
PHYSICAL REVIEW A 105, 043307 (2022)

Density correlation functions and the spatial structure of the two-dimensional
BEC-BCS crossover
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The spatial structure of a two-dimensional homogeneous mixture of fermionic atoms in two hyperfine states
is analyzed throughout the BEC-BCS crossover. Within the BCS-Leggett mean-field model we consider three
functions: the pair wave function and the density-density correlation functions between atoms of the same and
of different hyperfine states. For the correlation functions we derive analytical expressions which allow one to
unveil the rich spatial structure of the superfluid. Mainly, we are able to study the large-distance behavior of the
three functions, which exhibits an exponential decay and a well-defined oscillatory behavior. We report closed-
form expressions for the correlation lengths and mean pair radius. Differences and similarities emerge when
comparing with the three-dimensional case. Particularly, we find an expression for the large-distance correlation
length, in terms of the chemical potential and the gap, valid in two and three dimensions, but whose dependence
on the corresponding scattering lengths differ significantly.

DOI: 10.1103/PhysRevA.105.043307

I. INTRODUCTION

Experimental advances in ultracold atoms have surprised
the community with the creation of physical systems with
unprecedented control over their properties [1–5]. An example
is the achievement of spatial confinement to two dimen-
sions [2,6–10], offering an exceptional opportunity for testing
theoretical models against experiments. Such is the case of
the two-dimensional (2D) BEC-BCS crossover, implemented
by Miyake [11], and Randeria et al. [12]. Their mean-field
model, which concerns us, consists of a homogeneous bal-
anced mixture of two fermionic species with a renormalized
contact interaction between unlike particles, similarly to the
three-dimensional model of Leggett [13] and Eagles [14].
Depending on the strength of the interactions, different many-
body states can be obtained. For weakly attractive interactions
a gas of Cooper pairs is obtained, corresponding to the
Bardeen-Cooper-Schrieffer regime (BCS) [15]. On the other
hand, for strongly attractive interactions a gas of diatomic
molecules is generated, which condenses at zero temperature,
corresponding to a Bose-Einstein condensation (BEC) state.
However, for intermediate strengths, the many-body states
form a continuum that connects both regimes, known as the
crossover region. An important question about the BEC-BCS
crossover concerns the description of the pairing mecha-
nism of unlike particles, giving rise to BCS superfluidity and
Bose-Einstein condensation [2,4]. To address this question we
analyze the spatial structure of the gas within the aforemen-
tioned 2D mean-field BCS-Leggett model [11,12]. The spatial
structure can be extracted from the analysis of three functions:
the correlation function between same species, the correlation
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function between different species, and the variational pair
wave function.

The main contribution of this article is to present analytical
expressions for the two correlation functions, an important
result that allows one to obtain a detailed picture of the be-
havior of the gas throughout the crossover. For the pair wave
function, while we are unable to find an analytical expression
for all values of the interaction, we do find its large-distance
behavior, and we analyze it with the aid of numerical cal-
culations. Also, we report closed-form expressions for the
correlation lengths and mean pair radius defined as the re-
spective second moment for each distribution. Similarly to
the three-dimensional (3D) case [16,17], we can analyze the
pairing phenomenon throughout the crossover. In the BCS
limit, correlated pairs of unlike particles can have multiple
sizes, particularly of macroscopic order, while Pauli-blocking
correlations prevent two like particles from being found near
each other. In the BEC limit the sizes of correlated pairs
of unlike particles tend to be small, while Pauli-blocking
correlations become negligible. Further, with our analytical
expressions, we are able to study the large-distance behavior
of the correlation functions and the pair wave function. We
find that the three functions exhibit an exponential decay and
a well-defined oscillatory behavior. The exponential decay, or
large-distance correlation length, along the whole crossover,
is characterized by the so-called 2D scattering length, a quan-
tity that quantifies the two-body physics used to renormalize
the atomic interaction strength. The spatial oscillation fre-
quency turns out to be constant throughout the crossover,
being equal to the Fermi wave number. These two results
contrast interestingly with the 3D behavior [16]: while the
large-distance correlation length is analogous for both dimen-
sions in the BEC regime, but not in the crossover and the BCS
side, the spatial oscillations agree in the BCS regime but are
quite different in the BEC one. Nevertheless, it is remarkable
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that in both cases, 2D and 3D, the large-distance correlation
length depends on the same way in terms of the thermody-
namic variables chemical potential and gap, although their
relationship to the corresponding scattering length differs. Ad-
ditionally, the existence of a finite large-distance correlation
length allows one to inquire into the anomalous breaking of
the expected scale invariance of a 2D Fermi gas interacting
through a contact potential [18–22]. Indeed, such a correlation
length determines a size of the density fluctuations, evidently
being more notorious in the BEC regime and losing its scale
in the BCS side, as the fluctuation size grows without bound.

The article is organized as follows. In Sec. II we give a
brief review of the two-body scattering problem used to renor-
malize the interaction strength in the many-body problem. In
Sec. III, we introduce the 2D mean-field BCS-Leggett model
and discuss the relevance of the two-body physics. In Sec. IV
we present the main study of the two-body distributions. Ana-
lytical expressions for both correlation functions are reported.
We analyze the large-distance behavior of the three functions
by studying the spatial oscillation and the large-distance cor-
relation length. Lastly, we report closed-form expressions for
the correlation lengths and the mean pair radius. Final remarks
are given in Sec. V.

II. TWO-BODY SCATTERING PROPERTIES FOR
THE MANY-BODY PROBLEM

In ultracold gases the complete coupled-channels interac-
tion between atoms can be approximated by a single channel
potential, facilitating the description of the physical properties
[2–4,23]. In this section we briefly revise the problem of scat-
tering of equal mass particles from a nondivergent short-range
central potential U (r) with an attractive tail, and then, restrict
ourselves to the ill-defined contact potential whose physical
properties require a renormalization procedure [24,25]. Very
generally, the low energy limit of the T matrix is given by
[12,26–28]

T (2E ) ≈ 4h̄2

m

[
1

ln(Ea/2E )/π + i

]
, (1)

where m is the mass of a particle and E = h̄2k2/2m is half
the energy of relative motion [12,26]. The quantity Ea is
the approximate energy at which a scattering resonance oc-
curs [12,26–28]. However, when the potential U (r) does not
change sign in the interval [0, r0], where r0 is the range of the
potential, the energy Ea is also a good approximation of the
absolute value of an ever-present bound state energy Ebound

[26], given by

Ea ≈ 4h̄2

mr2
0

exp

(
2

α0
− 2γ

)
, (2)

where γ ≈ 0.577 is the Euler-Mascheroni constant and

α0 ≈ m

h̄2

∫ r0

0
dr rU (r). (3)

In Fig. 1 we show a comparison between the energy of
the s-wave resonance Eres [27,28], the absolute value of the
bound state energy |Ebound|, and the energy Ea, for a shallow-
enough circular potential (analogous of the spherical well

FIG. 1. Comparison between the bound state energy |Ebound|,
shown with a dotted line (brown); the exact s-wave resonance energy
Eres [27], solid curve (orange); and the approximate energy Ea, shown
with a dashed line (purple), for the circular potential illustrated in the
inset. The depth of the potential is given by −U0 and the radius is r0.
The primed variables correspond to dimensionless quantities, using
m = h̄ = r0 = 1.

in 3D) of depth −U0 and radius r0. We can observe that
for values 2mr2

0U0/h̄2 � 1 the three energies are essentially
equal. This result already indicates that Ea is the scale that
rules low-energy collision physics in this interval. A useful
and appropriate model for the interaction between atoms in
a many-body fluid is the contact interaction [2,4,5], which
corresponds to a Dirac-delta function,

U (r) = gδ(2)(r), (4)

where g < 0 is the interaction strength. This potential presents
several nonphysical properties related to the zero range of the
delta function [24]. Therefore its use requires one to renounce
to describe high-energy properties with accuracy [24]. In or-
der to calculate physical quantities, within a renormalization
procedure, the interaction strength g has to be expressed in
terms of a given physical quantity such as the approximate
energy of the s-wave resonance Ea [24], or more generally in
terms of the phase shift. This can be achieved by iterating the
T matrix in the Lippmann-Schwinger equation, from which
an expression for the interaction strength in terms of the
low-energy limit of the T matrix (1) and a divergent term is
obtained [3,4,12,29,30],

1

g(�)
= 1

T (2E )
+ 1

A

�∑
k′′

1

2(E − εk′′ + iδ)

= m

4π h̄2 ln

(
Ea

2�

)
, (5)

where A → ∞ is an auxiliary area and � is a high-energy
cutoff. In the last equality we took the limit δ → 0+ and
neglected terms smaller than the cutoff �. The divergence
associated with the limit � → ∞ allows one to cancel out
divergences that arise within the two-body problem [24]
and removes a divergence in the many-body problem, as
shown below in Sec. III. Equation (5) can also be obtained
from the bound state problem of the contact interaction,
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allowing one to identify Ea = |Ebound|, within this approxima-
tion [11,25,31,32]. In the same fashion, the energy Ea gives
rise to a characteristic length of the interaction that can be
identified as the 2D s-wave scattering length a2D, though this
definition differs from its analog in 3D [33]. In any case, for
the sake of simplicity we will use the definition [2,34]

a2D =
(

h̄2

mEa

)1/2

. (6)

Note that for this 2D problem, this scattering length is always
positive. As mentioned above, a bound state as well as a
resonance are always present, but we can simply conclude that
as the energy of the bound state vanishes the scattering length
is very large and vice versa. The former leads to the BCS limit
and the latter to the BEC one.

Before proceeding to the many-body problem, we point out
an interesting and important aspect of the contact interaction
model, namely, the anomalous breaking of scale invariance
[18–22]. This symmetry is expected for the contact poten-
tial since the Schrödinger equation of the relative motion is
invariant under the transformation r → λr and E → E/λ2

[18]. However, this symmetry also implies the existence of
an infinitely negative bound state energy, an unphysical sit-
uation [19], and a constant s-wave phase shift [20]. Since
during the renormalization procedure the problem must have a
well-defined cross section, the approximate energy of s-wave
resonance Ea must also be introduced, making the physical
properties no longer scale invariant [21]. As we will dis-
cuss throughout the following sections, this same anomalous
breaking occurs in the many-body problem.

III. MEAN-FIELD THERMODYNAMICS
OF AN ATTRACTIVE 2D FERMI GAS

We consider a balanced gas mixture of fermionic atoms
of mass m in two hyperfine states, interacting via a contact
potential. In the following we will treat these states as spins
with the notation σ =↑, ↓. In the low-density and low-energy
limit we consider the grand potential 
̂ = Ĥ − μN̂ given by


̂ =
∑
k,σ

(εk − μ)c†
kσ ckσ + g

A

∑
k1k2

c†
k1↑c†

−k1↓c−k2↓ck2↑, (7)

where εk = h̄2k2/2m, g is the interaction strength, and A is the
area of the sample. The operator c†

kσ creates a fermionic atom
with momentum k and spin σ , and the sums are over all wave
vectors k. The Hamiltonian Ĥ exhibits scale invariance due
to the two-dimensional contact potential [18]. However, as
mentioned above, this symmetry will be anomalously broken
when expressing the interaction strength g in terms of Ea

during renormalization [see Eq. (5)]. As in 3D, the ground
state energy can be estimated by means of the mean-field
method [11,12,32,35] or with the BCS-Leggett variational
method [13], which introduces the BCS wave function [15]

|�BCS〉 =
∏

k

(uk + vkc†
k↑c†

−k↓) |0〉 , (8)

where the variational parameters satisfy the normalization
condition |uk|2 + |vk|2 = 1. As usual, the number equation is

given by

n = 1

A

∑
k

(
1 − εk − μ√

(εk − μ)2 + 2

)
, (9)

where n = N/A is the particle density, which defines the Fermi
wave number kF = √

2πn. A thermodynamic quantity that
arises naturally from the minimization procedure is the gap
 [36], which is related directly to the interaction between
fermions of unlike species by means of the gap equation

1 = −g(�)

2A

�∑
k

1√
(εk − μ)2 + 2

, (10)

where we introduced a cutoff � and the renormalized interac-
tion strength g(�) [see Eq. (5)] [11,12,32]. As pointed out by
Randeria et al., it is necessary to identify Ea with the two-body
bound state energy |Ebound| [12]. The variational parameters
can be expressed in terms of the gap and the chemical poten-
tial: {

u2
k

v2
k

}
= 1

2

[
1 ± εk − μ√

(εk − μ)2 + 2

]
. (11)

With Eq. (11) the ground state energy per area E0/A can be
calculated directly [29,37]:

E0

A
= 1

A

∑
k

(
εk − εk (εk − μ) − 2/2√

(εk − μ)2 + 2

)

= m

4π h̄2

(
3μ

√
μ2 + 2 + μ2 − 2

2

)
. (12)

Note that this expression is obtained without renormalization,
similarly to the 3D case [16,17]. However, to obtain μ and
 in terms of the density n and the characteristic energy
Ea, one must solve the number and gap equations (9) and
(10). Following the renormalization procedure of Ref. [12],
for instance, of the gap and number equations, one finds a
deceivingly very simple result for the chemical potential μ

and the gap  in terms of the density n and the energy Ea

[11],

μ = εF − Ea

2
(13)

and

 =
√

2εF Ea, (14)

where εF = h̄2k2
F /2m is the Fermi energy. In turn, the ground

state energy, Eq. (12), can be readily expressed in terms of N
and Ea as

E0 = EF − N
Ea

2
, (15)

where EF = NεF /2 is the energy of the noninteracting sys-
tem, namely, of an ideal gas of N spin-1/2 fermions. Recalling
the definition of the scattering length a2D, Eq. (6), one
finds that indeed, the BCS limit corresponds to a2D → ∞ or
Ea → 0, and the BEC extreme to a2D → 0 or Ea → ∞
[11,12]. This will be of relevance in our discussion of the cor-
relation functions below. In principle, the thermodynamics of
the gas at zero temperature may be obtained from E0, Eq. (15).
As argued by Werner and Castin [33], it is convenient to use
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FIG. 2. Dimensionless chemical potential μ̃ = μ/εF , gap ̃ =
/εF , and spectroscopic threshold energy ε̃spec = εspec/εF . The BCS
limit corresponds to ln(1/kF a2D) → −∞, while the BEC limit is
ln(1/kF a2D) → ∞. The spectroscopic energy obeys εspec = εb = Ea,
with εb the binding energy per pair (see the text).

the variable ln(1/a2D) instead of Ea, such that the BCS limit
corresponds to ln(1/kF a2D) → −∞, while the BEC limit is
ln(1/kF a2D) → ∞. Additionally, its conjugate variable is re-
lated to Tan’s contact C = m22/h̄4 [33,36,38,39],(

∂E0

∂ (ln a2D)

)
A,N

= h̄2CA

2πm
. (16)

In Fig. 2 we illustrate the behavior of μ,  and E0 across the
BEC-BCS crossover, showing a qualitative agreement with
the corresponding behavior in 3D. Another thermodynamic
quantity relevant for the study of the anomalous breaking of
scale invariance is the pressure p, given by

p = π h̄2

2m
n2. (17)

This is a striking result since it is also the pressure of a non-
interacting Fermi gas. That is, the pressure of the interacting
gas is independent of the interaction energy Ea. This result in
turn indicates that the adiabatic compressibility has a scale-
invariant behavior, as discussed in Ref. [22], thus showing
an apparent agreement with the expected scale invariance.
However, it is important to point out here that corrections
beyond mean field remove the scale invariance in the adiabatic
compressibility, as can be deduced from the thermodynamic
results of Ref. [37]. An important observation is that in the
BCS limit the small value of Ea makes an apparent recovery
of scale invariance [see Eqs. (13) and (14)]. In agreement with
this apparency, the density-density correlation functions ex-
hibit a scale-invariance behavior on the BCS side, as shown in
the next section. For further purposes below, let us introduce
two energies that are related to the binding properties of pairs
of opposite spin. The first one is the threshold energy required
to create a quasiparticle by exciting an atom to a third state

with negligible momentum transfer εspec given by [3,7,40]

εspec =
√

μ2 + 2 − μ. (18)

In the next section it will be seen that this quantity determines
the large-distance exponential decay, while its 3D analog ε3D

spec,
which has the same expression of Eq. (18) [16,40], also de-
termines the 3D exponential decay. Therefore, an important
role will be given to εspec, emphasizing the expression in
Eq. (18) in terms of μ and . In Fig. 2 we also show εspec for
comparison with the two other relevant energies. The other
quantity to be introduced is the binding energy per pair εb,
given by [7,12]

εb = 2

N
(EF − E0). (19)

By inspection of Eqs. (13)–(15), we find that both energies are
equal to Ea, namely,

εspec = εb = Ea. (20)

This is in stark contrast with the 3D BEC-BCS system where
it was found that ε3D

b 
= ε3D
spec [16,17].

IV. PAIR WAVE FUNCTION AND DENSITY
CORRELATION FUNCTIONS

The two-body functions we analyze in this study are rele-
vant for understanding the spatial structure of the gas and have
been a subject of interest for ultracold gases [3,4,39,41–45].
For instance, information about the probability of finding two
types of particle at different spatial points can be extracted
from the density-density correlation functions. Also, they
measure the relation between density fluctuations at different
points, and yield their characteristic length scales. These are

Gσσ ′ (x, x ′) = 〈n̂σ (x)n̂σ ′ (x ′)〉 − 〈n̂σ (x)〉〈n̂σ ′ (x ′)〉, (21)

where σ and σ ′ are spin labels which can take the values ↑ or
↓. We have introduced the particle density operator at point x
of spin σ given by n̂σ (x) = ψ̂†

σ (x)ψ̂σ (x), where

ψ̂σ (x) = 1√
A

∑
k

eik·x ckσ (22)

are the usual field operators. The equal population property
N↑ = N↓ allows us to equal the labels as ↑↑=↓↓ and ↑↓=↓↑.
Within the BCS theory, these correlations are given by

G↑↓(r) = |g↑↓(r)|2 (23)

and

G↑↑(r) = n

2
δ(2)(r) − |g↑↑(r)|2, (24)

where we have defined

g↑↓(r) = 1

(2π )2

∫
d2k eik·rukvk (25)

and

g↑↑(r) = 1

(2π )2

∫
d2k eik·rv2

k , (26)

with r = x − x ′. The latter two quantities are the one-body
Green’s functions of this problem. On the other hand, the
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FIG. 3. Behavior of F (k) = vk/uk , solid (red) line; F (k) = vkuk , long (blue) dashes; and F (k) = v2
k short (green) dashes. The upper

panel corresponds to the 2D system, while the lower panel to the 3D case. All curves are normalized such that their maximum is equal to 1.
Column (a) is at the BCS limit, where ln(1/kF a2D) ≈ −8.49, 1/kF a3D ≈ −5. Column (b) is by the crossover, where ln(1/kF a2D) ≈ −0.891,
1/kF a3D ≈ 0.028. Column (c) is where the chemical potential is zero, ln(1/kF a2D) ≈ 0.023, 1/kF a3D ≈ 0.578. Column (d) is at the BEC limit,
ln(1/kF a2D) ≈ 1.009, 1/kF a3D ≈ 2.728.

spatial projection of the BCS state (8) to a fixed number of
particles state allows us to identify the unnormalized pair
wave function [13]:

φBCS(r) = 1

(2π )2

∫
d2k eik·r vk

uk
. (27)

As we can observe, the above physical quantities are given
by the variational parameters vk, uk [3,4]. For the purposes of
analyzing the 2D and 3D differences of the spatial structure
of the gas throughout the crossover, we find it interesting to
compare the behavior of vk/uk , vkuk , and v2

k . In Fig. 3 the
upper panel corresponds to 2D, while the lower panel to the
3D case, at characteristic thermodynamic states, namely, at
the far BCS regime, very near the crossover 1/kF a3D = 0
in 3D and ln(1/kF a2D) = 0, at μ = 0, and at the deep BEC
side. In wave vector space it is seen that the behavior of the
variational parameters is qualitatively similar between 2D and
3D [4,16,42]. However, as we will see below, their spatial
behavior obtained by Fourier transforms is quite different.
To proceed we need to calculate two-dimensional Fourier
transforms of the form

f (r) =
∫

d2k eik·rF (k), (28)

where F (k) can be vk/uk , ukvk , or v2
k . For the 3D system

the angular integrals can be simply evaluated and we can
complete a one-dimensional Fourier transform. Instead, in 2D,
performing the angular integral leads us to a Hankel trans-
form:

f (r) = 2π

∫ ∞

0
dk kF (k)J0(kr), (29)

where we used f (r) = f (r), r = |r|, and we identified the
integral representation of the Bessel function of the first kind
of order zero [46]:

J0(kr) = 1

2π

∫ 2π

0
dθ eikr cos θ . (30)

For the correlation functions, their respective integrals in
Eq. (29) can be calculated analytically. The derivation for
g↑↓(r) is relatively straightforward, but quite lengthy for
g↑↑(r). The details of this procedure are given in Appendix A.
The final expressions of the correlation functions are

G↑↓(r) =
∣∣∣∣ m

2π h̄2 J0(kF r)K0

(
r

χspec

)∣∣∣∣
2

(31)

and

G↑↑(r) = n

2
δ(2)(r) −

∣∣∣∣ m

2π h̄2 J1(kF r)K1

(
r

χspec

)∣∣∣∣
2

, (32)

where

χspec =
(

h̄2

mεspec

)1/2

, (33)

which, as justified below, we define as the large-distance cor-
relation length. It is very important to recall that this length
can be expressed in terms of μ and  by means of the
threshold energy εspec =

√
μ2 + 2 − μ in Eq. (18). In 2D

the large-distance correlation length is equal to the scattering
length χspec = a2D, but we emphasize its definition in terms
of εspec because this thermodynamic expression is also valid
in 3D. However, to emphasize the anomalous breaking of
scale invariance we will also use a2D instead of χspec, in some
limits. For the pair wave function φBCS(r) we were unable
to find an analytical expression for all values of r. However,
we will present a semianalytical and numerical analysis of
its large-distance behavior. Nevertheless, we can evaluate nu-
merically Eq. (29) with F (k) = vk/uk , a difficult task due
to the Bessel function J0(kr) as it oscillates and decreases
slowly as kr → ∞. In Fig. 4 the correlation functions and
the pair wave function are plotted at characteristic thermody-
namic states throughout the crossover. The upper panels show
their short-distance behavior while the lower ones the long-
distance spatial structure. Again, panel (a) is at the far BCS
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FIG. 4. Correlation functions and pair wave function throughout the crossover. Each column corresponds to different points of the
crossover: (a) Ea/εF = 0.0001 (BCS side), (b) Ea/εF = 1, (c) Ea/εF = 2, and (d) Ea/εF = 3 (BEC side). In the upper panel the solid line
(red) corresponds to ρα (r) = |φBCS(r)|2, the long dashed line (blue) to ρα (r) = G↑↓(r), and the short dashed line (green) corresponds to
ρα (r) = G↑↑(r). They are plotted with arbitrary normalization. The lower panel shows the behavior at large distances, where the upper curves
correspond to |φBCS(r)|2, the middle ones to G↑↓(r), and the lower curves to −G↑↑(r). In all the panels we removed the delta function of
G↑↑(r).

regime, (b) at the crossover, (c) at μ = 0, and (d) at the deep
BEC side.

In the BCS limit, ln(1/kF a2D) → −∞, Fig. 4 upper panel
(a), the three functions show an algebraic decay at small
distances away from the origin. For very short distances,
kF r � 1, we can find asymptotic expressions

G↑↓(r) ≈
[

m

2π h̄2 ln

(
r

a2D

)]2

, (34)

G↑↑(r) ≈ n

2
δ(2)(r) −

(
m

4π h̄2

)2{
kF a2D + (kF r)2

2

×
[

1

kF a2D
ln

(
eγ−1/2 r

2a2D

)
− kF a2D

4

]}2

. (35)

Equation (34) shows the expected logarithmic divergence
multiplied by Tan’s contact C = m22/h̄4 [2,33]. This can
be contrasted with 3D, where the divergence at the origin
is algebraic [33]. Equation (35) shows the behavior of Pauli
blocking at short distances, the probability of finding a particle
of the same spin diminishing as [r2ln(r)]2. On the other hand,
in 3D the probability diminishes slower as r2 [33]. In contrast
from the general approach of Werner and Castin [33], where
the regular part of the pair wave functions are demanded to
behave like a zero-energy scattering state, Eqs. (34) and (35)
were obtained demanding a well behavior of the gap and
chemical potential, which is achieved by means of a renor-
malized interaction strength [see Eq. (10)]. The difference of
the BCS-Leggett approach is explicitly seen in the BCS limit

where the variational pair wave function φBCS(r) exhibits a
different behavior as that postulated in Ref. [33], that is,

φBCS(r) ≈ 2εF

π
k2

F

J2(kF r)

(kF r)2
. (36)

This asymptotic form remains finite at the origin r = 0, while
its large-distance algebraic decay and oscillatory behaviors
are independent of a2D, in agreement with the apparent re-
covery of scale invariance in the BCS limit, as discussed in
Sec. III.

Quite generally, in the far BCS limit, short and large
distances, the equal pair correlation function can be approx-
imated as

G↑↑(r) ≈ n

2
δ(2)(r) −

[
n

J1(kF r)

kF r

]2

, (37)

which corresponds to the correlation function of a noninteract-
ing ideal gas of N fermions, becoming scale invariant in this
limit. This behavior is analogous to the 3D case [42]. Within
this same limit G↑↓(r) ≈ 0, again as in an ideal gas.

On the BEC side, ln(1/kF a2D) → ∞, the correlation func-
tions and the pair wave function get localized [see Figs. 4(b)–
4(d)], indicating the formation of bosonic molecules and the
gradual loss of Pauli-blocking correlations [16]. Comparing
the behavior of vkuk and vk/uk on the deep BEC side, −μ 
 [see Fig. 3(d)], it can be concluded that

φBCS(r) ≈ g↑↓(r), (38)

similarly to the 3D system [16,17].
Observation of the lower panels of Fig. 4 suggests a com-

mon characterization of the large-distance behavior of the
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FIG. 5. Characteristic lengths ξα of (a) the pair wave function φBCS(r), Eq. (27); (b) the correlation function of opposite spins G↑↓(r),
Eq. (23); and (c) the correlation function of parallel spins G↑↑(r), Eq. (24). In each panel, the short dashes correspond to (a) the mean pair
radius ξBCS and correlation lengths, (b) ξ↑↓, and (c) ξ↑↑ [see Eq. (50)]. In all panels the large dashes (purple) correspond to the exponential
decay length χspec = a2D [see Eqs. (20) and (44)]. The dots (red) in (a) are numerical calculations of the exponential decay length χBCS, showing
good agreement with χspec = a2D. The correlation length ξ↑↓ was reported in [12].

distributions |φBCS(r)|2, G↑↓(r), and G↑↑(r). That is, for large
distances kF r  1 these distribution functions can be written
in the form

ρα (r) ≈ const

r2
exp

(
− r

χα

)
Pα (καr + ϕα ), (39)

where α = BCS,↑↓,↑↑. In this expression we define the
exponential decay length χα as the large-distance correlation
length (this definition has to be multiplied by

√
2 to agree with

the exponential decay length of Ref. [16] in 3D). We have also
introduced a periodic function Pα (καr + ϕα ) with wavelength
2π/κα and phase ϕα . In the following we deal separately
with these quantities. We also discuss the second moments
of the distributions, also known as correlation lengths in the
literature.

A. Large-distance correlation lengths

Using well-known properties of the Bessel functions [47]
for large values of their arguments, the correlation functions
(34) and (35) can be written as

G↑↓(r) ≈ const

r2
exp

(
− r

a2D

)
cos2

(
kF r − π

4

)
, (40)

G↑↑(r) ≈ −const

r2
exp

(
− r

a2D

)
cos2

(
kF r − 3π

4

)
, (41)

where we have already written χspec = a2D to highlight the
role of the 2D scattering length. Comparing with the proposal
given in Eq. (39), we readily identify χ↑↓ = χ↑↑ = a2D, a re-
sult anticipated before. On the one hand, this quantity defines
the asymptotic behavior along the whole crossover in contrast
to the 3D case, where the dependence on the scattering length
occurs at the BEC side only. On the other hand, it shows
an evident manifestation of the anomalous breaking of scale
invariance providing a size for the density fluctuations. In ad-
dition, this large-distance exponential decay of the correlation
functions establishes a relation with the ever-present bound
state throughout the crossover.

For the pair wave function |φBCS(r)|2 we can extract its be-
havior by analyzing Eq. (29) and from numerical calculations.
To extract its large-distance behavior, we can approximate the
Bessel function J0(kr), for kr  1, by [48]

J0(kr) ≈ ei(kr−π/4) + e−i(kr−π/4)

√
2πkr

. (42)

Then, similarly to 3D [16], we can deform the corresponding
Hankel transform integral in the complex plane to obtain the
asymptotic behavior of the pair wave function. Details of this
mathematical procedure are given in Appendix B. It is found
that

φBCS(r) ∝ e−r/a2D

√
r

, (43)

thus identifying the large-distance correlation length χBCS =
a2D = χspec, as expected. To reinforce this conclusion we fit-
ted the large-distance correlation length to the envelopes of
φBCS(r) (see lower panel in Fig. 4). These numerical values of
χBCS correspond to the (red) dots in Fig. 5(a), showing good
agreement with χspec, shown with long dashes in Fig. 5(a).

It is thus concluded that the large-distance correlation
lengths of Eq. (39) are given by χspec or, equivalently, by the
s-wave scattering length,

χα = χspec = a2D, (44)

for α = BCS,↑↓,↑↑. Very differently from 3D, the scatter-
ing length a2D diverges in the BCS limit, consistently with
the apparent recovery of scale invariance at the microscopic
level, where fluctuation sizes increase, while in 3D the re-
spective scattering length vanishes in the BCS limit, with the
large-distance correlation length diverging. For the purpose
of associating the exponential decay behavior with a pair-
binding property we may define a pair-binding function:

|�b(r)|2 = const

r
e−2r/a2D . (45)

This distribution has the large-distance asymptotic behav-
ior of a bound state with zero angular momentum in a
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FIG. 6. (a) Large-distance wave vectors κBCS, κ↑↓, κ↑↑ scaled
with the Fermi wave number kF [see Eq. (39)]. The dots (red) corre-
spond to numerical calculations of κBCS. The behavior κ↑↓ = κ↑↑ =
kF was obtained analytically. (b) Phase differences between the
pair wave function (BCS) and the density correlation functions (↑↑
, ↑↓). The phase difference ϕ↑↑ − ϕ↑↓ is a theoretical result, while
the other two were obtained numerically (the lines are guides to the
eye).

short-range central potential, as discussed in Sec. II. Hence,
the scattering length, being a two-body property associated
to an ever-present bound state, determines the exponential
decay behavior of the density fluctuations and of the pair
wave function. We want to reemphasize that this two-body
property is introduced by renormalization, contributing to the
anomalous breaking of scale invariance.

We can now make a more precise comparison with the
3D system. In Ref. [16] it was shown that the 3D correlation
functions G3D

↑↓(r), G3D
↑↑(r), and pair wave function |φ3D

BCS(r)|2
show an exponential decay behavior at large distances of the
form

ρ3D
α (r) ∝ const

r2
exp

(
− r

χ3D
spec

)
P3D

α (r), (46)

where α = BCS,↑↓,↑↑ and P3D
α (r) are periodic functions of

r. In this expression we have introduced

χ3D
spec =

(
h̄2

m ε3D
spec

)1/2

, (47)

where ε3D
spec is defined as in Eq. (18) but with the corresponding

chemical potential and gap of a 3D system. Therefore, the
threshold energy εspec strictly defined in terms of the gap 

and the chemical potential μ, as in Eq. (18), provides the
large-distance correlation length χspec in 2D and in 3D, as
shown by Eqs. (6), (20), (44), and (47), although their values
differ significantly. Independently, the large-distance behavior
shown in Eqs. (46) and (47) was reported in [49].

B. Characteristic wave numbers and phases

The wave vectors κα of Eq. (39), by virtue of Eqs. (40) and
(41) are given by

κα = kF , (48)

for α = BCS,↑↓,↑↑. This was determined numerically for
κBCS, as shown with the (red) dots in Fig 6(a). Here we can
see a difference with the 3D system, where the wave vectors
are similar to kF in the BCS limit, as expected, and decrease
as we move to the BEC side [16], while in the 2D system
they remain equal to kF throughout the crossover, which is the
same as the free gas behavior [see Eq. (37)]. As mentioned,
this is expected only in the BCS limit. Also, the constant
behavior of the wave vectors κα indicate that the convergence
of |φBCS(r)|2 and G↑↓(r) towards a bound state distribution on
the BEC side is slower in 2D than in 3D. Without formality,
this can be regarded in Fig. 3(d), where vkuk is still different
from vk/uk in 2D, while in 3D the difference is negligible;
both plots correspond to the same numerical value of εspec/εF

and ε3D
spec/ε

3D
F .

Regarding the phases, it is appropriate to study the
large-distance phase differences between distributions. With
Eqs. (40) and (41) it is readily proven that the phase difference
between the correlation functions is constant throughout the
crossover:

ϕ↑↑ − ϕ↑↓ = π

2
+ mπ, (49)

where m is an integer. The phase differences between the
pair wave function and the correlation functions are shown
in Fig. 6. As expected from Eqs. (36) and (40), on the BCS
side the nodes of the pair wave function |φBCS(r)|2 are near
the nodes of G↑↓(r). Moving towards the BEC limit, after
the chemical potential becomes negative, the nodes of the
pair wave function approach the nodes of G↑↑(r). On the
deep BEC limit the nodes of the pair wave function should
approach those of G↑↓(r) again.

C. Mean pair radius and correlation lengths

The exponential decay lengths are a property of the
large-distance behavior of the distributions. However, to
characterize the global properties of the two-body distri-
butions, it is adequate to consider a length given by their
second moment:

ξ 2
α = | ∫ r2ρα (r)d2r|

| ∫ ρα (r)d2r| , (50)

where ρα (r) = |φBCS(r)|2, G↑↓(r), G↑↑(r) [see Eqs. (27),
(23), and (24)]. For the pair wave function φBCS(r) we call
ξBCS the mean pair radius, while the lengths ξ↑↓ and ξ↑↑ are
called correlation lengths. The correlation length ξ↑↓ has been
studied in several references [12,31,50–52]; here we include
it for completeness. These lengths are calculated easier using
the wave vector representation, as has been done for ξ↑↓
[12,31,50]. By means of elementary integration techniques we
get

ξ 2
BCS = h̄2

m

[−1 + 2x2 + 2x
√

1 + x2 − xπ + 2arcsinh(x) − 2x arctan(x) + ln(4 + 4x2)]

x + 2
3 x3 + 2

3 (1 + x2)3/2
, (51)
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ξ 2
↑↓ = h̄2

4m

[
x + 2 + x2

(1 + x2)

(
π

2
+ arctan(x)

)−1]
, (52)

ξ 2
↑↑ = h̄2

8m

4 + 3x[π + x(2 + πx)] + 6(x + x3)arctan(x)

(1 + x2)

(
π

2
+ arctan(x)

) ,

(53)

where x = μ/. These lengths are shown in Fig. 5 where,
for comparison, we also plot the large-distance correlation
length χspec = a2D. It is of interest to explore their asymptotic
behavior. The asymptotic behaviors of ξ↑↓ have been reported
in [12] and [50]. On the BCS side, ln(1/kF a2D) → −∞, we
have

ξBCS ≈
√

6
1

kF
,

ξ↑↓ ≈ 1

2
√

2
a2D,

ξ↑↑ ≈ 1

2

√
3

2
a2D.

(54)

As seen in Fig. 5, the correlation lengths ξ↑↓ and ξ↑↑ increase
in the BCS limit, but are smaller than χspec, due to spatial
oscillations. The mean pair radius ξBCS tends to a finite value,
that depends only on the density through εF , showing a sim-
ilar behavior as in 3D [17]. Its value agrees well with the
asymptotic behavior shown in Eq. (36), in accordance with
an apparent recovery of scale invariance. In contrast with 3D,
the 2D scattering length increases on the BCS side, a2D → ∞,
keeping a dominant role on the determination of density fluc-
tuation sizes, while in 3D the scattering length a3D → 0−. On
the BEC side the asymptotic behaviors are

ξBCS ≈
√

2

3
a2D,

ξ↑↓ ≈
√

2

3
a2D,

ξ↑↑ ≈
√

4

5
(kF a2D)a2D.

(55)

This dependence can be seen in Fig. 5 where the departure
of ξ↑↑ from χspec is evident. In the 3D system it was found
that in the BEC limit ξ 3D

BCS, ξ 3D
↑↓ , and

√
2χ3D

spec have the same
asymptotic behavior, showing a direct relation with the bind-
ing energy of a diatomic molecule [16,17,53]. In contrast, in
2D, the lengths ξBCS and ξ↑↓ differ from χspec by the same
numerical factor. As in 3D, the correlation length ξ↑↑ vanishes
faster than the other lengths in the BEC limit. This means
Pauli-blocking correlations become negligible, owing to the
formation of molecules [16]. Also, as expected, on the BEC
side the scattering length a2D determines the size of density
fluctuations, which is similar to the 3D case.

V. FINAL REMARKS

We have addressed the problem of studying the pair-
ing mechanism in a two-dimensional homogeneous balanced
mixture of two fermionic species in the BEC-BCS crossover
at the mean-field level with zero temperature. This was done

by analyzing the density-density correlation functions and the
variational pair wave function. The analysis of the density-
density correlation functions was performed by means of
explicit expressions, offering a clear view of the spatial prop-
erties of the BCS-Leggett approach in 2D. These properties
might give physical insight for recent variational approaches
achieved with Monte Carlo simulations [54,55]. Particularly, a
large-distance exponential decay might be included to model
the binding properties measured in experiments [40]. To the
best of our knowledge, the spatial oscillations in the density-
density correlation functions have not been observed [45].
However, with recent advances in the experimental resolu-
tion [56], it might be possible to find them as a signature
of the quantum regime or discard them as a property that
is impossible to observe. We believe an explanation of the
constant behavior of the spatial oscillation frequency in 2D
requires further considerations, such as the use of a finite
range interaction, instead of the contact interaction [57,58],
and the inclusion of beyond mean-field corrections. The phase
differences between the three functions show that their nodes
(or maximums also) form a structure of concentric circles. In
contrast with 3D, the positions of the nodes of the correlation
functions never change throughout the crossover. However,
the nodes of the pair wave function move from the zeros of
J2(kF r), in the BCS limit, to the zeros of J0(kF r), in the BEC
limit.

Recently, the algebraic decay associated with the
Berezinskii-Kosterlitz-Thouless (BKT) mechanism that al-
lows the existence of superfluidity in 2D has been observed
in the density-density correlation function of parallel spins for
atoms in an inhomogeneous trap, as reported in Ref. [45].
Our results cannot be compared with those measurements
due to mean-field limitations and the homogeneity considered
here. At strictly zero temperature the system can exhibit off-
diagonal long-range order with a finite condensed fraction.
To describe the presence of a superfluid it is necessary to in-
troduce quantum fluctuations (beyond mean-field corrections)
[59,60]. For example, within a Gaussian approximation for the
fluctuations around the mean-field order parameter, a Nambu-
Goldstone field θ (r) has to be considered with the order
parameter (the Bose pairing field) in order to describe su-
perfluidity via the BKT mechanism [59–61]. This introduces
a phase-phase correlator, which exhibits the algebraic decay
associated to quasi-long-range order [59]. In our approach the
phase is constant θ (r) = 0, making the phase-phase correlator
independent of the position, as expected [59]. In general,
quantum fluctuations become important in 2D, especially for
nonzero temperatures. In the BCS limit, at zero temperature,
we expect corrections to modify slightly the large-distance
behavior [37]. Instead, in the BEC limit quantum fluctuations
allow one to obtain the correct behavior of an interacting
gas of bosonic molecules [37]. Therefore, the large-distance
correlation length might still be related to the binding prop-
erties of a molecule, but we expect the frequency of spatial
oscillations to decrease in the BEC limit, in accordance with
the formation of a two-body bound state. It will be of interest
to compare the behavior of phase-phase correlators with the
density-density correlation functions at finite temperature to
acquire a wide view of the conditions that allow the existence
of superfluidity. For example, in the deep BCS limit, we can
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identify two temperature limits where the system loses a scale:
the critical temperature TBKT and zero temperature. Then, it
might be interesting to explore experimentally how the system
evolves between these two limits, although the BCS limit is
hard to obtain experimentally [5,40].

Let us note some similarities and differences between 2D
and 3D, at the mean-field level. Firstly, from dimensional
analysis, the interaction strength g in 2D is unable to pro-
vide a natural length associated to the contact interaction,
differently from 3D. Still, the anomalous breaking of scale
invariance, a feature of the 2D contact interaction, allows one
to introduce the s-wave scattering length. In 2D and 3D, the
scattering lengths dominate the many-body properties due to
the renormalization procedure, which, in 2D, coincidentally
allows one to solve the gap and number equations. Another
important aspect is the presence of a bound state energy for
any interaction strength throughout the crossover in 2D, while
in 3D a bound state appears only for positive scattering length
(BEC side). Related to this behavior, it is found that in 2D
the binding energy per pair εb is equal to the threshold energy
required to create a quasiparticle with minimum momentum
transfer εspec, while in 3D they are different, ε3D

b 
= ε3D
spec, ex-

cept in the BEC limit. However, a similarity that has been
demonstrated here is that the large-distance exponential decay
of the density-density correlation functions and the pair wave
function in 2D and 3D is determined by εspec and ε3D

spec, respec-
tively, from where we identified the large-distance correlation
lengths, χspec and χ3D

spec, given in terms of the gap and chemical
potential [see Eqs. (33) and (47)]. In 2D the large-distance
correlation length is equal to the scattering length χspec = a2D,
while in 3D χ3D

spec ≈ a3D in the BEC limit only. A notorious
difference in the large-distance behavior of the correlation
functions in 2D and 3D lies in the behavior of the frequencies
of spatial oscillations. In 2D it is constant throughout the
crossover, being equal to the Fermi wave number, Eq. (48).
In 3D the respective frequencies are similar to the Fermi wave
number in the BCS limit and decrease as we approach the
BEC limit. A striking similarity is shown in Fig. 3 when
analyzing the behavior of the variational parameters as func-
tions of the norm of the wave vector; it is difficult to see
the differences. Differently, in position space their respective
Fourier transforms have characteristic features depending on
the dimension. Regarding the second moments of the distri-
butions, also called correlation lengths and mean pair radius
[see Eq. (50)], we have shown that the information about
the large-distance structure is quite diluted in these lengths.
We found that they behave similarly to their analogs in 3D
[12,17,53]. In the BCS limit the correlation lengths diverge,
while the mean pair radius is finite. Instead, in the BEC limit
the three lengths tend to zero. However, a difference with
3D is that in 2D the correlation length of unlike species ξ↑↓
and the mean pair radius ξBCS are not strictly equal to the
large-distance correlation length χspec in the BEC limit.

As an extension of this work, it will be of interest to
study the large-distance behavior of the correlation func-
tions in quasi-2D geometries, which are of current interest
for understanding the evolution from 3D to 2D [2,6,62,63].
Also, it is of interest to see how the large-distance proper-
ties are modified by beyond mean-field corrections [51,64–
66], the use of a short-range potential [57,58,67], and with

different pairing mechanisms [52,68,69]. Particularly, the
study of correlation lengths is important to appreciate the
BEC-BCS crossover in solid-state systems [70,71]. An im-
portant aspect towards achieving the BCS limit concerns the
increase of the large-distance correlation lengths, which can
become of macroscopic size, indicating that experiments re-
quire huge systems. Also, they indicate that care must be taken
when using local-density approximations in the BCS limit
[16].
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APPENDIX A: INVERSE FOURIER TRANSFORMS
OF g↑↓(r) AND g↑↑(r)

The inverse Fourier transform of g↑↓(r) can be written in
the following way:∫

d2r e−ik·rg↑↓(r) = (2π )

k2
F

∫ ∞

0
g↑↓(ρ)ρJ0(κρ)dρ, (A1)

where we made a transformation to polar coordinates and
evaluated the angular integral, which allows us to identify
the integral representation of the Bessel function of the first
kind of order zero J0(κρ) (30). Also, we scaled variables with
the Fermi wave number kF , such that ρ = kF r and κ = k/kF ,
where k = |k|, while energies will be scaled with the Fermi
energy, ̃ = /εF , μ̃ = μ/εF . Substituting the explicit form
of g↑↓(r) given in Eq. (31) we get

∫
d2r e−ik·rg↑↓(r) = ̃

2

∫ ∞

0
ρJ0(ρ)K0

(
ρ

kF a2D

)
J0(κρ)dρ.

(A2)
The integral on the right side of Eq. (A2) has been evaluated
and can be found in a table of integrals, like [47] or [72]. Here
we write the general expression:∫ ∞

0
xJ0(ax)K0(bx)J0(cx)dx = [a4 + b4 + c4 − 2a2c2

+ 2a2b2 + 2b2c2]−1/2, (A3)

where Re b > |Im a| and c > 0. With the identification of
a = 1, b = {[(μ̃2 + ̃2)1/2 − μ̃]/2}1/2, and c = κ , together
with the aid of Eqs. (13) and (14), we get the desired result:∫

d2r e−ik·rg↑↓(r) = ̃

2
√

(κ2 − μ̃)2 + ̃2
= vkuk . (A4)

In a similar way, we find the inverse Fourier transform of
g↑↑(r) to be given by

∫
d2r e−ik·rg↑↑(r) = ̃

2

∫ ∞

0
K1

(
ρ

kF a2D

)
J1(ρ)ρJ0(κρ)dρ.

(A5)
The integral on the right side can be identified as a particular
case of a great variety of integrals (see, for instance, [47] and

043307-10



DENSITY CORRELATION FUNCTIONS AND THE SPATIAL … PHYSICAL REVIEW A 105, 043307 (2022)

[72]). However, not all the expressions are adequate for the
purpose of identifying v2

k . Thus, we will give a sketch of how
to prove that the right side of Eq. (A5) is v2

k . We can start with
the following general integral [47,72]:∫ ∞

0
xν+1Kμ(ax)Iμ(bx)Jν (cx)dx

= (ab)−ν−1cνe−(ν+1/2)π iQν+1/2
μ−1/2(u)√

2π (u2 − 1)(1/2)ν+(1/4)
, (A6)

where u = (a2 + b2 + c2)/(2ab), with Re a > |Re b| +
|Im c|, Re ν > −1, and Re(μ + ν) > −1. In this equation
Iμ is the modified Bessel function of the first kind of order
μ and Qβ

α is an associated Legendre function of the second
kind. The values of the constants we are interested in are
a = {[(μ̃2 + ̃2)1/2 − μ̃]/2}1/2, b = i, and c = κ , while the
subscripts are μ = 1 and ν = 0. The associated Legendre
function of the second kind can be expressed in terms
of the hypergeometric function 2F1 in the following way
[46,47]:

Qβ
α (z) = eβπ i

2α+1

�(α + β + 1)

�(α + 3/2)

�(1/2)(z2 − 1)β/2

zα+β+1

× 2 F1

(
α + β

2
+ 1,

α + β + 1

2
; α + 3

2
,

1

z2

)
, (A7)

where � is the well-known gamma function. Finally, we also
need an integral representation of the hypergeometric function
[46,47]:

2F1(α, β, γ ; z) = 1

B(β, γ − β )

×
∫ 1

0
tβ−1(1 − t )γ−β−1(1 − tz)−αdt, (A8)

where Re γ > Re β > 0, and B is the beta function. For our
particular case, the integral in Eq. (A8) can be evaluated by
elementary integration techniques. Hence, we can substitute
Eqs. (A7) and (A8) into (A6) to obtain∫ ∞

0
x K1

(
x√

2kF χb

)
I1(ix)J0(κx)dx

= 1

i2
√

(1 − μ̃)

(
1(

1 − 1
u2

)1/2 − 1

)
, (A9)

where u = (κ2 − μ̃)/(2i
√

1 − μ̃) and we expressed the gap
̃ in terms of the chemical potential μ̃ using Eqs. (13) and
(14). From Eq. (A9) we can identify the right side of Eq. (A5)
recalling that Iν (x) = e−νπ i/2Jν (eiπ/2x). After some rearrange-
ments we conclude that∫

d2r e−ik·rg↑↑(r) = v2
k . (A10)

APPENDIX B: LARGE-DISTANCE APPROXIMATION
OF THE PAIR WAVE FUNCTION

Introducing the approximation of the Bessel function
J0(kr), given in Eq. (42), into Eq. (29) we have

FIG. 7. Illustration of the branch cuts of the integrand in
Eq. (B4). The large dashes (green) correspond to the branch cuts of
F (ix) [see Eq. (B3)], while the short dashes (orange) correspond to
the branch cut of

√
x. The solid line (purple) is the contour used in

Cauchy’s integral formula in Eq. (B6). Close to the branch cuts we
have four paths denoted by li, with i = 1, 2, 3, 4.

φBCS(r) ≈ k3/2
√

2π3r

[
S+(r)e−iπ/4 + S−(r)eiπ/4

2

]
, (B1)

where we scaled the lengths with the wave vector k associ-
ated to the gap  = h̄2k2

/2m and defined

S±(r) =
∫ ∞

0

√
pF (p)e±ipkrd p. (B2)

For the pair wave function we have

F (p) =
√

(p2 − μ)2 + 1 − (p2 − μ), (B3)

where μ = μ/. Using the change of variable p = eiπ/2x in
S+(r) and p = e−iπ/2x in S−(r) we get

φBCS(r) ≈ − ik3/2


23/2
√

π3r

[ ∫
I

√
xF (ix)e−xkrdx

]
, (B4)

where the integral is over the imaginary axis, from x = −i∞
to x = i∞. The integrand has five branch cuts [see Eqs. (B3)
and (B4)]. Four of them are determined by the equations

Re[(x2 + μ)2 + 1] � 0 and Im[(x2 + μ)2 + 1] = 0.

(B5)
Using x = a + ib we find that those branch cuts correspond
to points in the hyperbola b2 − a2 = μ whose magnitude
satisfies |x|2 � (μ2

 + 1)1/2. As the integrand in the right side
of Eq. (B4) decreases exponentially when Re x → ∞, we can
close a contour to the right side of the complex plane with a
semi-circle-like contour, which surrounds infinitesimally two
branch cuts. We illustrate this contour in Fig. 7.

From Cauchy’s integral formula we have [48]

∮
C

√
xF (ix)e−xkrdx = 0, (B6)

where C is the contour shown in Fig. 7. Taking the radius of
the semicircle to infinity, we get
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∫
I

√
xF (ix)e−xkrdx = 2

×
∫

l2

√
x
√

|(x2 + μ)2 + 1|e−iπ/2e−xkrdx

+ 2
∫

l4

√
x
√

|(x2 + μ)2 + 1|e−iπ/2e−xkrdx, (B7)

where l2 and l4 are the trajectories depicted in Fig. 7. The
parametrization of l2 is given by γ2(t ) = t + i(t2 + μ)1/2,
while the parametrization of l4 is γ4(t ) = t − i(t2 + μ)1/2,
with t ∈ [t0,∞), where

t0 =
(

(μ2
 + 1)1/2 − μ

2

)1/2

. (B8)

With the explicit form of the parametrizations we can join the
two integrals in Eq. (B7) in the following way:∫

I

√
xF (ix)e−xkrdx = 4

∫ ∞

t0

√
4t2(t2+μ) − 1e−iπ/2e−tkr

× Re[e−i
√

t2+μ

√
γ2(t )γ ′

2(t )]dt . (B9)

To get an explicit expression we can notice that the branch cuts
always remain in their own quadrant. Then with de Moivre’s
formula the parametrization can be written as

γ2(t ) = (2t2 + μ)1/2[cos θ (t ) + i sin θ (t )], (B10)

where we have defined

θ (t ) = arctan

(√
t2 + μ

t

)
. (B11)

This form helps us to calculate
√

γ2(t ) in Eq. (B9). Then we
get explicitly∫

I

√
xF (ix)e−xkrdx = 4

×
∫ ∞

t0

√
4t2(t2 + μ) − 1 e−iπ/2e−tkr (2t2 + μ)1/4

×
{

cos(
√

t2 + μ)

[
cos[θ (t )/2] − t sin[θ (t )/2]√

t2 + μ

]

+ sin(
√

t2 + μ)

[
t cos[θ (t )/2]√

t2 + μ

+ sin[θ (t )/2]

]}
dt .

(B12)

Substituting Eq. (B12) into Eq. (B4) and scaling variables
with kF instead of k we obtain

φBCS(r) ∝ 1√
kF r

∫ ∞

τ0

e−τkF r

(
2τ 2 + μ̃

̃

)1/4

×
[

cos

(√
τ 2 + μ̃

̃

)(
cos[θ (τ )/2] − τ sin[θ (τ )/2]√

τ 2 + μ̃

)

+ sin

(√
τ 2 + μ̃

̃

)(
τ cos[θ (τ )/2]√

τ 2 + μ̃
+ sin[θ (τ )/2]

)]

×
(√

4τ 2(τ 2 + μ̃) − ̃2

̃

)
dτ, (B13)

where τ0 = {[(μ̃2 + ̃2)1/2 − μ̃]/2}1/2, and we have intro-
duced the function

θ (τ ) = tan−1

(√
τ 2 + μ̃

τ

)
. (B14)

The approximation of the Bessel function in Eq. (42) removes
part of the structure, mainly the oscillations. Nevertheless,
the main aspect to point out is that the integrand has an ex-
ponential factor exp(−τkF r). This factor should persist after
integration, but evaluated at τ0. Hence, we expect the Hankel
transform of vk/uk to have an exponential decay behavior of
the form of Eq. (43).
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