potential with
strength g. We also assume that the system is at a temperature
T such that the de Broglie thermal wavelength of the impu-
rities λ ∼ h̄

√
2π/mIkBT is small compared to their typical

interparticle distance. This will allow us to regard impurities
as quasiclassical particles. In order to obtain a stochastic equa-
tion of motion for the impurities, it is convenient to describe
them in first quantization and coordinate representation. We
rely on quantum field theory to describe the dynamics of the
degenerate fermionic bath. Our system, depicted in Fig. 1, can
be modeled by the following Hamiltonian:

Ĥ = ĤF + ĤI + V̂ , (1)

where

ĤI =
N∑

i=1

p̂2
i

2mI
, (2)

ĤF =
∫

dx �̂†(x)

(−h̄2

2m
∇̂2 − μ

)
�̂(x), (3)

V̂ = g
N∑

i=1

∫
dx �̂†(x) δ(q̂i − x) �̂(x), (4)

where p̂i and q̂i denote the impurity momentum and position
operators, and �̂(x) and �̂†(x) are the annihilation and cre-
ation field operators for the particles in the bath.

Let us consider a setup in which the impurities are ini-
tially decoupled from the bath and localized at fixed positions
Qi ≡ (q1, . . . , qN ). At time t = 0, the interaction with the
bath is switched on and the system’s density matrix begins
to evolve according to the Hamiltonian (1). We are interested

in the diagonal elements of the reduced density matrix for the
impurities, i.e., in the probability of observing the impurities
at Q f = (q f

1 , . . . , q f
N ) at time t f . Using Feynman-Vernon path

integral representation of the density matrix [17] we obtain

P(Q f , t |Qi, 0) =
∫ Q f

Qi

DQ
∫

Dξ

∫
Dξ ∗e

i
h̄ S[Q,ξ ,ξ∗]. (5)

In this equation, ξ (t, x) and ξ ∗(t, x) are Grassmann co-
herent field variables, while the functional at the exponent
is

S[Q, ξ , ξ ∗] =
∫
C

dt ′
{

mI

2

N∑
j=1

q̇2
j (t

′) +
∫

dxξ ∗(t ′, x)

×
(

ih̄∂t ′ − h̄2∇2

2m
− μ + ρ(t ′, x)

)
ξ (t ′, x)

}
,

(6)

where ρ(t, x) = g
∑N

i=1 δ(qi(t ) − x) is the instantaneous im-
purity density and the time integral is defined over the
standard Keldysh contour C [22,23].

The integral over the Grassmann fields ξ, ξ ∗ can be carried
out analytically, leading to

P(Q f , t |Qi, 0) =
∫ QF

Qi

DQ ei	C [Q] ei mI
2h̄

∑N
j=1

∫
C dt ′q̇ j

2
, (7)

where 	C[Q] is the influence functional, which is formally
written as

i	C[Q] = Tr

[
ln

(
ih̄∂t ′ − h̄2∇2

2m
− μ + ρ(t ′, x)

)]
. (8)

To obtain an explicit representation for 	C[Q], it is conve-
nient to deal separately with the upper and lower branches of
the Keldysh contour. In addition, we assume a low impurity
density and perform a functional expansion to second order in
ρ(t ′, x). The zeroth-order term is a constant that is reabsorbed
in the definition of probability, while the first-order term is an
energy shift that does not affect the dynamics. The resulting
expression for the transition probability density is

P(Q f , t |Qi, 0) =
∫ Qf

Qi

DQ′
∫ Qf

Qi

DQ′′

× ei	(Q′,Q′′ ) ei mI
2h̄

∑N
j=1

∫ t
0 dt ′(q̇′2

j −q̇ j
′′2 ), (9)

where

	(Q′, Q′′) = i

2

2∑
a,b=1

∫ t

0
dt ′

∫ t

0
dt ′′

∫
dx

∫
dy

× ρa(t ′, x)
ab(t ′ − t ′′, x − y) ρb(t ′′, y), (10)

where a, b label the branches of the Keldysh contour C, primed
variables lie on the forward branch of the contour, and double-
primed variables lie on the backward branch. In particular in
Eq. (10),

ρ1(t, x) = g
∑

i

δ(q′
i(t ) − x),

ρ2(t, x) = g
∑

i

δ(q′′
i (t ) − x), (11)
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and 
ab are the entries of a 2 × 2 matrix of Green’s functions:


11(t, x) = 
F (t, x) = iDF (t, x),


12(t, x) = −
<(t, x) = −iD<(t, x),


21(t, x) = −
>(t, x) = −iD>(t, x),


22(t, x) = 
F̃ (t, x) = iDF̃ (t, x). (12)

Here, D>(t, x), D<(t, x), and DF (t, x) are the standard
fermionic polarization propagators of many-body theory
[24,25].

We emphasize that expressions (9) and (10) follow directly
from Eq. (7), in the small impurity density limit.

In the next section, we shall introduce additional approxi-
mations which enable us to efficiently compute the transition
probability by integrating a stochastic differential equation of
motions.

III. EFFECTIVE STOCHASTIC DYNAMICS
OF HEAVY IMPURITIES

In this section, we introduce a chain of well-controlled
approximations to enable the sampling of the transition prob-
ability density (7).

A. Small frequency expansion

Since the mass of the impurities is much greater than that
of the particles in the bath, the dynamics of the former is
expected to be much slower. Then, it is possible to perform
a small frequency expansion of 
ab in Eq. (12):


ab(t, x) =
∫

dω

2π
e−iωt

( ∞∑
n=0

ωn

n!
F (n)

ab (x)

)

= F (0)
ab (x) + i

d

dt
δ(t )F (1)

ab (x) + · · · , (13)

where

F (0)
ab (x − y) ≡ 
ab(ω = 0, x − y), (14)

F (1)
ab (x − y) ≡ lim

ω→0

d

dω

ab(ω, x − y), (15)

and the dots denote higher order terms in the Taylor ex-
pansion. Substituting Eqs. (13) and (11) into Eq. (10) we
obtain

	(Q′, Q′′) = ig2

2

N∑
i, j=1

∫ t

0
du

{
F (0)

F (q′
i − q′

j )

+ F (0)
F̃

(q′′
i − q′′

j ) − F (0)
< (q′

i − q′′
j )

− F (0)
> (q′′

i − q′
j ) − iq̇ j1

∂

∂q′
j

F (1)
> (q′′

i − q′
j )

− iq̇ j2
∂

∂q′′
j

F (1)
< (q′

i − q′′
j )

}
. (16)

It is convenient to introduce the so-called complex potential
V (x − y):

iV (x − y) ≡ F (0)
F (x − y) = V (x − y) + iW (x − y). (17)

In Appendix A, we show that the real and imaginary part
of V can be expressed in terms of the retarded polarization
propagator in Fourier space:

V (x − y) = ReDR(ω = 0, x − y), (18)

W (x − y) = 2

β
lim
ω→0

1

ω
ImDR(ω, x − y). (19)

We also show that for a bath of noninteracting fermions in
three dimensions,

V (x − y) = − mkF

4π4h̄2

∫
dq

sin(qr)

r

∫
dk fFD(k, T )k

× ln

∣∣∣∣k + q/2

k − q/2

∣∣∣∣,
(20)

W (x − y) = − m2

2π3h̄3β

∫
dq fFD(q/2, T )q

sin(qr)

qr
, (21)

where r = |x − y| and fFD is the Fermi-Dirac distribution.
In the following, we use the rescaled imaginary potential

WR as

WR(x − y) = β

2
W (x − y), (22)

for an easier understanding. Indeed, with this rescaling the
term 1/β in Eq. (21) disappears.

B. Classical limit

We now take the classical limit for the dynamics of the
impurities. In order to implement this approximation, we first
perform the change of variables:

ri = 1
2 (q′

i + q′′
i ) yi = q′

i − q′′
i . (23)

After an integration by parts, the free action of the impurity
takes the form,

exp

(
imI

h̄

N∑
i=1

∫ t

0
dt ′ r̈i(t

′) · yi(t
′)

)
. (24)

We expect the dominant contribution to the path integral to
come from the functional region where the time integral in
the exponent is small or at most of order unity. To estimate
it, we note that

∫ t
t dt ′ r̈i · yi ∼ √

kBT/mI|yi|, where
√

kBT/mI

is the average thermal velocity of the impurities. Then, the
stationary phase condition implies |yi| �

√
1/mIkBT . In the

limit of heavy impurities, fluctuations of yi become small
compared to all relevant length scales, thus we can expand
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the influence functional to second order in yi, leading to

P(R f , t |Ri, 0) =
∫ R f

Ri

DR
∫ 0

0
DYexp

{
− i

h̄

∫ t

0
dt ′

×
[

yi(mIr̈i + 
i j (R)ṙ j − Fi(R))

− 1

2
yi

2

β

i j (R)y j

]}
, (25)

where R = (r1, . . . , rN )T , Y = (y1, . . . , yN )T , and the sum
over repeated indices i, j = 1, . . . , N is understood. F (R) and

i j (R) are defined as

Fi(R) = −g2
N∑

j=i

∇V (ri − r j ), (26)


i j (R) = g2HWR (ri − r j ), (27)

where HWR is the Hessian of WR.
The Gaussian integral over Y can be evaluated analytically,

leading to our final path integral expression for the transition
probability:

P(R f , t |Ri, 0) =
∫ R f

Ri

DRe− ∫ t
0 dτ (mIR̈−mI
(R)Ṙ−F(R))2

. (28)

Here, the probability for the impurities to go from Ri to
R f in a time t is written as a functional integral over all
possible trajectories connecting the initial and the final con-
figuration. We note that the functional at the exponent, which
determines the relative statistical weight of R(t ) trajectories,
does not explicitly depend on h̄. Indeed, it corresponds to
an Onsager-Machlup action [26], which characterizes path
integral representation of the propagator in classical Fokker-
Planck dynamics.

As a consequence, as explicitly shown in Refs. [27,28],
the same transition probability density of Eq. (28) can be
generated by the following GLE:

mIr̈i = −
i j (R)ṙ j + Fi(R) + �i(R, t ). (29)

The viscosity 
(R)i j and the noise term �i(R, t ) satisfy the
fluctuation-dissipation relations,

〈�i(R, t )〉 = 0, (30)

〈�i(R, t ) ⊗ � j (R, t ′)〉 = 2

β

i j (R)δ(t − t ′). (31)

The noise �i(R) depends only the relative distances between
the ith impurity and all the other impurities. To conclude this
section, we note that while the dynamics of the impurities
has been reduced to a classical diffusion process, the quantum
nature of the bath is still effectively encoded in the structure
of the viscosity and force terms, derived from Eqs. (20) and
(21) [29].

C. Dynamics of a single impurity

It is instructive to apply our formalism to the case of a
single impurity. For N = 1, the GLE reduces to that of a
standard Brownian particle, with constant viscosity and white

noise:

mIr̈ = −γ ṙ + �(t ), (32)

where we defined r = R = r1 and

γ = 
11 = −8m4g2

3h̄7π3
(kBT )2Li2(−eβμ(T ) ) (33)

is the single impurity friction constant where Li2 is the dilog-
arithm [30]. At finite temperature, Eqs. (32) and (33) yield the
conventional Einstein’s diffusion law, and the kinetic energy
of the impurity thermalizes with the bath. However, if the
temperature is much smaller than the bath Fermi tempera-
ture TF = εF/kB, with the usual Fermi energy εF = h̄2k2

F/2m,
Eq. (33) can be written as

γT →0 = 4h̄k2
F

3π

( m

mr
kFa

)2
(

1 + T 2

T 2
F

π2

3

)
. (34)

In this equation, mr = mIm/(mI + m) is the reduced mass and
g is expressed in terms of the more physical s-wave scattering
length a, g = 2π h̄2a/mr . We note that the viscosity remains
finite even at zero temperature. This is possible because the
impurity releases energy into the bath by inducing particle-
hole excitations. The same result for the viscosity Eq. (34) can
also be obtained by considering the energy dissipation of an
infinite mass impurity moving in the bath (see Appendix B), as
discussed in Ref. [31] for the case of interacting Bose gases.
Note that in the latter case (and for any superfluid system),
the viscosity vanishes for T → 0, due to the existence of the
critical Landau velocity, which provides a minimal velocity
for the impurity to excite the system. Interestingly, Schecter
and Kamenev applied the same formalism we adopted in the
present work to compute the friction in a weakly interacting
Bose gas, and found that it scales as γBEC � T 7 [32].

D. Dynamics of two impurities

Let us now consider the case of two impurities. The corre-
sponding GLEs read

mIr̈1 = −(γ ṙ1 + 
12(r1 − r2)ṙ2)

+ F1(r1 − r2) + �1(r1 − r2, t ), (35)

mIr̈2 = −(
21(r1 − r2)ṙ1 + γ ṙ2)+
− F1(r1 − r2) + �2(r1 − r2, t ), (36)

in strong analogy with the old result for heavy particles in
incompressible fluids [33]. It is convenient to rewrite the
previous equations in terms of the relative distance between
the impurities, s = r1 − r2, and the center of mass rCM =
(r1 + r2)/2:

mI s̈ = −(γ − 
12(s)) ṡ + 2F1(s) + η−(s, t ), (37)

mIr̈CM = −(γ + 
12(s)) ṙCM + 1
2η+(s, t ), (38)

where η+(s, t ) and η−(s, t ) are two Gaussian noises,

η±(s, t ) = �1(s, t ) ± �2(s, t ). (39)
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FIG. 2. Spatial dependence of the conservative potential and of the friction matrix for kFa = 0.19 and T/TF = 0.2, 0.1, 0.05 (dotted-dashed
blue, dashed red, solid green lines). (a) Real potential V (s). Horizontal dashed lines are V (s = 0) + 3T/2 and their intersection with the other
curves determine the typical size of the bound state rb; see Sec. IV for details. Note that V (s) for T/TF = 0.1 is not visible because it is hidden
by the other lines. (b) Difference between the constant viscosity term and the diagonal component of the viscosity matrix γ − 
ii

12(s) in units
of γT =0, i.e., Eq. (34) for T = 0. Note that |s|kF � 6 the oscillations decay because the contribution of 
ii

12 vanishes. In the inset is shown
the behavior for small |s|kF. (c) Sum between the constant viscosity term and the diagonal component of the viscosity matrix γ + 
ii

12(s) in
units of γT =0. In the last two panels, the horizontal dotted line is a guide to the eye that mutual friction becomes irrelevant. The deviation
at large distance is captured by Eq. (34). (d) Off-diagonal component strength β(s) of the viscosity matrix 


i j
12 in units of γT =0. Also for the

off-diagonal component the oscillatory behavior decays for |s|kF � 6.

Using Eqs. (20) and (22), the explicit expression for the force
and the viscosity matrix can be, respectively, written as

Fi
1(s)= mg2

16π4h̄2

si

s2

∫ �

0
dq qh(q, s)

∫ ∞

0
dk k fFD(k/2) ln

∣∣∣∣k + q

k − q

∣∣∣∣,
(40)

and



i j
12(s) = α(s)δi j + β(s)

sis j

s2
,

α(s) = − m2g2

4π3h̄3s2

∫ ∞

0
dq qh(q, s) fFD(q/2),

β(s) = m2g2

4π3h̄3s2

∫ ∞

0
dq q(3h(q, s) + qs sin(qs)) fFD(q/2),

(41)

where h(q, s) = cos(qs) − sin(qs)/(qs) and the function β(s)
is the strength of the off-diagonal components of the viscosity
matrix.

Note that in Eq. (40) we have introduced a UV momen-
tum cutoff �. To be consistent with the physical interaction
characterized by the s-wave scattering length a, the coupling
constant must satisfy [34]

4kFa =
(

h̄2

2mr

π

gkF
+ �

πkF

)−1

. (42)

The presence of a second impurity significantly modifies
the stochastic equations of motion. In particular, the relative
motion experiences the effect of an external force, which
provides the finite temperature generalization of the RKKY
interaction [18–20]. For both the center of mass and relative
motion, the friction matrix is in general nondiagonal. While
the diagonal components of the friction matrix possess a
single-impurity and multi-impurity part, respectively, related
to γ and 
ii

12, the off-diagonal components possess only the
latter. In particular, the relative motion becomes underdamped
in the limit in which the distance between the impurities
is small. On the other hand, the center of mass diffuses
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according to a simple Brownian motion, with a friction matrix
that depends on the relative coordinate only.

The conservative potential and the friction matrix elements
are plotted in Fig. 2, which also shows that the temperature
dependence is very weak and that the off-diagonal component
of the friction is in general much smaller than the diagonal
one.

IV. NUMERICAL RESULTS: BOUND STATES
DYNAMICS AND LIFETIME

As a case study for the dynamics of two heavy impurities
in a free Fermi gas, we focus on the presence of localized
(bound) solutions due to the mediated interaction and estimate
their lifetime under the effect of the stochastic noise. First,
we consider the typical value of the bound state size rb: This
can be estimated by matching the average kinetic energy pro-
vided by the coupling with the bath with the strength of the
mediated interaction: (kFa)2V (rb) ∝ 3kBT/2. As expected,
an increase in the scattering length (temperature) leads to a
smaller (larger) rb, as shown in Fig. 2(a).

We solve Eq. (29) using a stochastic Verlet algorithm [35]
and simulate the time evolution of two impurities at different
temperature, with scattering length kFa. The two impurities
start at rest with an initial random position s0 subject to
the constraint |s0| = rb. We average over 1000 independent
simulations, with a mass ratio set to mI/m = 30, which is
comparable to that of typical experimental setups (for exam-
ple, in 133Cs - 6Li mixtures [36] one has mI/m � 22). With this
mass ratio, the condition on the de Broglie thermal wavelength
λkF/2π � 1 is satisfied for all the temperatures considered,
with 2π/kF the typical interparticle distance.

In all simulations, we find that in the long-time regime,
impurities drift apart and eventually diffuse according to the
single-impurity Brownian dynamics described by Eq. (32). In
Fig. 3, two representative trajectories are shown: In (a) the im-
purities remain within a distance comparable to rb throughout
the entire simulation time shown, signaling the existence of
a bound state. In (b) the impurities eventually dissociate and
begin an independent Brownian diffusion.

The lifetime of the bound state τ is defined as the average
dissociation time. In the low-temperature regime (i.e., when
dissociation is a thermally activated process), τ can be calcu-
lated using Kramers’ theory [21]:

τ = 2π

√
K

Ka

2mIeβU√
γ 2 + 4KmI − γ

. (43)

Here, the viscosity γ is estimated from Eq. (33) by taking the
limit of vanishing distance, K and Ka are the curvature of the
potential at the top and bottom of the potential energy barrier,
and U is the height of the barrier.

The lifetime τ of the bound state can also be directly
inferred from the numerical simulations, indeed the bound
state is considered dissociated when kFs > 2.5, since at this
interimpurity distance the slope of V (s) changes. Typical evo-
lutions of the interimpurity distances for single trajectories are
shown in Fig. 4(a) for kFa = 0.19 and T/TF = 0.2 (dotted-
dashed blue line), T/TF = 0.1 (dashed red line), and T/TF =
0.05 (green line). For the latter the dissociation occurs at
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FIG. 3. Two representative trajectories obtained by integrating
the GLEs starting from a configuration with relative impurity dis-
tance rb, kFa = 0.19, and T/TF = 0.05. The components sx , sy of
the distance s are shown and the color map labels time. The motion
of the impurities is also not confined on a plane due to thermal
fluctuations. In the trajectory reported in (a), the impurities remain
in a bound state up to t = 3000 tF. In (b) the bound state starts
to dissociate for t � 1000 tF. In this case, the relative motion in
the bound state becomes quasi-one-dimensional, because of angular
momentum dissipation.

t > 350 tF. We finally obtain the numerical results for the
lifetime τ by averaging over all trajectories. We observe that
numerical results are in perfect agreement with the predictions
of Kramers’ theory Eq. (43), as shown in Fig. 4(b). This
agreement implies that, at these temperatures, the dissociation
of the bound states is a thermally activated event. The range
of temperatures we consider is experimentally accessible. In
addition, typical Fermi time tF = h̄/εF in recent experiments
(see, e.g., Ref. [37]) is of order 10−2 ms, thus dissociation
times between 100 and 1000 tF should be experimentally
detectable. We stress that an agreement between Kramers’
theory predictions and experimental dissociation times would
represent a validation of the classical approach developed in
this work.

An interesting feature that can be inferred for the long-
lived bound state trajectories is that the relative motion of the
two impurities tends to become quasi-one-dimensional before
dissociating. To analyze this feature, we study the evolution
of the modulus Lorb of the internal orbital angular momentum
Lorb = s × mI ṡ. As shown in Fig. 5 for a typical trajectory,
we observe that after an initial transient time Lorb tends to
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FIG. 4. (a) Single shot time evolution of s = |s| at kFa = 0.19 for
different temperatures: Solid green line is T/TF = 0.05, dashed red
line is T/TF = 0.1, and blue dotted-dashed line is T/TF = 0.2. For
T/TF = 0.2 and T/TF = 0.1. Dissociation is visible for the higher
temperatures, while it happens at longer times for T/TF = 0.05.
(b) Numerically observed lifetimes τ as filled symbols at different
T/TF and kFa; lines are the theoretical predictions according to
Eq. (43). Statistical uncertainties are smaller than the size of the
symbols.

oscillate around a plateau value Lp,s and then it drops around
the dissociation time. Since in the same interval the values
of |s| and |ṡ| are almost constant, the drop in internal orbital
angular momentum indicates a more one-dimensional motion.
The relative loss of Lorb for the single trajectory is calculated
as 
Ls/Lp,s = (Lorb(t = τs) − Lp,s )/Lp,s and Lorb(t = τs) is
the modulus of Lorb at dissociation time of the single trajectory
τs (see Fig. 5). For a short time after dissociation we observe
that Lorb increases rapidly due to the last momentum kick
which causes the dissociation of the bound state. Finally, the
average relative angular momentum loss 
L/Lp is calculated
by averaging over all the trajectories with the same scattering
length and is shown in the inset of Fig. 5.

V. CONCLUSIONS

In a fermionic bath, the stochastic dynamics of impuri-
ties is strongly influenced by the effective interaction and
friction induced by the coupling to the medium. Under a
well-controlled chain of approximations, the bath degrees of
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Lorb(τs)
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−0.8

FIG. 5. Time evolution of the modulus Lorb of the internal or-
bital angular momentum with kFa = 0.19 and T/TF = 0.05 along
a typical trajectory. Solid red lines indicate the plateau value Lp,s

and the value at dissociation time Lorb(τs ), while the vertical dashed
black line indicates dissociation time τs. Also the absolute value of
momentum loss |
Ls| is shown. (Inset) Relative momentum loss
averaged over all the trajectories with the same scattering length.

freedom can be traced out and the impurities’ dynamics can
be described through an effective stochastic dynamics. In this
scheme, the impurities obey classical GLEs, and the quantum
nature of the system is encoded only in the induced force and
viscosity terms.

In this work, we focused on the dynamics of a system
consisting of two impurities. We found that, in the short time
regime, the interplay between induced interaction and thermal
fluctuations leads to the formation of a bound state character-
ized by a radius rb and a lifetime τ .

Two experimental realizations of mixtures of Bose-
Einstein condensates and Fermi gas have been achieved so
far [14,15]. However, the density of heavy impurities in these
systems is relatively high, so that a description in terms of
heavy particles independently diffusing in the medium may
not be accurate. An important question to address is whether
it is feasible to experimentally probe systems with lower im-
purity densities, using the existing technology.

Although more demanding, cold gases could also be the
proper platform to obtain a direct experimental evidence of an
off-diagonal component of the friction for the impurities.

We note that the same approach adopted in the present
work was applied by some of us to investigate the dynamics
of heavy quarks diffusing in a ultrarelativistic quark-gluon
plasma [27]. That analysis was based on an effective finite
temperature Abelian gauge theory to describe the dynamics
in the deconfined plasma. In that approach, heavy quarks and
antiquarks played the role of two distinct types of impurities,
while light quarks and antiquarks formed the thermal bath.
All quarks in the systems were coupled via a Debye-screened
Coulomb-type interaction. As a consequence of these fea-
tures, the sign of 
12 was found to be different from that of the
present Fermi system. Namely, the center-of-mass motion ex-
periences a very reduced effective friction, while the relative
internal motion of the quark-antiquark pair is overdamped. As
an outlook, it could be interesting to devise a cold atom system
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that can mimic such a model. This may be done by properly
selecting two different hyperfine levels or two different atomic
species that couple with opposite sign to the particles in the
Fermi bath. The extension of the present simulation strategy
to a superfluid fermionic bath and to many-body systems of
impurities would also be extremely valuable to understand
the properties of the outer layers of neutron stars, such as
entrainment effects caused by the presence of the medium
(see, e.g., [38]) and modifications to transport properties of
the crust like the thermal conductivity [39,40] and the neutrino
opacity [41–43].

It would also be interesting to study our results in different
dimensionality, to explore the role of a longer range (RKKY-
like) mediated interaction and a possibly weaker friction.
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APPENDIX A: COMPLEX POTENTIAL

In Sec. II we introduced the matrix of polarization propa-
gators 
ab. Here we demonstrate that with a bath in thermal
equilibrium all of these functions are related and we only
need one, 
R, to derive the complex potential needed for the
dynamics. In position space, 
R is defined as


R(x − y) = 
F (x − y) − 
<(x − y). (A1)

The procedure to derive Eqs. (18) and (19) of the main text
is modeled on Ref. [27]. Complex potential in the small fre-
quency approximation is

iV (q) = lim
ω→0

(
R(ω, q) + 
<(ω, q))

= lim
ω→0

(Re
R(ω, q) + iIm
R(ω, q) + 
<(ω, q)).

(A2)

The real part of 
R is related to the spectral density σ . Indeed,
we have 2Re
R(ω, q) = σ (ω, q). In the small frequency ap-
proximation, therefore,

Re
R(ω, q) = AR(q) + ωBR(q) + o(ω2). (A3)

Spectral density is odd in ω, i.e., σ (−ω, q) = −σ (ω, q).
Therefore, A(q) = 0 and

Re
R(ω, q) = ωBR(q) + o(ω2) = 1
2σ (ω, q). (A4)

Exploiting the fluctuation-dissipation relation (FDR) that is
valid for a bath at equilibrium, we have


< = 2

eβω − 1
Re
R(ω, q). (A5)

In this last equality an algebraic relation between 
< and 
R

is established. Thanks to this, we will be able to write V only
in terms of 
R.

The limit ω → 0 of Eq. (A5) is

lim
ω→0


<(ω, q) = 2

β
BR(q). (A6)

We now perform the limit in Eq. (A2) and we obtain

V (q) = Im
R(ω = 0, q) − i
2

β
BR(q). (A7)

In terms of DR = −i
R the real and imaginary part of the
complex potential now are

V (q) = ReDR(ω = 0, q), (A8)

W (q) = 2

β
lim
ω→0

ImDR(ω, q)

ω
. (A9)

In three dimensions, the full expressions of ReDR and ImDR

in momentum space are

ReD(ω, q) = − m

2π2h̄2

∫
dk fFD(k, T )

k

2q

×
(

ln

∣∣∣∣k/kF − ν−
k/kF + ν−

∣∣∣∣ − ln

∣∣∣∣k/kF − ν+
k/kF + ν+

∣∣∣∣
)

,

(A10)

ImD(ω, q) = − mkF

2π h̄2

[
ω

vFq
+ 1

βvFq
ln

(
1 + eβ(ν2

−εF−μ)

1 + eβ(ν2+εF−μ)

)]
,

(A11)

where β = 1/kBT , ν± = ω/qvF ± q/2kF, and vF = kF/m.

APPENDIX B: ZERO-TEMPERATURE FRICTION

As shown in Ref. [31], friction can be understood also in
terms of energy dissipated by an impurity moving at velocity
V , Ė = −FV V , with FV the velocity-dependent drag force.
Following the convention of Ref. [44], Sec. 7, the energy
dissipated per unit time and particle when a contact interaction
of strength g is considered is

Ė = −
∫ ∞

−∞

dk
(2π )3

∫ ∞

−∞

dω

2π
2πS(ω, k)

n

2N
ω2πg2δ(ω − kzV )

= −ng2

2N

1

(2π )2

∫ ∞

−∞
dk S(kzV, k)kzV = −FV V. (B1)

Now we focus on the drag force FV :

FV = ng2

8Nπ2

∫ ∞

−∞
dkS(kzV, k)kz

= ng2

4Nπ

∫∫ ∞

−∞
dk⊥dkzk⊥kzS(kzV,

√
k2

z + k2
⊥). (B2)

In order to perform the integration in Eq. (B2), we use the

expression of the dynamical structure factor S(kzV,

√
k2

z + k2
⊥)

given in Ref. [45], Sec. 2. This expression is

S(ω, k) = ν(0)

2

ω

kvF
if 0 � ω � kvF − k2

2m
, (B3)

which in the small velocity limit gives the conditions 0 �
kz � 2mvF and 0 � k⊥ �

√
(2mvF)2 − k2

z . Performing the

043308-8



STOCHASTIC DYNAMICS AND BOUND STATES OF HEAVY … PHYSICAL REVIEW A 105, 043308 (2022)

integration we obtain

ν(0)V

2vF

∫ 2mvF

0
dkzk

2
z

∫ √
(2mvF )2−k2

z

0
dk⊥

k⊥√
k2

z + k2
⊥

= 8

3
ν(0)mV k3

F. (B4)

Finally, for FV we obtain

FV = ng2

4Nπ

8

3
ν(0)mV k3

F = 3mN

k2
F

k3
F

6π2

g2

Nπ

2

3
mk3

FV

= m2k4
F

3π3
g2V = 4k2

F

3π

(
kFa

m

mr

)2

V = γT =0V. (B5)

In this derivation, we used ν(0) = 3mN/k2
F (see [45]) and n =

k3
F/6π2. Now, comparing Eqs. (B5) and (34) we see that we

recovered the same result for the friction coefficient at T = 0
(the missing h̄ factor is due to the fact that in this Appendix we
set h̄ = 1).

This connection between the statistical structure factor
S(ω, k) gives also a useful insight on why γ vanishes for a
Bose gas or generally for a phononic spectrum at T = 0. The
dynamical structure factor in the presence of the single low-
energy phonon mode reads S(ω, q) = Skδ(ω − c|k|), where c
is the speed of sound. Therefore, the drag force vanishes for
any impurity speed V < c (obviously in agreement with the
Landau criterion for superfludity).

On the other hand, having the fermions a continuum of
particle-hole excitations at low energy, a moving object will
release energy to the bath at whatever speed V it moves.
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