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Local spectral density of an interacting one-dimensional Bose gas with an impurity
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A weakly interacting Bose gas with a single static impurity is studied in one dimension under the assumption
that its phase coherence length is longer than the system size. The local spectral density is evaluated and an
analytic expression valid for positive strengths of the impurity coupling to the bosons, at all distances and at all
frequencies, is obtained using the Bogoliubov–de Gennes approximation.

DOI: 10.1103/PhysRevA.105.043305

I. INTRODUCTION

The influence of an impurity particle on a quantum many-
body bath leads to many interesting phenomena in physics,
such as the Kondo effect [1], the orthogonality catastrophe [2],
and the insulating behavior of one-dimensional (1D) electron
systems [3]. A high degree of control in the manipulation and
fabrication of ultracold atomic gases has renewed the interest
in impurity physics by allowing us to simulate problems of
condensed matter physics in correlated fermionic [4–10] and
bosonic environments [11–20]. In this work we consider a 1D
system containing a single impurity coupled to an interacting
gas of bosons. Some properties of such a 1D system have been
studied previously, such as the friction force exerted on the
impurity [21–25], the effective impurity mass [26,27], the dy-
namic correlation functions [28–31], the impurity relaxation
dynamics [32–34], and the boson density profile [35].

Here we focus on the local spectral density [36] of bosons.
It is defined as

n(x, ω) = − 1

π
Im[G(x, x; ω)], (1)

with the time-ordered Green’s function

G(x, x′; ω) = −i
∫ ∞

−∞
dt ei(ω+μ/h̄)t 〈T [�̂(x, t )�̂†(x′, 0)]〉.

(2)

Here T denotes the time ordering, �̂(x, t ) is the bosonic
annihilation field operator, and h̄ is the reduced Planck con-
stant. The ensemble average is denoted by 〈· · · 〉. Note that the
energy h̄ω is measured with respect to the chemical potential
μ of the bosons. The local spectral density carries important
information about the system. It is proportional to the transi-
tion rate for adding and removing a boson with energy h̄ω at
position x, where the proportionality constant depends on the
frequency as 1 + e−(h̄ω+μ)/T and 1 + e(h̄ω+μ)/T , respectively
[36]. We set the Boltzmann constant to unity and T is the
temperature. At zero temperature, n(x, ω)/h̄ coincides with
the local single-particle density of states.

Many experimental techniques, which allow us to charac-
terize many-body ultracold gases, were developed recently.

For example, the single-particle spectral function and the dy-
namic structure factor of 1D bosonic atoms can be measured
by the inelastic light scattering, i.e., the Bragg spectroscopy
[37–42], while their local correlation functions can be probed
by measuring photoassociation rates [43] and particle losses
[44,45]. The most direct way to measure the local spectral
density is via the cold-atom tunneling microscope [46]. This
probe is analogous to the scanning tunneling microscope for
condensed matter systems. Powerful imaging techniques em-
ploying the quantum gas microscope [47] or the ion-based
microscope [48,49] also could be used.

The influence of an impurity on correlation functions of
interacting 1D fermions has attracted a great deal of attention
[3,50–53]. At zero temperature, a single impurity cuts a sys-
tem of repulsively interacting fermions into two disconnected
parts, leading to the reduction of the local spectral density
at its position [3]. As a result, the power-law exponent of
the frequency dependence of the local spectral density in the
vicinity of the impurity differs from that in the bulk at low
energies [3,51,52].

In this work we use a microscopic description of weakly
interacting bosons within the Bogoliubov–de Gennes approx-
imation. We evaluate the local spectral density and obtain an
analytic expression valid for positive strength of the impurity
coupling to the bosons and at all distances and frequencies.
The scattering of Bogoliubov quasiparticles at the impurity
leads to oscillations of the local spectral density (see Fig. 1).
The oscillations persist at an arbitrary small impurity-boson
coupling constant, as well as far from the impurity. Mov-
ing away from the impurity, the function n(x, ω) becomes
periodic in x for a given frequency ω and |x| � ξ , where
ξ is the healing length. Its period is π/k, where h̄k is the
momentum of the Bogoliubov quasiparticle with energy h̄ω.
The average value of n(x, ω) over the period equals the local
spectral density in the absence of the impurity.

At zero temperature, we find that n(x, ω) ∝ 1/|ω| at low
frequency, for any impurity coupling constant. Note that this
singular behavior holds also in the absence of the impurity.
This conclusion is in agreement with a renormalization-group
prediction that an impurity with a finite coupling constant is
an irrelevant perturbation in a system of bosons with local
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FIG. 1. Dimensionless quantity I (X,�), as a function of scaled
position X = x/ξ and frequency � = h̄ω/μ, determines the local
spectral density of the bosons [see Eq. (36)]. The impurity with
strong dimensionless coupling constant G̃ = 10 is located at X = 0.
The temperature is set to T = μ/10.

interactions [3]. We point out that even in the case of an im-
purity with an infinitely strong coupling constant that cuts the
system into two disconnected parts (i.e., the boundary of the
system), the power-law exponent of the frequency dependence
of n(x, ω) in the vicinity of the impurity remains unchanged
from the bulk one. This result holds in the limit of weakly
interacting bosons. Increasing the boson-boson interaction
strength, the exponent of the frequency dependence of n(x, ω)
in the bulk becomes different from the one in the vicinity of
the boundary in the limit of low energies [54].

The paper is organized as follows. After introducing the
model in Sec. II, we solve the equation of motion for the
single-particle operator in Sec. III. A general expression for
the local spectral density is given in Sec. IV. The system
without the impurity is considered in Sec. V. In the limit of
low frequencies, the local spectral density for an arbitrary
impurity strength is considered in Sec. VI, while Sec. VII is
devoted to high frequencies. The case of an infinitely strong
impurity coupling constant is studied in Sec. VIII at arbitrary
frequencies. The opposite limit of a weakly coupled impurity
is presented in Sec. IX. The case of arbitrary impurity strength
and frequency is studied in Sec. X. We summarize the paper
in Sec. XI. Some results are relegated to the Appendixes.

II. MODEL

We study the effects of a static impurity on a 1D system of
interacting bosons. The system is modeled by the Hamiltonian

H =
∫

dx

(
−�̂† h̄2∂2

x

2m
�̂ + g

2
�̂†�̂†�̂�̂

)
+ G�̂†(0)�̂(0).

(3)

Here g > 0 denotes the repulsive contact interaction between
bosons with mass m. We assume that the mean density of

the bosons is n0. We introduce the dimensionless parameter
γ = gm/h̄2n0 that measures the strength of the interaction.
The bosonic field operators satisfy the commutation relations
[�̂(x), �̂†(x′)] = δ(x − x′) and [�̂(x), �̂(x′)] = 0, with δ(x)
the Dirac delta function. The impurity is situated at position
x = 0. The strength of the coupling between the impurity and
the Bose gas is denoted by G. We study weakly interacting
bosons γ � 1, while the impurity-boson coupling is of ar-
bitrary strength. The static impurity can be experimentally
realized with heavy impurity atoms or with obstacles. The
latter could be created, e.g., by optical defects in the form of
a tightly focused laser beam transversely oriented relative to
the 1D condensate.

In order to analyze the local spectral density, we first solve
the equation of motion for the single-particle field operator. It
is given by ih̄∂t �̂ = [�̂, H]. After introducing the dimension-
less coordinate X = x

√
mμ/h̄ and time τ = tμ/h̄, the field

operator can be rewritten as �̂(x, t ) = √
μ/gψ̂ (X, τ )e−iτ .

The chemical potential is denoted by μ. The field operator
ψ̂ (X, τ ) can be expanded as [55–57]

ψ̂ (X, τ ) = ψ0(X ) + αψ̂1(X, τ ) + α2ψ2(X ) + O(α3), (4)

where the small parameter is α = (γ gn0/μ)1/4 ≈ γ 1/4 � 1.
The time-independent function ψ0 describes the condensate
wave function in the absence of fluctuations. The time-
dependent field operator ψ̂1 accounts for the quantum and
thermal fluctuations. The time-independent function ψ2 ac-
counts for corrections of the condensate wave function ψ0

caused by fluctuations [56,57]. The chemical potential μ can
be expressed as a function of the mean boson density n0 using
n0 = ∫

dx〈�̂†(x, t )�̂(x, t )〉/L and Eq. (4). Here L denotes
the system length. We obtain an expansion of the chemical
potential in α. In the leading order, μ = gn0 [58], assuming
L � ξ . Here ξ = 1/n0

√
γ is the healing length.

Note that for one spatial dimension long-wavelength phase
fluctuations destroy the condensate in the thermodynamic
limit even at zero temperature. At zero temperature, the phase
coherence length is 
φ = ξ exp(2

√
π2/γ ) � ξ [59]. At suf-

ficiently high temperatures, the phase coherence length is
determined by the temperature as 
φ = h̄2n0/mT [60,61].
The perturbative expansion of the field operator (4) holds for
L � 
φ . Thus, our approach is applicable under the condi-
tion 
φ � L � ξ , which implies that the temperature satisfies
T � h̄2n2

0
√

γ /m ≈ μ/
√

γ .

III. SOLUTION OF THE EQUATION OF MOTION

Substituting the expansion (4) into the equation of motion,
we obtain one equation for each power of α. To the zeroth
order in α we get

L̂1(X )ψ0(X ) = 0, (5)

where the operator L̂ j (X ) is

L̂ j (X ) = −∂2
X

2
+ j|ψ0(X )|2 − 1 + G̃δ(X ). (6)
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We introduced the dimensionless parameter G̃ that measures
the strength of the impurity coupling to the bosons as

G̃ = G
√

m/μ

h̄
. (7)

We are interested in a solution of Eq. (5) with a vanishing
superfluid current far from the impurity. We assume that the
boson density remains unperturbed far from the impurity. We
are not interested in the boundary effects, but rather focus on
the impurity influence. Thus, we do not impose vanishing den-
sity at the boundaries of the system. The finite system length
L introduces an infrared cutoff in the theory and prevents the
long-wavelength fluctuations from destroying the condensate.
However, some results hold in the thermodynamic limit as
well, as we discuss below.

In the absence of the impurity, Eq. (5) is known as the
Gross-Pitaevskii equation and its solution is ψhom

0 (x) = 1. The
solution of Eq. (5) is given by [62]

ψ0(X ) = tanh(|X | + X0), (8)

where parameter X0 carries the information about the impurity
strength and is given by

X0 = tanh−1
[

1
2

(
−G̃ +

√
4 + G̃2

)]
. (9)

This expression follows from the condition imposed on the
derivative of the wave function at the position of the im-
purity, ψ ′

0(0+) − ψ ′
0(0−) = 2G̃ψ0(0). For vanishing coupling

constant G̃, the parameter X0 tends to infinity and we obtain
ψhom

0 (X ). For large coupling constant G̃ → ∞, the parameter
X0 → 0 and the wave function becomes ψ0(X ) → tanh |X |,
leading to a vanishing boson density at the impurity position.

The effects of thermal and quantum fluctuations to first
order in α are described by ψ̂1. Its equation of motion reads

i∂τ ψ̂1(X, τ ) =L̂2(X )ψ̂1(X, τ ) + ψ2
0 (X )ψ̂†

1 (X, τ ). (10)

We search for the solution of Eq. (10) in the form [55]

ψ̂1(X, τ ) =
∑

k

Nk
[
uk (X )b̂ke−iεkτ − v∗

k (X )b̂†
keiεkτ

]
, (11)

where Nk is a normalization constant to be defined below. The
bosonic operators describing the Bogoliubov quasiparticles b̂k

and b̂†
k satisfy the bosonic commutation relations [b̂k, b̂†

k′ ] =
δk,k′ and [b̂k, b̂k′ ] = 0. Substituting Eq. (11) in Eq. (10), we
obtain two coupled equations for uk and vk , known as the
Bogoliubov–de Gennes equations

εkuk (X ) = L̂2(X )uk (X ) − ψ2
0 (X )vk (X ), (12)

−εkvk (X ) = L̂2(X )vk (X ) − ψ2
0 (X )uk (X ). (13)

We will first solve these equations without the δ potential
in the operator L̂2(X ). Then we will take it into ac-
count through the conditions uk (0+) = uk (0−) and u′

k (0+) −
u′

k (0−) = 2G̃uk (0). The same constraints are to be imposed on
vk (X ). The prime denotes the derivative with respect to X .

We decouple Eqs. (12) and (13) by introducing the
functions S(k, X ) = uk (X ) + vk (X ) and D(k, X ) = uk (X ) −

vk (X ), which satisfy fourth-order differential equations. The
equation for S(k, X ) has the form

ε2
k S(k, X ) = L̂3(X )L̂1(X )S(k, X ), (14)

while D(k, X ) can be expressed in terms of S(k, X ) as

D(k, X ) = 1

εk
L̂1(X )S(k, X ). (15)

Here we have introduced L̂ j = −∂2
X /2 + j|ψ0(X )|2 − 1. The

four independent solutions of Eqs. (14) and (15) are given
by [63]

Sn(k, X ) ={ikn − 2 tanh[X + sgn(X )X0]}eiknX , (16)

Dn(k, X ) = ikn

εkn

1

cosh2(|X | + X0)
eiknX + k2

n

2εkn

Sn(k, X ), (17)

where n ∈ {1, 2, 3, 4} and the energy dispersion reads

εk =
√

k2 + k4/4. (18)

The four roots of the energy dispersion entering Sn are k1,2 =
±k and k3,4 = ±i

√
4 + k2 in terms of k = √

2

√√
ε2

k + 1 − 1.

Now we are ready to account for the existence of the δ

potentials in Eqs. (12) and (13). The general solution for
S(k, X ) is a linear combination of the four solutions, which
for k > 0 reads

S(k, X ) =
{

S1(k, X ) + rS2(k, X ) + reS4(k, X ), X < 0
tS1(k, X ) + teS3(k, X ), X > 0,

(19)

while D(k, X ) has the form

D(k, X ) =
{

D1(k, X ) + rD2(k, X ) + reD4(k, X ), X < 0
tD1(k, X ) + teD3(k, X ), X > 0.

(20)

Equation (19) describes an incoming wave from X = −∞
with k > 0 that is partially reflected from the impurity at the
origin. In Eq. (19) we omitted from the linear combination the
unphysical exponentially growing solutions, i.e., S3 for X < 0
and S4 for X > 0. The four remaining coefficients r, re, t , and
te in Eq. (19) are to be determined such that the solutions
for S(k, X ) and D(k, X ) are continuous and their derivative
with respect to X are discontinuous functions at the impurity
position:

S(k, 0+) = S(k, 0−), (21)

D(k, 0+) = D(k, 0−), (22)

∂X S(k, 0+) − ∂X S(k, 0−) = 2G̃S(k, 0), (23)

∂X D(k, 0+) − ∂X D(k, 0−) = 2G̃D(k, 0). (24)

We evaluate the coefficients, finding

r = ik(1 − η2)[k2(2η + q) + 4(η3 + η) + q3 + 2ηq2 + 4η2q]

[kη + i(η2 + 1)](k − iq)[k2(2η + q) + ik(2η + q)2 − 2η(2η2 + q2 + 2ηq − 2)]
, (25)

043305-3
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t = η
2k2(k2 + 4)η + q3(k2 + 2η2 + 2) + 2ηq2(k2 + 2η2 + 2) + q[k4 + 2k2(η2 + 1) + 4η4 − 4]

[kη + i(η2 + 1)](k − iq)[k2(2η + q) + ik(2η + q)2 − 2η(2η2 + q2 + 2ηq − 2)]
, (26)

te = re = 4kη(η2 − 1)

(k − iq)[k2(2η + q) + ik(2η + q)2 − 2η(2η2 + q2 + 2ηq − 2)]
. (27)

Here we have introduced η = (−G̃ +
√

4 + G̃2)/2 and q =√
4 + k2. The reflection and the transmission probability for

quasiparticles are given by |r|2 and |t |2, respectively. They are
nonmonotonic functions of momenta.

For negative k values we should consider the scattering
process of an incoming wave from X = ∞. However, since
the impurity is static, we can use the property S(−k, X ) =
S(k,−X ) and use the solution (19) for k > 0.

The normalization constant Nk in Eq. (11) follows from the
requirement [55]

NkNq

∫ L/2ξμ

−L/2ξμ

dX [uk (X )u∗
q(X ) − vk (X )v∗

q (X )] = δk,q, (28)

where

ξμ = h̄√
mμ

. (29)

We evaluate Nk = (ξμ/2Lεk )1/2 in the limit L � ξμ. We point
out that Nk does not depend on the impurity strength G̃. The
solution of the equation of motion calculated here will be an-
alyzed and simplified in some limiting cases in the following
sections.

IV. LOCAL SPECTRAL DENSITY

A. Physical meaning of the local spectral density

At zero temperature the local spectral density (1) can be
represented as

n(x, ω) =
∑
ζN+1

|〈ζN+1|�̂†(x, 0)|0〉|2δ
(
ω − εζN+1

h̄

)

+
∑
ζN−1

|〈ζN−1|�̂(x, 0)|0〉|2δ
(
ω + εζN−1

h̄

)
, (30)

where |0〉 denotes the ground state of the system of N bosons
and the excitation energy εζN = EζN − E0(N ) � 0. Here EζN

is the energy of the N-particle state |ζN 〉 and E0(N ) denotes
the ground-state energy of the system with N bosons. Note
that states |ζN 〉 form a complete set of eigenstates of the
Hamiltonian (3) for N particles. The chemical potential at
zero temperature is μ = E0(N + 1) − E0(N ). In Eq. (30) we
have assumed N � 1. We thus see that n(x, ω)/h̄ at zero
temperature denotes the local single-particle density of states.

At nonzero temperature, the local spectral density (1) takes the form

n(x, ω) =
∑

ζN+1,ζN

e−βEζN

Z
|〈ζN+1|�̂†(x, 0)|ζN 〉|2δ

(
ω + μ + EζN − EζN+1

h̄

)

+
∑

ζN−1,ζN

e−βEζN

Z
|〈ζN−1|�̂(x, 0)|ζN 〉|2δ

(
ω + μ + EζN−1 − EζN

h̄

)
, (31)

where Z is the canonical partition function of the system of
N bosons and the inverse temperature is defined by β = 1/T .
For N � 1, Eq. (31) can be rewritten as

n(x, ω) = 1

Z
(1 + e−β(h̄ω+μ) )

∑
ζN+1,ζN

|〈ζN+1|�̂†(x, 0)|ζN 〉|2

× δ
(
ω + μ + EζN − EζN+1

h̄

)
e−βEζN . (32)

From Eqs. (31) and (32) it follows that the local spectral
density is proportional to the transition rate for adding and
removing a boson with energy h̄ω at position x, where the
proportionality constant depends on the frequency as 1 +
e−β(h̄ω+μ) and 1 + eβ(h̄ω+μ), respectively. The energy h̄ω is
measured with respect to μ.

B. Evaluation of the local spectral density

Here we evaluate the local spectral density by employing
the expansion (4) in Eq. (1). We can write n(x, ω) in the form

n(x, ω) = 2
μ

g
δ(ω)

{
ψ2

0

(
x

ξμ

)
+ 2α2ψ0

(
x

ξμ

)
Re

[
ψ2

(
x

ξμ

)]}

+ α2 h̄

g
I

(
x

ξμ

,
h̄ω

μ

)
+ O(α3). (33)

Here we have taken into account that ψ0 is a real function. We
evaluate the contribution to n(x, ω) originating from ψ̂1 to be
the dimensionless

I (X,�) = 1

4π

1

k�

√
1 + �2

coth

( |�|μ
2T

)
{θ (�)[|uk�

(X )|2

+ |u−k�
(X )|2] + θ (−�)[|vk�

(X )|2

+ |v−k�
(X )|2]}, (34)
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where the dimensionless k� is defined as

k� =
√

2

√√
�2 + 1 − 1 (35)

and θ (x) denotes the Heaviside theta function. We distin-
guish two contributions in Eq. (34), one from the holelike
excitations in the case of negative frequencies and another
for the particlelike excitations defined for positive frequen-
cies. We used the expressions

∫ ∞
0 eist dt = limδ→0+ i

s+iδ and
limδ→0+ 1

π
δ

x2+δ2 = δ(x).
Quantum and thermal fluctuations move particles out of the

condensate and are taken into account through the field oper-
ator ψ̂1 and the function ψ2. The latter describes the depletion
of the condensed particles caused by the fluctuations [56,57]
and thus introduces no new frequency dependence in n(x, ω).
Notice that thermal effects enter Eq. (34) through the aver-
age occupation numbers of Bogoliubov quasiparticles np =
〈b̂†

pb̂p〉 = 1/[exp(εpμ/T ) − 1], leading to the multiplicative
factor coth(|�|μ/2T ) = 1 + 2nk�

.
Expressing the chemical potential μ in terms of the mean

boson density n0 as μ = gn0 in the leading order [58], we
rewrite the local spectral density as

n(x, ω) = 2n0ψ
2
0

(
x

ξ

)
δ(ω) + 1

v
I

(
x

ξ
,

h̄ω

μ

)
. (36)

Here v is the sound velocity and has the form v = √
gn0/m.

The function I (X,�) is given by Eq. (34), ξ = 1/n0
√

γ , and
ψ0 is given by Eq. (8). The condensed particles have zero
momentum and thus determine the contribution proportional
to δ(ω) in Eq. (36). The factor multiplying δ(ω) is written in
the leading order, i.e., the contribution originating from ψ2 has
been omitted. The reason is that in the present work we focus
on the ω dependence of the local spectral density and ψ2 does
not introduce any new ω dependence. Furthermore, Eq. (36)
holds in the parameter region where the true condensate exists
(see the discussion in Sec. II). There the contribution from ψ2

in the local spectral density is negligible.
For a quasicondensate the system length is longer than the

phase coherence length and the temperature is assumed to be
low, T � μ/

√
γ , such that the density fluctuations remain

small with respect to the mean-field value of the local density
[59,61]. The result (36) certainly holds for a quasicondensate
for high enough frequencies ω � v/
φ where the decoher-
ence effects are not visible. Nevertheless, at low frequencies
ω � μ/h̄ � v/
φ the Luttinger liquid description [64,65] in-
dicates that the finite frequency part of Eq. (36) remains valid
for arbitrarily small frequency (see Appendix A).

Replacing the functions uk and vk in Eq. (34) by the expres-
sions presented in the preceding section, we obtain the local
spectral density for any impurity coupling constant G̃ > 0. For
the case of attractive impurity-boson interaction, we restrict
our analysis to moderate values of |G̃| due to the collapse
of the bosons onto the impurity at strong attraction. In what
follows we evaluate the local spectral density in some limiting
cases where it acquires a simple analytic form. In the other
parameter regions we analyze it numerically.

V. HOMOGENEOUS SYSTEM G̃ = 0

In the absence of the impurity (G̃ = 0) the Hamiltonian (3)
is known as the Lieb-Liniger model [58,66]. Many correlation
functions characterizing this exactly solvable model have been
studied. The long distance and time asymptotic behavior of
dynamic correlation functions was studied using the form
factor approach [67], while the operator product expansion is
used to derive high energy and momentum asymptotics [68].
The nonlinear Luttinger liquid theory provided the exponents
that characterize the singularities of dynamic correlation func-
tions in the vicinity of the edges [69], while the algebraic
Bethe ansatz allowed the study of response functions numer-
ically for large finite-size systems [70,71]. In this section, as
a special case of our problem, we study a uniform weakly in-
teracting Bose gas within the standard Bogoliubov–de Gennes
approximation [55] that allows us to evaluate the local spectral
density at arbitrary frequencies.

In the absence of the impurity, the expression (34) becomes

Ihom(�) =
√

�2 + 1 + �

2
√

2π

√
(�2 + 1)(

√
�2 + 1 − 1)

coth

( |�|μ
2T

)
.

(37)

Here we have introduced the superscript hom to point out
that the system is homogeneous. We remind the reader that
in Eq. (37) one must use μ = gn0. Replacing ψ0 by ψhom

0 = 1
and the function I (X,�) by Eq. (37) in Eq. (36), we obtain the
local spectral density in a homogeneous system. The functions
uk (x) and vk (x) are given in Appendix B.

We first consider the zero-temperature case. Note that ther-
mal effects in Eq. (37) enter through the multiplicative factor
that becomes unity at zero temperature. The function Ihom

is X independent, as expected for a translationally invariant
system. Its asymmetry for positive and negative � originates
from the difference of particlelike and holelike contributions
in Eq. (34) determined by the expressions for uhom

k and vhom
k

given by Eqs. (B1) and (B2), respectively. Nevertheless, their
first-order term in the expansion in small k is the same. The
local spectral density is divergent at the chemical potential
since Ihom(�) in the limit |�| � 1 reads

Ihom(�) = 1

2π |�| . (38)

The reason is that the interaction leads to the depletion of the
condensate, bringing the bosons mostly into the low-energy
states. In the condensate of the length L, the infrared cut-
off �min = h̄ωmin/μ is of the order of ξμ/L � 1. Thus, the
number of particles out of the condensate remains finite and
negligible.1

At high energies the behavior of particle and hole contri-
butions is very different. For high positive energy � � 1 it is
given by

Ihom(�) = 1

π
√

2�
, (39)

1Note that the local density is given by n(x) =
limt→0− i

∫ ∞
−∞ e−iωt G(x, x; ω)dω/2π .
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while for large negative energy −� � 1 it behaves as

Ihom(�) = 1

4
√

2π

1

|�|5/2
. (40)

Next we consider the effects of thermal fluctuations on
the spectral density. From Eq. (37) it follows that only for
energies well above the temperature h̄|ω| � T (or equiva-
lently |�| � T/μ) thermal fluctuations become exponentially
suppressed and can be neglected, thus leading to the zero-
temperature result. Otherwise, thermal fluctuations do affect
the spectral density. Namely, in the limit of low energies
|�| � min{T/μ, 1}, the divergent behavior is observed,

Ihom(�) = T

π�2μ
+ O(�−1), (41)

which is to be contrasted with Eq. (38). In the case of
μ/

√
γ � T � μ and for intermediate energies T/μ � � �

1 we get

Ihom(�) = 1

π

√
2

�3

T

μ
, (42)

while for T/μ � −� � 1 we get

Ihom(�) = 1

2
√

2π

T

|�|7/2μ
. (43)

In Appendix A we use the Luttinger liquid theory to
evaluate the local spectral density for an arbitrary interac-
tion strength between the bosons, at finite temperatures, and
in the thermodynamic limit. The final result is given by
Eq. (A9). Note that this approach provides only the low-
energy description of our system. For weakly interacting
bosons, it thus gives only the low-frequency h̄|ω| � μ be-
havior of the local spectral density given by Ihom(h̄ω/μ)/v =√

γ n0 coth(h̄ω/2T )/2πω. Thus, the singular behavior (38)
holds in the thermodynamic limit as well.

VI. LOW FREQUENCY AND ARBITRARY IMPURITY
STRENGTH

A. Low frequency h̄|ω| � μ

Here we consider the low-frequency behavior of the local
spectral density, h̄|ω| � μ. The case of very strong impurity
coupling constant h̄|G̃ω|/μ � 1 needs to be considered sepa-
rately, as we explain in the following section.

The energy dispersion of Bogoliubov quasiparticles takes
a phononlike form at low energies and the impurity barrier
becomes almost transparent, i.e., the reflection amplitude (25)
is r = 0 to leading order [62]. Note that this result is very
different from the problem of a free single particle scattering
from a δ-function potential. In the latter case the reflection
probability becomes one in the limit of low energies [72].

In Appendix C we give simplified expressions for the func-
tions uk (X ) and vk (X ) at small |k| � 1. Now we can evaluate
I (X,�) given by Eq. (34). It takes the form

I (X,�) = 1

8π�
coth

(
μ�

2T

)
sech4(|X | + X0)

× |1 − i sinh[2(|X | + X0)] − ei�|X ||2 (44)

to leading order in small frequency. We remind the reader that
X0 is given by Eq. (9). We can now use Eq. (36) with I (X,�)
given by Eq. (44) to evaluate the local spectral density.

From Eq. (44) it follows that the singular behavior ob-
served in the absence of the impurity ∼ coth(μ�/2T )/�
remains unchanged in the presence of the impurity. As ex-
pected, the impurity introduces an additional X dependence
of the local spectral density. It causes the oscillations that
are characterized by the new characteristic length ξμ/h̄ω in
the limit of low frequencies. We discuss these oscillations in
more detail for arbitrary frequencies in the following sections.
However, note that the oscillations at low frequencies [i.e., in
Eq. (44)] are not visible and we can approximate

I (X,�) ≈ 1

2π�
coth

(
μ�

2T

)
tanh2(|X | + X0). (45)

Increasing the impurity coupling strength G̃, the local spec-
tral density decreases. For any G̃, the local spectral density
at large separations x � ξ and low frequency has the same
dependence as in the absence of the impurity, i.e., considering
|X | � 1 in Eq. (44), we recover the homogeneous case.

B. Large coupling G̃ � 1 and low frequency h̄|ω| � μ

In this section we consider the limit of low frequency and
large positive G̃ such that G̃|�| can be arbitrarily small or
big. Here � = h̄ω/μ. In order to evaluate I (X,�) in this
region of parameters, we first calculate the coefficients t =
1/(ikG̃ − 1), r = G̃k/(i + G̃k), and te = −k/2(i + G̃k) for
k = |�| � 1. The reflection probability |r|2 vanishes as (kG̃)2

for kG̃ � 1 and tends to one in the opposite case kG̃ � 1.
Thus, in the latter case of very strong impurity coupling con-
stant, the barrier almost completely reflects the quasiparticles.

We can now further simplify the expressions for the func-
tions uk (X ) and vk (X ). They are presented in Appendix D.
Here we evaluate the function I (X,�) given by Eq. (34) for
arbitrary X to be

I (X,�) = sech4(X ) coth( μ�

2T )

16π�(G̃2�2 + 1)
{|i sinh(2|X |) + 1

− e−i|X |�|2 + |ei|X |�G̃�[sinh(2|X |) − i]

+ e−i|X |�(G̃� + i)[sinh(2|X |) + i] + 1|2}. (46)

We point out that in the presence of an impurity with strong
coupling constant, the oscillations are pronounced and remain
at long separations from it. For X � 1, I (X,�) becomes a
periodic function in X and its average value (over the period)
coincides with the one in the absence of the impurity Ihom(�).
We show in Sec. X that the latter property holds for arbitrary
frequency and arbitrary coupling constant G̃.

Considering Eq. (46) in the limit of small G̃|�| � 1, we
recover the expansion of Eq. (44) for large G̃ � 1. Analyzing
the expression (46) in the opposite limit of large G̃|�| � 1,
we obtain

I (X,�) = 1

4π�
coth

(
μ�

2T

)

× [2 tanh(X ) cos(X�) + sech2(X ) sin(X�)]2

(47)
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in the leading order. Equation (47) describes an impurity with
infinitely strong coupling constant that cuts the system into
two disconnected parts, leading to the complete reflection of
the quasiparticles. The local spectral density vanishes at the
impurity position X = 0. Nevertheless, note that the impurity
does not change the power-law exponent of the frequency
dependence of n(x, ω) of the homogeneous case [Eqs. (38)
and (41)], but rather introduces a multiplicative factor that
carries the X dependence. This factor is an oscillating function
of �. In the vicinity of the impurity, i.e., X � 1, the behavior
is I (X,�) = coth( μ�

2T )X 2/π�. In Sec. VIII we consider an
infinitely strong impurity coupling constant in more detail and
evaluate the local spectral density for arbitrary frequencies.

At low energies, one can apply the Luttinger liquid model
for bosons in the presence of a boundary [54]. This approach
does not allow one to determine the prefactors, but it shows
that by increasing the strength of the interaction between the
bosons, the difference between the power-law exponent of
the frequency in n(x, ω) in the bulk −1 + 1/2K [64] and in
the vicinity of an impurity with an infinitely strong repulsive
coupling −1 + 1/K [54] becomes visible. Here K denotes
the Luttinger liquid parameter, while the temperature is set
to zero. For weakly interacting bosons K = π/

√
γ � 1.

VII. HIGH FREQUENCY AND ARBITRARY IMPURITY
STRENGTH

A. High frequency h̄|ω| � μ

In this section we evaluate the local spectral density in
the limit of high frequencies |�| � 1, where � = h̄ω/μ.
For k � 1 the transmission coefficient of Bogoliubov quasi-
particles across the impurity potential becomes |t |2 ≈ 1 and
re = 0. This is expected, since we discuss the particle regime
of Bogoliubov quasiparticles where ε(k) = k2/2 [72]. We
provide simplified expressions for the functions uk and vk in
Appendix E. For high positive frequency � � 1, Eq. (34)
coincides with the homogeneous case

I (X,�) = coth( μ�

2T )

π
√

2�
(48)

to leading order, while for large negative frequency −� � 1
it takes the form

I (X,�) = coth( μ|�|
2T )

4
√

2π |�|5/2
tanh4(|X | + X0). (49)

For negative frequencies, the leading-order result depends
on the impurity strength, in contrast to the case of positive
frequencies. However, the influence of the impurity vanishes
exponentially quickly at separations longer than the healing
length. The presence of the impurity does not change the
exponents of the power-law frequency dependence n(x, ω)
observed in the homogeneous case (37). In the case of a strong
impurity coupling constant |G̃| �

√|�| � 1, the above result
does not apply and special attention should be paid, as we
discuss in the following section.

B. High frequency h̄|ω| � μ and large coupling G̃ � 1

In this section we consider the limit of high frequency
|�| � 1 and strong impurity coupling constant G̃ � 1.
For k � 1, the coefficients simplify to t = k/(k + iG̃), r =
G̃/(G̃ − ik), and re = 0, in agreement with the scattering
of noninteracting particles from a δ-function potential [72].
We provide simplified expressions for uk (x) and vk (x) in
Appendix F. Finally, Eq. (34) becomes

I (X,�) = coth( μ|�|
2T )

π
√

2|�|(G̃2 + 2|�|) [2G̃2 sin2(X
√

2|�|)

+ G̃
√

2|�| sin(2
√

2|�||X |) + 2|�|]

×
(

θ (�) + θ (−�)
tanh4(X )

4�2

)
. (50)

Here θ (x) denotes the Heaviside step function. For large
|X | � 1, one should replace

√
2|�| by k� [it is given by

Eq. (35)] inside each sine in Eq. (50), as well in Eqs. (51)
and (52). Note that an impurity with strong coupling constant
G̃ �

√|�| � 1 causes the oscillations in the leading-order
expression for n(x, ω).

Expanding Eq. (50) in large G̃ � √|�| for positive ener-
gies, the asymptotic behavior is given by

I (X,�) = 1

π

√
2

�
coth

(
μ�

2T

)
sin2

(√
2�X

)
, (51)

while for negative energies we get

I (X,�) = coth( μ|�|
2T )

2
√

2π |�|5/2
tanh4(X ) sin2

(
X

√
2|�|). (52)

We see that the power-law dependence in �, describing the
system in the absence of the impurity, gets multiplied by a
function of X and �. Note that it is an oscillating function of �

for a given X , similarly to the case of low energies considered
in the preceding section. Equations (51) and (52) describe an
impurity with an infinitely strong coupling constant, leading
to a vanishing local boson density at its position.

The expansion of Eq. (50) in the leading order in high
frequencies

√|�| � G̃ coincides with Eq. (48) and the
leading-order expansion of Eq. (49) in G̃ � 1. The expression
(50) provides the behavior in different crossover regions.

VIII. INFINITELY STRONG IMPURITY
COUPLING CONSTANT

In this section we consider the case of an infinitely strong
positive impurity coupling constant. The impurity cuts the
system into two semi-infinite subsystems. It imposes the nul-
lification of the single-particle bosonic operator at its position,
�̂(0) = 0, and thus the local boson density vanishes at x = 0.
Using the results of Sec. III, we evaluate the condensate
wave function, uk (X ), and vk (X ) in Appendix G. We evaluate
I (X,�) given by Eq. (34) to be

I (X,�) = coth

(
μ|�|
2T

) {(k2
� + 2�) tanh(X ) cos(Xk�) + k� sin(Xk�)[ k2

�

2 + sech2(X ) + �]}2

4π�2
√

�2 + 1k�

, (53)
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while the local spectral density takes the form

n(x, ω) = 2n0δ(ω) tanh2

(
x

ξ

)
+ 1

v
I

(
x

ξ
,

ωh̄

gn0

)
. (54)

The limiting cases of low and high frequencies of Eq. (53)
coincide with Eq. (47) and Eqs. (51) and (52), respectively.

We see that the local spectral density is an oscillating
function of the coordinate for a given frequency, contrary to
the local boson density that does not show Friedel oscillations
[35]. The amplitude of the oscillations depends on position
X and frequency �. It vanishes at the impurity position
X = 0, as it has to be the case. Far away from the impu-
rity |X | � 1, the oscillations remain and I (X,�) becomes a
periodic function of X for a given frequency �. Its spatial
periodicity is given by π/k� [see Eq. (35)] and at positions
Xn = arctan(−2/k�)/k� + nπ/k� the function I (Xn,�) van-
ishes. Here n is an integer such that |Xn| � 1. After averaging
I (X,�) over its period, we get the same value as in the
absence of the impurity.

IX. WEAKLY COUPLED IMPURITY |G̃| � 1

Here we consider the effects of a weakly coupled impurity
with |G̃| � 1. The G̃ is given by Eq. (7) and it can be rewritten
to lowest order in γ as

G̃ = G
√

γ

g
. (55)

We provide the solutions for the functions uk and vk in
Appendix H. They are obtained by simplifying the results
from Sec. III. Now we are able to evaluate Eq. (34). It takes
the form

I (X,�) = Ihom(�) + G̃
coth(μ|�|/2T )

4π�(�2 + 1)k�

× [�k�(
√

�2 + 1 + �) sin(2|X |k�)

+ 2k�e−2|�X |/k� sin(|X |k�)

−
√

�2 + 1e−2|X |(k2
� + 2�)], (56)

where Ihom(�) is the result (37). Equation (56) applies for all
� and all X . We can now evaluate Eqs. (36) and (37). The
function ψ0 is given by the expression (8). For the coherence
of the presentation, we can expand it in small G̃ as ψ0(X ) =
1 − 1

2 G̃e−2|X | + O(G̃2). The local spectral density reads

n(x, ω) = 2n0

(
1 − √

γ
G

g
e−2|x|/ξ

)
δ(ω) + 1

v
I

(
x

ξ
,

ωh̄

gn0

)
. (57)

The function I (X,�) is given by Eq. (56). Note that even
a weakly coupled impurity causes oscillations in the local
spectral density for nonzero ω.

At the position of the impurity x = 0, the two contributions
out of three that are proportional to the coupling strength G̃
in Eq. (56) vanish and we are left with the last term. The
sign of this term is actually −sgn(G), and thus for a repul-
sively interacting impurity (G > 0) the local spectral density
n(0, ω) decreases both for positive and for negative ω while
it increases for an attractive impurity (G < 0). For nonzero
position x, the impurity contribution in n(x, ω) oscillates and
changes its sign as a function of ω.

For small frequency |�| � 1 we recover the expansion of
Eq. (44) in the limit |G̃| � 1. In the limit of high energies, the
term proportional to G̃ in Eq. (56) is of higher order in 1/

√|�|
with respect to Eqs. (49) and (48).

X. ARBITRARY COUPLING G̃ AND ARBITRARY
FREQUENCY

In this section we consider the local spectral density for
an arbitrary impurity strength G̃ and an arbitrary frequency.
First we study the local spectral density far from the impu-
rity |x| � ξ . There the functions Si and Di with i = 3, 4 are
approximately zero since they vanish exponentially rapidly
[cf. Eqs. (16) and (17)]. This leads to |uk (X )|2 = |tuhom

k |2 and
|u−k (X )|2 = |uhom

k |2|1 + re2ikX (2 − ik)/(2 + ik)|2 for k > 0
and X > 0. Here uhom is the solution in the absence of the
impurity and thus it is X independent. It is given by Eq. (B1).
The same expressions hold for v functions once u and uhom

are replaced by v and vhom, respectively. Using Eq. (34) and
|r|2 + |t |2 = 1, we obtain

I (X,�) = Ihom(�)

[
1 +

(
r�e2ik�|X | 2 − ik�

2(2 + ik�)
+ H.c.

)]

(58)

for |X | � 1. Here H.c. stands for the Hermitian conjugate
term, Ihom(�) is given by Eq. (37), and r� is r given by
Eq. (25) and evaluated for k = k�. Note that the dependence
of I (X,�) on G̃ is carried by r�, which takes values in the
complex plane.

The local spectral density is a periodic function of po-
sition far from the impurity. Its period does not depend on
the coupling strength G̃. It is determined by the inverse mo-
mentum of Bogoliubov quasiparticles πξ/k� that are probed
at given energy � = h̄ω/μ. The average value of n(x, ω)
for any frequency and any impurity strength equals the lo-
cal spectral density in the absence of the impurity, i.e.,∫ π/k�

0 I (X,�)dXk�/π = Ihom(�). Equation (58) shows how
the amplitude of oscillations far from the impurity depends
on the dimensionless parameters: energy and the impurity
strength.

Next we consider an arbitrary X . In Fig. 1 we present the
position and the frequency dependence of I (X,�) given by
Eq. (34) for the impurity strength G̃ = 10 and the temperature
T = μ/10. We notice the oscillations and the pronounced
asymmetry for positive and negative frequency as discussed
in previous sections. In Fig. 2 we present I (1,�) for different
impurity coupling strengths, showing that the amplitude of
oscillations increases with |G̃|. The same property is observed
in Fig. 3, where I (X, 15/10) is shown for several values of
G̃. For repulsive impurity-boson interaction, I (X,�) saturates
to values given by Eq. (53) for an infinitely strong coupling
constant G̃. We notice the decrease of I (0,�) as G̃ is increased
and its drop to zero value for strong coupling constant.

XI. SUMMARY

In this paper we have studied a system of 1D weakly
interacting bosons in the presence of an impurity. We have
analytically evaluated the local spectral density of bosons for
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FIG. 2. Dependence of I (X,�) on � for the fixed value X =
1 and the temperature T = μ/10 for different impurity coupling
strengths.

any frequency, position, and positive impurity strength. In
some parameter regions the expression for n(x, ω) simplifies
considerably, and we thus summarize different asymptotic
behaviors in Fig. 4.

Contrary to the local density that does not show the Friedel
oscillations [35], the local spectral density has an oscillatory
behavior for any impurity coupling strength. This behavior is
presented in Fig. 1. At separations from the impurity greater
than the healing length, n(x, ω) simplifies and is given by
Eq. (58) for all energies.

At zero temperature in the limit of low energies h̄|ω| � μ,
n(x, ω) behaves as 1/|ω|. This singular behavior in ω per-
sists for any impurity strength G, including the case of an
impurity with an infinitely strong coupling constant that acts
as a boundary, leading to complete reflection of Bogoliubov
quasiparticles. The frequency dependence gets multiplied by
a prefactor that describes the modification of the local spec-
tral density due to the impurity and introduces the spatial
dependence. For not too strong impurity coupling constant,
the prefactor behaves as tanh2(|x|/ξ + X0) [see Eq. (45)].
Here x denotes the separation from the impurity, ξ is the
healing length, and X0 depends in a nonlinear way on the
impurity coupling constant, the interaction strength between
the bosons, their density, and mass as given by Eq. (9). In
the limit of high energies h̄|ω| � μ and for any G, the local
spectral density scales as 1/|ω|5/2 and as 1/

√
ω for negative

and positive energies, respectively. For not too high impu-

FIG. 3. Dependence of I (X,�) on X for the fixed value of � =
15/10 and the temperature T = μ/10 for different impurity coupling
strengths.

FIG. 4. Schematic diagram representing the asymptotic behavior
of I (X,�), given by Eq. (34), in the G̃-� plane. The local spectral
density satisfies Eq. (36). Note that each equation has its own mesh
that specifies the region of its applicability.

rity strength, this result is multiplied by tanh4(|x|/ξ + X0)
at negative energies, while for positive energies the impu-
rity influence is not visible in the leading-order result [see
Eqs. (48) and (49)]. In the strong coupling regime (G̃ � 1),
the oscillations in n(x, ω) are observable also at low and high
energies [see Eq. (53)]. The effects of thermal fluctuations
in the local spectral density at low temperatures are taken
into account through the multiplicative factor coth(h̄ω/2T ).
Note that by increasing the interaction strength between the
bosons, the power-law exponents of the frequency dependence
of the local spectral density in the bulk and in the vicinity of
an impurity with infinitely strong positive coupling constant
become different at low energies [54].
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APPENDIX A: LOW-FREQUENCY DEPENDENCE
OF n(x, ω)

In this Appendix we provide the calculation of the local
spectral density of interacting bosons in the thermodynamic
limit in a homogeneous system (i.e., G = 0) using the
quadratic Luttinger liquid theory [65]. The results are valid
for an arbitrary interaction strength but are limited to low
energies. Note that for bosons with contact interaction, the
Luttinger liquid parameter satisfies K � 1.

We start by expressing the single-particle operator as
�̂†(x, t ) = √

n̂(x, t )eiθ̂ (x,t ). Then the time-ordered correlation
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function can be written as〈
T

[
�̂(x, t )�̂†(x, 0)

]〉 ≈ n0
〈
T e−iθ̂ (x,t )eiθ̂ (x,0)

〉
(A1)

= n0e−F (t )/2. (A2)

Here we have approximated n̂ by the mean density n0, since
the phase fluctuations give the dominant contribution to the
correlation function at long times. At finite temperatures, the
correlation function (A2) takes the form [64]

F (t ) = 1

2K
ln

{
− v2h̄2

π2�2T 2
sinh2

[πT

h̄v
(v|t | − iε)

]}
(A3)

for v|t | � �. Here we implicitly assume the limit ε → 0+.
We have introduced the smooth cutoff e−�|k|/h̄ in the momen-
tum k space. It can be estimated as �−1 ≈ μ/h̄v, such that
only the linear part of the excitation spectrum is taken into
account. Here v denotes the sound velocity. The time-ordered
correlation function at zero temperature simplifies to

F (t ) = 1

2K
ln

[−(v|t | − iε)2

�2

]
. (A4)

Now we can evaluate the local spectral density given by
Eq. (1). The correlation function is

〈
T

[
�̂(x, t )�̂†(x, 0)

]〉 = n0

(
�

v|t |
)1/2K

e−iπ/4K (A5)

in the leading order at zero temperature. After performing the
Fourier transform with respect to time we get

n(ω) = n0
�(1 − 1/2K )

π

( |ω|�
v

)1/2K 1

|ω| sin
( π

2K

)
, (A6)

where �(x) denotes the Gamma function. We assume K >

1/2, as well as that K is finite. In the limit of weakly inter-
acting bosons K = π/

√
γ � 1, the expression (A6) becomes

n(ω) = n0

√
γ

2π |ω| . (A7)

This result coincides with the low-energy limit h̄|ω| � gn0

of
√

γ h̄
g Ihom(ωh̄/gn0), where Ihom is given by Eq. (37). Next

we consider influence of thermal fluctuations. The correlation
function reads

〈
T

[
�̂(x, t )�†(x, 0)

]〉 = n0

(
π�T

h̄v sinh (πT |t |/h̄)

)1/2K

e−iπ/4K .

(A8)

We evaluate the local spectral density to be

n(ω) = h̄n0

π2T

(
2π�T

h̄v

)1/2K

�

(
1 − 1

2K

)
cos

( π

4K

)

× Re

[
�( 1

4K − i h̄ω
2πT )

�(1 − i h̄ω
2πT − 1

4K )

]
. (A9)

In the limit of weakly interacting bosons K � 1, this expres-
sion simplifies to

n(ω) = √
γ

n0

2πω
coth

(
h̄ω

2T

)
. (A10)

This is the limit of
√

γ h̄
g Ihom(ωh̄/gn0) for h̄|ω| � gn0

[cf. Eq. (37)]. For h̄|ω| � T , Eq. (A9) simplifies to n(ω) =

√
γ n0T

π h̄ω2 . In the opposite case, for h̄|ω| � T , we recover the
zero-temperature result (A7). We note that the particle-hole
symmetry that characterizes the Luttinger liquid theory is
reflected in the fact that the local spectral density is an even
function of ω.

Let us return to the correlation function (A1) and compare
the approach of this Appendix with the one in the main text.
We are now interested in weakly interacting bosons only, i.e.,
γ � 1. In the case of the finite system size L, the correlation
function F (t ) in Eq. (A2) saturates into a finite small constant
for long times |t | � L/v provided the system size is smaller
than the phase coherence length L � 
φ . Thus the phase fluc-
tuations are always small F (t ) � 1. This implies the existence
of the condensate. We can thus expand the exponential in
Eq. (A2) and perform the Fourier transform. We obtain the
2n0δ(ω) term in Eq. (36) from the leading-order term. The
next-order term ∼√

γ is determined by the Fourier transform
of F (t ). To evaluate it at low nonzero frequency we can use
(A3), which is valid for h̄/μ � |t | � L/v, leading to the low-
frequency limit of the finite-frequency dependence in Eq. (36)
in the homogeneous case. At higher frequencies one has to
take into account nonlinearities of the quasiparticle spectrum
as well as the fluctuations of the density.

More generally, i.e., beyond the low-energy behavior that
we discussed above, as well as beyond the homogeneous case,
we can compare the two descriptions, the one in the main text
based on the expansion (4) and the one based on the phase-
density representation of the field operator. We point out that
the phase and the density can be related to the field operators
as [57,61]

ψ̂1(X, τ ) = δn̂(X, τ )

2ψ0(X )
− iψ0(X )θ̂1(X, τ ), (A11)

where the Hermitian operator γ 1/4μδn̂(X, τ )/g denotes the
leading-order correction to the mean-field density μψ2

0 (X )/g.
The phase is θ (Xξμ, τ h̄/μ) = γ 1/4θ̂1(X, τ ) + τ in the leading
order. We use the dimensionless position X and time τ defined
in Sec. II. The expression (A11) and its conjugate allow us to
express the phase and the density as a function of the field
operators and then using the results for ψ0 and ψ1 in the
main text obtain the expressions for n̂ and θ̂ at any impurity
coupling strength G.

At low energies one can use the Luttinger liquid description
for a system of bosons also in the presence of the boundaries
[54]. It was shown in Ref. [54] that the exponent of the
frequency in the local single-particle density of states in the
vicinity of the boundary (or an infinitely repulsive impurity)
differs from the bulk one that we have discussed above. The
exponent is given by −1 + 1/K at zero temperature [54].

APPENDIX B: HOMOGENEOUS SYSTEM: G̃ = 0

In the absence of the impurity, the results from Sec. III
simplify and one obtains ψhom

0 = 1,

uhom
k (X ) = 2 + i|k|

2
eikX

(
1 + k2

2εk

)
, (B1)

vhom
k (X ) = 2 + i|k|

2
eikX

(
1 − k2

2εk

)
. (B2)
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APPENDIX C: LOW-ENERGY LIMIT

In this Appendix we provide expressions for the functions
uk and vk at small |k| � 1, which follow from the results
obtained in Sec. III. The coefficients become t = −1, r = 0,
and re = ike−2X0/2 to leading order. The functions read

uk (X ) = 1
2 sech2(|X | + X0){eikX [sinh(2|X | + 2X0)

− i sgn(X )] + i sgn(X )} (C1)

and

vk (X ) = 1
2 sech2(|X | + X0){eikX [sinh(2|X | + 2X0)

+ i sgn(X )] − i sgn(X )} (C2)

for small positive k � 1 and arbitrary X . For negative k, we
easily obtain the expressions by using the relation

uk (X ) = u−k (−X ) (C3)

explained in Sec. III. The same property holds for vk (X ). Note
that the functions (C1) and (C2) are continuous function of X ,
as has to be the case (see Sec. III).

APPENDIX D: LARGE COUPLING G̃ � 1 AND LOW
ENERGY h̄|ω| � μ

In this Appendix we consider the limit of low energy and
large positive G̃ such that G̃−1 ∼ |k| � 1. We evaluate to
leading order

uk (X ) = sech(X )2

2(i + G̃k)
{−1 + eikX [1 + i sinh(2X )]} (D1)

for small positive k � 1 and X > 0, while for X < 0 we get

uk (X ) = − eikX tanh(X ) + i
sech2(X )

2
eikX

+ sech2(X )

2(i + G̃k)
{−G̃ke−ikX [sinh(2X ) + i] + 1}.

(D2)

For small positive k � 1 and X > 0, the function vk (X ) reads

vk (X ) = sech(X )2

2(i + G̃k)
{1 + eikX [−1 + i sinh(2X )]}, (D3)

while for X < 0 it has the form

vk (X ) = − eikX tanh(X ) + sech2(X )

2(i + G̃k)
{−i(i + G̃k)eikX

+ G̃ke−ikX [− sinh(2X ) + i] − 1}. (D4)

APPENDIX E: HIGH-ENERGY LIMIT h̄|ω| � μ

We obtain

uk (X ) = ikeikX (E1)

and

vk (X ) = ieikX

k
tanh2(|X | + X0) (E2)

for k � 1.

APPENDIX F: LARGE COUPLING G̃ � 1 AND
HIGH-ENERGY LIMIT h̄|ω| � μ

We evaluate uk for large positive k ∼ G̃ and X < 0 to be

uk (X ) = G̃k

k + iG̃
e−ikx + ikeikx, (F1)

and for X > 0 it reads

uk (X ) = k2eikx

G̃ − ik
(F2)

to leading order. We evaluate also

vk (X ) = eikX

G̃ − ik
tanh2(X ) (F3)

for X > 0, while for X < 0 it takes the form

vk (X ) = −2G̃ sin(kX ) + keikX

k(G̃ − ik)
tanh2(X ) (F4)

to leading order.

APPENDIX G: INFINITELY STRONG IMPURITY
COUPLING CONSTANT G̃ = ∞

Here we consider the case of G̃ = ∞. The condensate wave
function takes the form

ψ0(X ) = tanh |X |, (G1)

and for X � 0 and k < 0 [35] we find

uk (X ) = k

[
1 + k2 + 2 cosh−2 X

2εk

]
sin(kX )

+ 2

[
1 + k2

2εk

]
cos(kX ) tanh X, (G2)

vk (X ) = k

[
1 − k2 + 2 cosh−2 X

2εk

]
sin(kX )

+ 2

[
1 − k2

2εk

]
cos(kX ) tanh X. (G3)

For X � 0 and k > 0 the functions uk and vk vanish.
The impurity imposes a vanishing transmission coefficient,
thus leading to t = te = re = 0 and r = 1 in Eq. (19) [see
Eqs. (25)–(27)]. One easily calculates the functions uk (X ) and
vk (X ) for negative X using the property (C3) and the above
solutions (G2) and (G3).

APPENDIX H: WEAK COUPLING |G̃| � 1

In this Appendix we consider the effects of a weakly
coupled impurity |G̃| � 1. Here we provide expressions for
uk and vk obtained using the results from Sec. III. In the
limit of interest, one should replace η = 1 − G̃/2 + O(G̃2) in
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the coefficients given by Eqs. (25)–(27). For dimensionless
coordinate X � 0 and momentum k > 0 we obtain

uk (X ) = uhom
k (X ) + G̃

2(k + 2i)(k2 + 2)
[−eikX kq(k + q)

+ e−2X+ikX (k2 + 2)(k + q − 2i)

+ 2e−qX (k − q)] (H1)

in the first order in G̃. Here q = √
4 + k2, while uhom

k (X )
denotes the solution (B1) obtained in the homogeneous case
(i.e., the case G̃ = 0). For X � 0 and k > 0,

uk (X ) = uhom
k (X ) − G̃

2(k + 2i)(k2 + 2)
[−e−ikX kq(k + q)

+ e2X+ikX (k2 + 2)(k + q + 2i) + 2eqX (k − q)].

(H2)

For negative k values we easily obtain uk and vk by using
the relation (C3) and Eqs. (H1) and (H2). The same prop-
erty holds for vk (X ). As expected, in the presence of an
impurity we have |uk (X )| �= |u−k (X )| due to scattering of the
quasiparticles at the impurity. Next we evaluate the func-

tions describing holelike excitations. For X � 0 and k > 0
they read

vk (X ) = vhom
k (X ) + G̃

2(k + 2i)(k2 + 2)
[−eikX kq(q − k)

+ e−2X+ikX (k2 + 2)(k − q − 2i)

+ 2e−qX (k + q)]. (H3)

Here vhom
k (X ) stands for the solution in the absence of the

impurity (H2). For X � 0 and k > 0 we obtain

vk (X ) = vhom
k (X ) − G̃

2(k + 2i)(k2 + 2)
[−e−ikX kq(q − k)

+ e2X+ikX (k2 + 2)(k − q + 2i) + 2eqX (k + q)].

(H4)

Notice that the expressions (H3) and (H4) for vk (X ) can
be obtained from the expressions (H1) and (H2) for uk (X )
after replacing q by −q everywhere, except in the exponential
e−q|X |. This explains the difference between the positive and
the negative frequency dependence in Eq. (56) given by the
exponential exp(−2|�X |/k�).
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