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Breathing dynamics of the few-body Bose polaron in a species-selective harmonic trap
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We perform an extensive numerical study on the breathing dynamics of a few-body Bose polaron setup in a
one-dimensional species-selective harmonic trap. The dynamics is triggered by a quench of the impurity trap.
The excitation of the background majority atoms is mediated via the majority-impurity interaction. The breathing
spectrum is obtained for different numbers of majority particles, several values of the majority-component
interaction strengths, and trap ratios. It is further compared to the breathing spectrum of a particle-balanced
few-body Bose-Bose mixture. In particular, for equal postquench traps the employed protocol allows to couple
states of different center-of-mass parity in contrast to species-symmetric trap quenches. Among the participating
eigenstates we identify one having odd center-of-mass parity and even global parity. The breathing frequency
induced by this state is a monotonically decreasing function of the coupling parameter. Importantly, in order
to be numerically observable, it requires the entanglement between the species to be taken into account.
We demonstrate this by comparing the numerically exact results obtained by means of the multilayer mul-
ticonfiguration time-dependent Hartree method for mixtures to the ones of a species mean-field ansatz. The
entanglement-sensitive breathing frequency persists also for unequal postquench traps where the center of mass
cannot be decoupled. Finally, we analyze the impact of global parity symmetry on the breathing dynamics by
initializing a state of odd global parity. We evidence a striking resemblance to the breathing spectrum of the
ground state, but find also some additional modes.
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I. INTRODUCTION

The polaron concept was introduced quite some time ago
by Landau and Pekar [1,2] to describe the motion of an
electron in a crystalline material. The notion of an emerg-
ing quasiparticle dressed by low-energy excitations of the
underlying medium has vastly expanded since its foundation
finding broad applications in different areas of physics such as
organic semiconductors, polymers, nanowires, quantum dots,
and high-temperature superconductors [3–5]. Since the advent
of ultracold gases [6,7], a promising experimental platform
has emerged allowing to investigate fundamental many-body
quantum processes [8] with an exquisite tunability of the
underlying interactions and trapping geometries. In particular,
the ability to combine different species [9] and the precise
control over the number of particles [10] made it possible to
experimentally prepare an impurity in a many-body environ-
ment of bosons [11–16] or fermions [17–21], leading to what
is nowadays termed Bose [22] and Fermi polaron [23,24], re-
spectively. A mapping to the Fröhlich Hamiltonian [25] for the
polaron problem can be established while all the Hamiltonian
parameters can be addressed individually. The tunability of
interactions via Feshbach resonances [26,27] provides access
to highly correlated and entangled regimes challenging the
theorists to go beyond the weak coupling Fröhlich paradigm
[28–34].
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The correlations are in particular enhanced in quasi-
one-dimensional (1D) systems [35]. A comparatively tight
transverse confinement freezes the perpendicular motion of
particles and additionally affects the effective 1D interac-
tions known as confinement-induced resonances [36–38]. A
prominent example of a strongly correlated 1D system is
the Tonks-Girardeau gas [39–41]. In contrast to higher di-
mensions, where a lower particle density implies weaker
correlations, in 1D lower densities lead to stronger interac-
tions. It makes the study of low-density few-body systems of
particular interest triggering significant research efforts [42].
At the same time, this represents a great challenge requiring
sophisticated numerical techniques able to account for all the
relevant correlations [43] when characterizing the static prop-
erties or the many-body dynamics, such as the density matrix
renormalization group (DMRG) [44] or the multilayer multi-
configuration time-dependent Hartree method for bosons and
fermions (ML-MCTDHX) [45]. In species-selective trapping
geometries [12,46,47] the inhomogeneity of the medium and
the localization length of the impurity impact significantly the
degree of correlations [48–50] opening interesting perspec-
tives but requiring also new approaches since the translation
symmetry is broken making the well-established technique,
the Lee-Low-Pines transformation [51], inapplicable.

In this work, we investigate the low-energy excitations of
a few-body Bose polaron trapped harmonically in one spatial
dimension. Elementary excitations [52,53] are of fundamental
importance to understand the dynamical response of a physi-
cal system subject to a weak perturbation in terms of excited
eigenstates and respective eigenenergies. Here, we focus on
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the so-called quantum breathing modes. They are charac-
terized by an oscillatory compression and expansion of the
one-body density reminiscent of a respiratory movement. On
account of their strong sensitivity to the system’s parameters
such as interactions, trap geometry, and spin statistics, they
have been established as a reliable diagnostic tool to access
the ground-state properties of a system [54], for precision
measurements of the scattering lengths [55] and even as a
sensitive test of the equation of state at unitarity [56].

A number of experiments have observed the breathing
motion of harmonically or lattice trapped Bose-Einstein con-
densates (BEC) [55,57–62] and mixtures of bosons and/or
fermions [12,17,63–65]. The single-component breathing is
theoretically well understood in the many-body case for
contact [66–69], power-law [70–72], and dipolar [73] in-
teractions. In a 1D harmonic trap of frequency ω at zero
temperature, one has identified two breathing modes: (i)
center-of-mass breathing of constant frequency �c.m. = 2ω

and (ii) interaction-sensitive relative motion mode starting at
�rel = 2ω for an ideal gas (BEC regime), dropping to �rel =√

3ω at weak repulsive interactions (mean-field Thomas-
Fermi regime) and finally saturating back to �rel = 2ω in
the limit of strong interactions (Tonks-Girardeau regime). The
frequency values at intermediate interactions are well approx-
imated via a sum-rule approach [66,67,74–76] and the overall
frequency curve features a single minimum between the BEC
and TG limits. The curvature in-between those limits and the
exact minimum location are quite sensitive to the number of
particles and beyond-mean-field effects are often indispens-
able for a correct quantitative description [77–82].

The breathing dynamics turns out to be even richer for a
multicomponent mixture of bosons [83–89], fermions [17,76],
and combination of the two [90–93]. Theoretically, up to
four breathing frequencies can be extracted from the density
width oscillations of both components depending on the in-
terplay between interactions and particle-number imbalance:
breathing of the center of mass, the relative motion for each
component, and the relative intercomponent motion owing to
the particles’ distinguishability. The frequencies of the three
relative modes behave in a similar fashion as the frequency of
the relative mode encountered in the single-component case.
To the best of our knowledge, both components have been
considered to be equally trapped, allowing for a separation
of the center-of-mass motion. In our work, we make use
of species-selective trapping potentials to find out (i) how
initially different traps would affect the breathing behavior
in combination with (ii) how compressing the trap of only
one component, the impurity, would impact the breathing
motion of the second component, the majority, depending
on the intercomponent coupling. For different system pa-
rameters, we classify the breathing modes according to their
relative amplitude in the Fourier power spectrum obtained
by applying a compressed sensing (CS) [94] algorithm to
breathing observables evaluated via ML-MCTDHX. Further-
more, we study the role of intercomponent entanglement
and parity symmetries on the breathing response. We iden-
tify an entanglement-sensitive mode whose frequency is a
monotonically decreasing function of the majority-impurity
interaction.

FIG. 1. The impurity (species B indicated by a red circle with
a vertically dashed filling) in a harmonic trap of frequency ωB (red
thin solid line) is immersed in a cloud of majority atoms (species A
indicated by a blue blurred ellipse) subject to a different parabolic
confinement of frequency ωA (blue broad solid line). The breathing
dynamics is initiated by quenching the trap of the impurity (red
dashed line) inducing thereby excitations (orange waves) in the com-
posite system via the majority-impurity interaction.

This work is structured as follows. In Sec. II we intro-
duce our setup and Hamiltonian. The numerical approach
is discussed in Sec. III A. We use ML-MCTDHX for state
initialization, subsequent dynamics, and evaluation of breath-
ing observables. The oscillation frequencies are extracted by
means of a CS algorithm outlined in Sec. III B. The results
presented in Sec. IV are categorized in four subtopics: an
overview of breathing modes in a particle-balanced few-body
Bose-Bose mixture [88] (Sec. IV A) for later reference, the
breathing spectra in the current Bose polaron setup for dif-
ferent majority-component interactions and particle-number
ratio (Sec. IV B), the impact of impurity localization length
(Sec. IV C), and, finally, the role of global parity symmetry
for the breathing response (Sec. IV D). In Sec. V we provide
a summary and draw conclusions in Sec. VI.

II. SETUP AND HAMILTONIAN

We consider a few-body mixture of two bosonic compo-
nents (see Fig. 1). A component σ ∈ {A, B} contains Nσ parti-
cles of mass mσ , which experience a quasi-one-dimensional
parabolic confinement with trap frequency ωσ and interact
internally via contact pseudointeraction of strength gσ . The
components are coupled via an interspecies contact interac-
tion of strength gAB. We assume equal masses and introduce
harmonic units of component A as our natural units, i.e.,
lA = √

h̄/mωA for length, h̄ωA for energy and 1/ωA for time.
The corresponding Hamiltonian reads as follows:

H = HA + HB + HAB

=
NA∑
i=1

(
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∂2

∂x2
i

+ 1

2
x2

i

)
+ gA
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NA∑
i=1

NB∑
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δ(xi − y j ), (1)
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where xi (yi) denotes the position of the ith particle in the A
(B) component.

The A component is referred to as the majority species.
It has NA ∈ {5, 10} particles. The B component consists of
a single particle, NB = 1, and we call it the impurity. The
majority component is either noninteracting (gA = 0) or fea-
tures a weakly attractive or repulsive interaction (gA = ±0.5).
The majority-impurity coupling covers values from weakly at-
tractive to intermediate repulsive gAB ∈ [−0.5, 2.0]. The trap
ratio covers cases of equal traps (η = 1), a “broad” impurity
(η = 0.51) and a “narrow” impurity (η = 4). The weak-
to-intermediate interaction regimes considered here cover
most of ground-state density configurations encountered in
bosonic mixtures including miscible phase, core-shell sepa-
ration [49,88,95,96], and composite fermionization [97,98].
The strongly correlated regimes such as full fermionization
or the spin-chain configurations [99,100] are computationally
challenging and require a fundamentally different treatment
than the one employed in this work.

The Hamiltonian (1) possesses a global reflection sym-
metry, corresponding to a map xi �→ −xi and y j �→ −y j for
all i, j. It implies that the energy eigenstates can be chosen
to have a definite global parity, i.e., to be eigenstates of the
above operation with eigenvalues +1 (even) or −1 (odd).
An eigenstate can be thus classified as being of even or odd
global parity. We prepare our system either in the ground state
(even global parity in Secs. IV B and IV C) or in the first
excited state (odd global parity in Sec. IV D) at η0 = 1.05η of
Eq. (1), the prequench Hamiltonian. To initiate the breathing
dynamics we slightly relax the trap of the impurity from η0 to
η and propagate the state with this postquench Hamiltonian.
The majority species is set in breathing motion indirectly via
the coupling to the impurity. Importantly, the two global parity
subspaces are not coupled by the trap quench. Thus, an initial
state of definite global parity will remain in the corresponding
subspace. We can thus investigate the role of global parity on
the breathing response.

The breathing motion can be monitored in the one-body
densities ρσ

1 (z, t ) as their widths expand and contract pe-
riodically in time. Alternatively, one can analyze the time
evolution of the corresponding breathing observables 〈Ô〉t
with Ô = ∑

i x̂2
i for the majority species and Ô = ŷ2 for the

impurity. The reason for equivalence is that the one-body
density width, denoted as 	z, can be evaluated via 〈	z〉2 =
〈z2〉 − 〈z〉2. For an initial state of a definite global parity we
have a reflection-symmetric one-body density which yields
〈z〉 = 0. The oscillatory motion is usually composed of multi-
ple contributions with amplitudes dn and distinct frequencies
�n, i.e., 〈Ô〉t = ∑

n dne−i�nt . Each of the oscillatory con-
tributions in 〈Ô〉t will be referred to as a breathing mode
characterized by a distinct frequency. The origin of the breath-
ing modes can be expressed in terms of system’s eigenstates
and related eigenenergies as follows. Upon a quench, several
eigenstates |ψn〉 of the postquench Hamiltonian H with en-
ergy En become populated depending on the overlap cn with
the initial state |�(t0)〉, i.e., cn = 〈ψn|�(t0)〉. The time sig-
nal 〈Ô〉t = ∑

n,m c∗
mcn 〈ψm| Ô |ψn〉 e−i�n,mt oscillates with fre-

quencies �n,m = En − Em for populated eigenstates cncm 	= 0
as long as the transition matrix elements 〈ψn|Ô|ψm〉 = Onm

are nonzero. Given a weak perturbation, we expect the lowest-

energy eigenstate of even (odd) global parity |ψref〉 to have
the largest overlap with the even (odd) global parity initial
state |�(t0)〉, i.e., |c0|2 ≈ 1. For that reason, the major part
of frequencies contained in the breathing observable 〈Ô〉t
are energy gaps between any of the populated eigenstates
and the reference eigenstate, i.e., �n = En − Eref . Oscillations
among any different combination of eigenstates are of minor
amplitude, so we do not focus on them by setting a suitable
amplitude threshold. For convenience, when we refer to an
eigenstate of a breathing mode we mean the eigenstate respon-
sible for this mode while the reference state |Eref〉 is usually
clear within the context, unless we state otherwise. In case of
“degenerate” energy gaps, i.e., equal energy gaps stemming
from different eigenstate pairs, we do not differentiate which
pairs actually contribute.

Finally, we would like to emphasize some fine sub-
tleties between the species-asymmetric trap quench protocol
employed in this work and the center-of-mass (c.m.) degree
of freedom. First, for η 	= 1 the c.m. coordinate cannot be
decoupled by any linear transformation. This is an impor-
tant difference to species-symmetric traps at η = 1 where
the c.m. coordinate provides an exact quantum number of
the “free” c.m. harmonic oscillator. This becomes evident
after employing a linear transformation to a set of Jacobi
coordinates adapted to the Bose polaron problem, namely, rel-
ative coordinates of the majority species r j = 1

j

∑ j
i xi − x j+1

for j ∈ {1, . . . , NA − 1}, the global center of mass Rc.m. =
1

(NA+1) (
∑NA

i xi + y), and the relative coordinate characterizing
the distance between the impurity and center of mass of the
majority RAB = ( 1

NA

∑NA
i xi ) − y. Using this representation,

the Rc.m. degree of freedom decouples from the relative coor-
dinates r j and RAB such that H = Hc.m. + Hrel , where Hc.m. is
a quantum harmonic oscillator of mass NA + 1 and frequency
ω = 1, while Hrel is symmetric under the map r j �→ −r j and
RAB �→ −RAB. In this alternative relative-frame representation
the Hamiltonian features a center-of-mass reflection symme-
try, corresponding to a reflection operation Rc.m. �→ −Rc.m.. It
implies that eigenstates can be chosen to have a definite c.m.
parity, i.e., to be eigenstates of this operation with eigenvalues
±1. We note that it is not equivalent to a global reflection
symmetry since the latter applies additionally r j �→ −r j and
RAB �→ −RAB. In particular, an eigenstate may feature an even
global parity, but be of odd c.m. parity and odd relative parity.

Second, we discuss several cases with the postquench
Hamiltonian at η = 1, i.e., the corresponding eigenstates |ψn〉
have a definite c.m. harmonic oscillator quantum number. The
initial state, on the other hand, is the ground state of the pre-
quench Hamiltonian at η0 = 1.05, i.e., it does not have such
symmetry. Within the linear response regime, it can be shown
that the occupation cn of the eigenstate |ψn〉 is proportional
to transition element 〈ψn|y2|ψ0〉 induced by the impurity trap
quench operator. In particular, as y2 is composed of a coupling
term ∝Rc.m.RAB, it is allowed for the initial state to be in a
superposition of postquench eigenstates with different c.m.
parity.

III. COMPUTATIONAL APPROACH AND ANALYSIS

In this work we use the multilayer multiconfiguration time-
dependent Hartree method for mixtures to initialize a system
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in its ground state by means of relaxation, i.e., propagation
in imaginary time, for the state evolution following a trap
quench of the impurity and to evaluate the expectation values
of breathing observables for each species as a function of
time. We outline the major idea of the method in Sec. III A
along with the wave-function ansatz for the system at hand.
We then apply a compressed sensing algorithm to retain the
frequencies from breathing observables. In view of the fact
that CS relies on the sparsity condition in the Fourier space, it
is not used as a standard tool for frequency extraction from a
time signal. In Sec. III B we discuss advantages of this method
in the current application as compared to a straightforward
Fourier transformation. In order to be self-contained, we also
provide the implementation details.

A. ML-MCTDHX

To prepare the initial state |�(t0)〉 and to perform the
subsequent time evolution |�(t )〉 = e−iHt |�(t0)〉 with the
time-independent Hamiltonian H from Eq. (1) we employ the
multilayer multiconfiguration time-dependent Hartree method
for mixtures of indistinguishable particles, for short, ML-X
[45,101,102]. The core idea behind ML-X is to expand the
many-body wave function in a properly symmetrized product
state basis, the so-called Fock states, such that the underlying
single-particle functions (SPFs) are time dependent. These
are variationally optimized during the time evolution to pro-
vide a more “compact” description compared to Fock states
composed of time-independent SPFs. Compact means that in
general much less SPFs are required reducing thus the Fock
space dimension while retaining a similar degree of accuracy.

As the system evolves, the many-body state travels through
different subspaces of the complete Hilbert space. If the Fock
basis is fixed, in general a large set of SPFs is required to
cover all the relevant subspaces. Many configurations become
“actively” populated during the time evolution, though not
necessarily all of them at the same time with a fraction stay-
ing or becoming inactive. Even when all of Fock states are
populated, we may rotate the basis by choosing a different
set of SPFs until, eventually, we end up with a more compact
representation. Given a truncated Fock space, ML-X rotates
the basis vectors such as to find the best possible representa-
tion of the exact many-body state at each instant of time. In
other words, it looks for the current “active” subspace. Once
the truncated variationally evolving Fock space becomes large
enough to contain the (major part of) “active” subspace, the
representation of |�(t )〉 given by ML-X is considered optimal.

The underlying wave-function ansatz for the Bose polaron
problem belonging to Eq. (1) is expanded in two layers (mul-
tilayer):

|�(t )〉 =
S∑

i=1

√
λi(t )

∣∣�A
i (t )

〉 ⊗ ∣∣�B
i (t )

〉
, (2)

∣∣�σ
i (t )

〉 =
∑
nσ |Nσ

Ci,nσ (t ) |nσ (t )〉 . (3)

In the first step [see Eq. (2)], the majority and impurity de-
grees of freedom xi and y, respectively, are separated and
assigned to S ∈ N time-dependent species wave functions

|�σ
i (t )〉. The sum of product form is very convenient as it

makes evident the entanglement between the two compo-
nents. In particular, we use the von Neumann entropy given
by SvN = −∑

i λi ln(λi) to quantify the degree of entan-
glement. The time-dependent weights λi(t ) are normalized∑S

i λi(t ) = 1 and sorted in descending order. A composite
system with λ1(t ) ≈ 1 is considered disentangled. Assuming
S = 1 in the expansion is called a species mean-field (SMF)
approximation. In the second step [see Eq. (3)], every species
wave function belonging to component σ is expanded in
the Fock-state basis |nσ (t )〉 with time-dependent coefficients
Ci,nσ (t ). The time dependence of number states is meant im-
plicitly through the time dependence of sσ ∈ N underlying
SPFs ϕσ

j (t ) which are represented using a harmonic discrete
variable representation (DVR) [103,104]. The DVR is an
orthonormal set of eigenfunctions of the position operator,
represented by a finite analytical orthonormal basis, called
DVR basis. The DVR functions act like a delta function within
the finite space and provide analytical expressions for matrix
representation of kinetic and position operators making their
evaluation very efficient. The notation nσ |Nσ denotes particle-
number conservation, i.e.,

∑sσ

i nσ
i = Nσ . Finally, by applying

the Dirac-Frenkel variational principle [105] the equations of
motion for λi, Ci,nσ , and ϕσ

j are obtained. The convergence
of ML-X is controlled via S, sσ , and the number of DVR
grid points. We use S = sσ = 8 for NA = 5 and S = sσ = 6
for NA = 10. The DVR grid spans an interval [−6, 6] and we
choose 151 DVR grid points.

B. Compressed sensing analysis

In this work, we aim to extract frequencies �n,m = En −
Em of system’s excitations where En denotes the eigenenergy
of the nth eigenvector |ψn〉 of H . Any physical observ-
able Ô carries information about excited eigenstates 〈Ô〉t =∑

n,m c∗
mcn 〈ψm| Ô |ψn〉 e−i�n,mt , as long as the transition ma-

trix elements 〈ψm| Ô |ψn〉 are nonzero and the corresponding
eigenstates are initially populated cncm 	= 0 where cn =
〈ψn|�(t0)〉. We perform a sampling of breathing observables
with a uniform rate 	t over an interval [0, T ] containing
T/	t + 1 = Nt points. It gives us a finite time signal f ∈ RNt

with components f j of discrete variable t j ∈ R, i.e., f j =
f (t j ) = f (	t j) with integer index j ∈ [0, Nt − 1] ⊂ N0.

A straightforward way to retain the frequencies contained
in f is to perform a discrete Fourier transformation (DFT),
expressed as a linear map Af = g with a square matrix A ∈
CNt ×Nt and signal’s representation in the frequency domain
g ∈ CNt . The latter is characterized by frequency spacing
	ω and cutoff frequency ωcut, i.e., it has components g j =
g(ω j ) = g(	ω j) of discrete variable ω j ∈ R and for odd
(even) Nω = Nt number of points spans an open (closed) in-
terval with end points −ωcut/2 and ωcut/2.

The sampling parameters of time and frequency domain
are interrelated. Thus, the sampling time T determines the
frequency spacing 	ω = 2π/T , while the sampling rate 	t
determines the Nyquist frequency ωcut = π/	t . In princi-
ple, frequencies can be retained with arbitrary resolution, if
sampled long enough, while highly oscillatory components
require a finer sampling rate. In practice, there are technical
limitations such as generation, storage, and processing of

043304-4



BREATHING DYNAMICS OF THE FEW-BODY BOSE … PHYSICAL REVIEW A 105, 043304 (2022)

data. Given a complex system such as ours, data generation
becomes a time-consuming factor, making a good resolution
in frequency domain out of reach.

In order to overcome this obstacle, some prior informa-
tion about signal’s properties might become useful. Since the
system is perturbed weakly, we expect only the low-energy
excitations to be of relevance for the underlying dynamics. In
particular, we expect g to be sparse with major components
located in the low-frequency region.

With this prior knowledge, compressed sensing (CS) al-
lows to retain the frequencies with a very high resolution
while keeping the simulation time with ML-X reasonably
small. To this end, we formulate our problem as finding the
vector g satisfying the inverse DFT condition, i.e., f = A†g.
However, A† ∈ CNt ×Nw is now a rectangular matrix with
Nw � Nt and g ∈ CNω resulting in an underdetermined sys-
tem of equations. Here, A† is a submatrix of the inverse square
DFT matrix A† ∈ CNω×Nω , with the last Nω − Nt rows being
removed. Importantly, the number of columns Nω and thus
the frequency spacing 	ω can be chosen independently of
the simulation time T . Intuitively, this implies that g has been
generated by a signal extended over a larger region T ′ > T
than the current one f , though the information contained be-
yond T is considered redundant given the priors underlying
the evolution.

In order to find a sparse solution to a linear ill-posed inverse
problem, we formulate it as �1-norm penalized least-squares
minimization task known as basis pursuit denoising (BPDN)
[106]:

min
g

1
2‖f − A†g‖2

2 + λ‖g‖1, (4)

where ‖x‖p = (
∑

i |xi|p)1/p while the penalty term λ � 0
controls the tradeoff between the sparsity of the solution
and the constraint violation in the presence of noisy signal
f . We use the least-angle regression (LARS) [107] mini-
mization algorithm to solve Eq. (4) and perform a mean
normalization of the signal f → f̃ = (f − f )/‖f‖1 before-
hand. The employed implementation requires real inputs in
Eq. (4). Real f implies Hermitian g and we use this sym-
metry to reformulate g as a real vector: g → g̃ ∈ R2Nω =
( Re(g), Im(g)). Correspondingly, the inverse Fourier ma-
trix A† → M ∈ RNt ×2Nω = (C, D) is now composed of two
real submatrices C ∈ RNt ×Nω with components ci, j = cos(εi j)
and D ∈ RNt ×Nω with components di, j = sin(εi j) where ε =
	t	ω. The ML-X time-domain parameters are chosen as
T = 40 and 	t = 0.05, whereas the CS frequency-domain
parameters are ωcut = 20 and 	ω = 0.01.1 The only noise our
signal has is due to floating point numbers and we decide upon
the penalty parameter λ = 10−6 which displays great perfor-
mance in terms of accuracy and computation time, which has
been tested on a set of randomly generated signals composed
of ≈10–20 frequency components.

As input time signals f we use the expectation values of
breathing observables

∑
i x̂2

i for the majority species and ŷ2

for the impurity evaluated with respect to the dynamical state

1We remark that similar resolution with DFT can be obtained with
T ≈ 600.

|�(t )〉 obtained by ML-X. We apply the CS algorithm to ob-
tain the corresponding vector g̃. Then, we map g̃ back to g and
convert complex values into amplitudes, i.e., g j → |Re(g j ) +
Im(g j )|. The final vector we call a Fourier power spectrum and
label it as X 2(ω) for the majority component and Y 2(ω) for the
impurity. Finally, for a fixed set of physical parameter values
we construct an averaged power spectrum � = (X 2 + Y 2)/2.
An example is shown in Fig. 2. Each frequency is classified
as being of a majority type (red), an impurity type (blue), or
of a mixed type depending on the relative weights of X 2 and
Y 2 in �. These are encoded in subsequent figures (Figs. 7–
10 and 13) as a pie chart of two colors for each breathing
frequency. Additionally, we use the transparency to indicate
the magnitude of participating breathing modes relative to
the most relevant mode of amplitude max(�) = �max such
that faded colors imply less relevant modes. Frequencies with
a contribution below �max/10 are discarded. This amounts
to neglecting (i) low-amplitude oscillations among any two
eigenstates not involving the reference eigenstate with the
largest population, and (ii) numerically introduced “phantom”
peaks which are also of minor amplitude. While the amplitude
filtering allows us to focus only on major modes participating
in the breathing dynamics, it introduces discontinuities in the
subsequent figures (Figs. 7–10 and 13). Namely, it causes
some modes, usually of a faint color, to “randomly” appear
and disappear with increasing gAB. The reason is a fluctuation
in the population of eigenstates responsible for these modes
resulting in mode amplitude fluctuation around the chosen
threshold value.

A last remark is in order. Occasionally, the matrix M be-
comes ill conditioned. As a result, the algorithm produces a
nonunique solution. Whenever this happens, we obtain either
wrong frequencies or correct frequencies but with altered
amplitudes. Fortunately, as we monitor the frequency modes
continuously as a function of gAB we are able to differentiate
between the two cases. In the first case, we manually remove
all frequencies at given gAB, while in the second case we may
encounter isolated absent data points.

IV. RESULTS

First, in Sec. IV A we summarize results concerning the
breathing dynamics of a single particle, a single-component
condensate, two distinguishable particles, and a particle-
balanced few-body Bose-Bose mixture. This will provide us
with useful insights for the interpretation of breathing modes
unraveled in the Bose polaron setup being the subject of
Sec. IV B. In Sec. IV C we investigate the impact of the trap
ratio η on the breathing spectrum accounting for two cases: a
“broad” (η < 1) and a “narrow” (η > 1) impurity. Finally, in
Sec. IV D we study the breathing response of the first excited
state having odd global parity and contrast it to the response
of the ground state which is of even global parity.

In the following, when all interactions are zero we employ
a notation |n〉 = |n1, n2, . . .〉 to denote ni particles occupying
the ith orbital of a single-particle quantum harmonic oscil-
lator. It is not to be confused with permanents introduced
in Sec. III A where the orbitals are variationally optimal at
each time instant. We also drop the redundant zeros in the
vector tail once all the particles have been accounted for, i.e.,
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FIG. 2. Fourier power spectrum X 2(ω) (a) and Y 2(ω) (b) obtained by applying a compressed sensing algorithm to the expectation
values of the breathing observables 〈∑i x̂2

i 〉t and 〈ŷ2〉t (insets) evaluated with respect to a dynamical state |�(t )〉 obtained by the multilayer
multiconfiguration time-dependent Hartree method for mixtures. In the averaged power spectrum �(ω) (c) the dashed line indicates a threshold
magnitude and only frequencies above it are accounted for in Sec. IV (see text). The physical parameters are η = 1, NA = 5, NB = 1, gAB = 2.0,
gA = 0 (see Sec. II) and the compressing sensing parameters are T = 40, 	t = 0.1, ωcut = 20, and 	ω = 0.01 (see Sec. III B). All quantities
are given in harmonic units.

∑
i ni = N . The notation |nA〉 ⊗ |nB〉 denotes a product state

for the two components. Note that for unequal traps (η 	= 1)
the orbitals for each species are different.

For Figs. 7–10 and 13 we did a comparison to results ob-
tained from the ML-X method of lower dimension S = sσ = 6
(S = sσ = 4), for NA = 5 (NA = 10) particles. Instead of dis-
playing the corresponding plots of less converged simulations
we put together the most relevant findings for the reader to
keep in mind while reading Sec. IV. First, for the values of
corresponding frequencies, we evidenced small quantitative
discrepancies below ±0.02 (in harmonic units), being larger
for stronger couplings. Second, we observed that the trans-
parency of the modes (mode amplitude) as well as the ratio
of pie slices (species correspondence) for each point maintain
their overall qualitative behavior.

A. Few-body Bose-Bose mixture

The breathing mode frequency of a single particle confined
in a parabolic trap of frequency ω is known to be � = 2ω,
corresponding to an excitation by two energy quanta |0, 0, 1〉
with respect to the harmonic oscillator basis. An ensem-
ble of N noninteracting (g = 0) bosonic particles introduces
an additional eigenstate of the same excitation energy 2ω,
namely, a two-particle excitation |N − 2, 2〉 being degenerate
with |N − 1, 0, 1〉. For interacting particles, the degeneracy is
lifted. The frequency of one mode remains constant for any g
and relates to the c.m. breathing motion. The frequency of the
other mode is highly sensitive to a variation of g and charac-
terizes the relative motion of particles [77,108]. A mean-field
ansatz for the breathing dynamics, being a single-particle pic-
ture, is able to recover only the interaction-sensitive breathing
frequency, though with quantitative deviations as compared to
an exact solution, especially at sizable interactions.

1. 1 + 1 mixture

The Hamiltonian (1) can be solved analytically for NA = 1
and NB = 1 at η = 1. To this end, we perform a coordinate
transformation to the relative frame composed of the center
of mass R = (x + y)/2 and relative r = x − y coordinates. In

this frame, the two degrees of freedom decouple H = HR +
Hr .

The first term HR is a quantum harmonic oscillator of mass
mR = 2:

HR = − ∂2

4∂R2
+ R2. (5)

The solutions �k (R; mR) are the well-known Hermite func-
tions

�k (z; m) = 1√
2nn!

(m

π

)1/4
exp

(
−mz2

2

)
Hn(

√
mz) (6)

with m the particle mass and Hn the physicists’ Hermite poly-
nomials. The corresponding eigenenergies are εk = k + 1

2 .
The second term Hr is a quantum harmonic oscillator of

mass mr = 1
2 with a delta constraint:

Hr = − ∂2

∂r2
+ 1

4
r2 + gδ(r), (7)

where we substituted gAB → g to simplify the notation. The
solutions can be classified by parity:

φl (r) =
{

Dμ(g,l/2)(r), l even
�l (r; mr ), l odd.

(8)

The even parity states are the symmetrized parabolic cylinder
functions

Dμ(z) =
√

2μ exp

(
− z2

4

)
U

(
−1

2
μ,

1

2
,

1

2
z2

)
(9)

with U (a, b, z) denoting the Tricomi’s hypergeometric func-
tion and μ(g, l/2),2 being a real-valued quantum number
obtained by solving a transcendental equation

g = −2
3
2

�
( 1−μ

2

)
�

( − μ

2

) , (10)

which for a fixed g gives a ladder of solutions and l/2 refers to
the index number. The corresponding eigenenergies are εl =
μ(g, l/2) + 1

2 . The odd parity states vanish at r = 0 and thus

2l < μ(g, l/2) < l + 1 for 0 < g < ∞.
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MF instability

FIG. 3. Breathing mode frequencies (opaque lines) �k,l = Ek,l −
E0,0 [see Eq. (11)] of two distinguishable particles NA = 1 and
NB = 1 as a function of the coupling gAB ≡ g at equal trapping
frequency ratio η = 1. Population amplitudes (transparent lines) ck,l

[see Eq. (13)] of eigenstates |ψk,l〉 upon quenching the ground
state |E0〉η0

from η0 = 1.05 to η = 1. Crosses stand for frequencies
extracted from a laboratory frame mean-field ansatz. Inset: repre-
sentative example of dynamical symmetry breaking in the one-body
densities ρ1(x, t ) (left) and ρ1(y, t ) (right) at 2.5 < g < 6.5 occurring
for a mean-field ansatz. All quantities are given in harmonic units.

do not experience the delta barrier. They are the odd parity
Hermite functions �l (r; mr ) of mass mr and eigenenergy εl =
l + 1

2 .
The two-body eigenstate becomes a product state

ψk,l (R, r) = �k (R; mR)φl (r) with total energy:

Ek,l =
{

k + μ(g, l/2) + 1, l even
k + l + 1, l odd.

(11)

Having analytical expressions for the eigenstates, we proceed
with the breathing dynamics induced by releasing the trap
of the second particle slightly from η0 = 1.05 to η = 1. The
time evolution of the prequench ground state |E0〉η0

can be
expressed in terms of postquench eigenstates |ψk,l〉:

|E0〉η0
=

∑
k,l

ck,l e
−iEk,l t |ψk,l〉 . (12)

To find the occupancy of eigenstates ck,l = 〈ψk,l |E0〉η0
we

perform first-order perturbation theory for the ground state:

ck,l = 	η
〈ψk,l |y2|ψ0,0〉

�k,l
, (13)

with 	η = η0 − η and �k,l = Ek,l − E0,0. The coupling op-
erator y2 = R2 − Rr + r2/4 can populate states |ψ2,0〉 via R2,
|ψ0,2〉 via r2, and |ψ1,1〉 via Rr. All these states are of even
global parity, |ψ2,0〉 and |ψ0,2〉 are of even c.m. parity, and
|ψ1,1〉 is of odd c.m. parity. They have the same energy gap
�k,l = 2 with respect to the ground state at g = 0. We call
them the first-order breathing manifold.3

3The nth-order breathing manifold has an energy gap 2n with
respect to the ground state at g = 0.

In Fig. 3 we display the energy gaps (opaque curves) as
a function of g (cf. also Fig. 8 in [76]). We concentrate on
the three eigenstates from the first breathing manifold. At
g = 0 they are degenerate with excitation energy � = 2. In
the laboratory frame, these are a single-particle excitation by
two energy quanta in either of the components, i.e., |0, 0, 1〉 ⊗
|1〉 and |1〉 ⊗ |0, 0, 1〉, as well as a two-particle excitation
|0, 1〉 ⊗ |0, 1〉. The latter can be thought of as a “correlated”
sloshing excitation: 〈X 〉 = 〈Y 〉 = 0 and 〈XY 〉 	= 0. Below we
will reveal what kind of motion the particles actually undergo.

When the interaction strength g becomes nonzero, we
employ the relative frame. The degenerate manifold splits
at finite g. The frequency of the c.m. mode |ψ2,0〉 is inde-
pendent of interactions �2,0 = 2 (black solid opaque line).
The relative motion mode |ψ0,2〉 features an interaction-
sensitive frequency �0,2 = [μ(g, 1) − μ(g, 0)] (red dashed
opaque line), which displays a single minimum at positive g, is
monotonically decreasing function of g left of this minimum,
and saturates as g → ∞. Curves with such behavior will be
abbreviated as single turning point (STP) curves. Actually,
all mode frequencies will saturate at large positive g because
of contact interaction: the eigenenergies are monotonically
increasing functions of g,4 and are bounded from above due to
hard-core repulsion.5 The hybrid “sloshing” mode |ψ1,1〉 has
a frequency �1,1 = [2 − μ(g, 0)] (blue dashed-dotted opaque
line) which is a monotonically decreasing function of g. It
saturates to a frequency � = 1 at very large positive couplings
matching the interaction-independent sloshing (dipole) mode
frequency of a single-component condensate in a harmonic
trap [52].

Thus, distinguishability allows for an additional breathing
mode. A laboratory-frame mean-field ansatz (crosses) pre-
dicts two interaction-sensitive breathing frequencies though
neither of the exact modes is matched quantitatively for all
g. Importantly, the monotonically decreasing frequency can
be matched only at very weak interactions, implying the rele-
vance of entanglement in multicomponent mixtures. There is
even a region of interactions 2.5 < g < 6.5, where dynamical
symmetry breaking takes place, i.e., the parity symmetry be-
comes violated after some propagation time (see the inset).
It starts right after the low-frequency mean-field mode has
reached the value � = 1 around g ≈ 2.5, being the limiting
value of the exact mode |ψ1,1〉 at g = ∞.

What kind of motion does each mode induce? In the
relative frame, the one-body densities ρ1(R, t ) and ρ1(r, t )
undergo the following evolution:

ρ1(R, t ) ≈ c2
0,0ρ

(0,0)
1 (R) + 2

∑
k,l c0,0ck,lρ

(k,l )
1 (R) cos(�k,l t ),

ρ1(r, t ) ≈ c2
0,0ρ

(0,0)
1 (r) + 2

∑
k,l c0,0ck,lρ

(k,l )
1 (r) cos(�k,l t )

with the time-independent background densities ρ
(0,0)
1 (R) and

ρ
(0,0)
1 (r), modulation densities ρ

(k,l )
1 (R) = ∫

dr ρ
(k,l )
2 (R, r)

and ρ
(k,l )
1 (r) = ∫

dR ρ
(k,l )
2 (R, r), where ρ

(k,l )
2 (R, r) =

4∂Ej/∂gAB = ∫
ρAB

2 (z, z) dz � 0 with ρAB
2 (z) being the diagonal of

the reduced intercomponent two-particle density obtained from the
many-body eigenstate |Ej (gAB)〉.

5ρAB
2 (z, z) → 0 as gAB → ∞.
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ψ0,0(R, r)ψk,l (R, r). We neglected terms ci, jck,l related to
oscillations among the excited states. Inserting the occupied
eigenstates we mentioned previously, we get

ρ1(R, t ) = c2
0,0�

2
0(R) + 2c0,0c2,0�0(R)�2(R) cos(2t ),

ρ1(r, t ) = c2
0,0φ

2
0 (r) + 2c0,0c0,2φ0(r)φ2(r) cos([μ(g, 1)

− μ(g, 0)]t ).

Thus, ρ1(R, t ) performs a constant frequency (�2,0 =
2) breathing oscillation, while ρ1(r, t ) undergoes an
interaction-dependent single-frequency (�0,2 = [μ(g, 1) −
μ(g, 0)]) modulation.

The state |ψ1,1〉 and the related frequency (�1,1 = [2 −
μ(g, 0)]) are not represented in the reduced “one-body” quan-
tities of the relative frame and can be only revealed on the
“two-body” level. In particular, R and r do not perform
a sloshing motion, i.e., 〈R〉 = 〈r〉 = 0 which implies 〈x〉 =
〈y〉 = 0. Instead, 〈Rr〉 = A cos ([2 − μ(g, 0)]t ) with ampli-
tude A = 2c0,0c1,1

∫∫
dR dr Rrρ (1,1)

2 (R, r).
What is the imprint of the individual oscillatory term

ρ
(k,l )
2 (R, r) cos (�k,l t ) of the relative frame density matrix

ρ2(R, r, t ) describing the two-particle evolution on the re-
duced one-particle density ρ1(x, t ) of the laboratory frame?
To this end, we transform ρ

(k,l )
2 (R, r) to the laboratory

frame and integrate over the coordinate y to get ρ
(k,l )
1 (x).

The corresponding modulations are shown in Fig. 4. Fig-
ure 4(a) demonstrates the time-independent background
density ρ

(0,0)
1 (x). At negative g (dotted) it is a narrow Gaus-

sian, which broadens with increasing g (solid) until it finally
splits into a two-hump configuration (dashed) indicating that
phase separation has taken place. Figure 4(b) is a density
modulation (at t = 0) stemming from the c.m. breathing
ρ

(2,0)
2 (R, r) cos (�2,0t ). The exact shape is very sensitive to

g variation and in particular to the two-hump structure of
the background density at g = 8 where it develops additional
nodes. The dotted and solid curves are typical shapes respon-
sible for the breathing motion of a Gaussian background.
The dashed curve (g = 8) induces breathing for each indi-
vidual hump of the background density. Figures 4(c) and
4(d) are density modulations (at t = 0) stemming from rel-
ative motion breathing ρ

(0,2)
2 (R, r) cos ([μ(g, 1) − μ(g, 0)]t )

and hybrid sloshing ρ
(1,1)
2 (R, r) cos ([2 − μ(g, 0)]t ). For a

Gaussian background they produce breathing, while for a two-
hump profile we expect a simultaneous outwards and inwards
sloshing of the two humps. Both the magnitude and functional
behavior of the modulations are robust to g variation. The sec-
ond particle ρ1(y, t ) does exactly the same, except ρ

(1,1)
1 (y, t )

is inverted, i.e., it has a phase shift of π .
To summarize, two distinguishable particles feature an ad-

ditional breathing mode in contrast to two indistinguishable
particles. The responsible eigenstate has even global parity,
though it is of odd center-of-mass parity and odd relative
parity. It relates to a hybrid sloshing: 〈Rr〉 	= 0 while 〈R〉 =
〈r〉 = 0. It induces a breathing oscillation of the one-body
densities though they have a relative phase shift of π . The re-
lated mode frequency is a monotonically decreasing function
of the interparticle interaction g and a mean-field ansatz fails
to capture its functional behavior except for a linear trend at
very weak interactions.
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FIG. 4. Decomposition of the one-body density ρ1(x): (a) time-
independent background and time-dependent single-frequency mod-
ulations ρ

(k,l )
1 (x) induced by (b) center-of-mass breathing ρ

(2,0)
2 ,

(c) interparticle distance breathing ρ
(0,2)
2 , and (d) hybrid sloshing

ρ
(1,1)
2 at different interaction strength g. All quantities are given in

harmonic units.

2. 2 + 2 mixture

A noninteracting two-component mixture features in total
five eigenstates which are two energy quanta above the ground
state: two single-particle excitation states |NA − 1, 0, 1〉 ⊗
|NB〉 and |NA〉 ⊗ |NB − 1, 0, 1〉, two states having two indis-
tinguishable particles excited |NA − 2, 2〉 ⊗ |NB〉 and |NA〉 ⊗
|NB − 2, 2〉, and, finally, a state where one particle in each
component is excited |NA − 1, 1〉 ⊗ |NB − 1, 1〉. The inter-
actions will (partially) break this manifold of degenerate
eigenstates. Each of these states, once populated in the
initialization step, will induce a breathing oscillation of a
characteristic frequency. Together they represent a first-order
breathing manifold.6 To get an insight how the respective
frequencies behave depending on the system’s interactions,
we briefly summarize and complement the results obtained in
[88]. For a few-body fermionic mixture see also [76].

6A breathing mode is said to be of nth order if its frequency can be
traced to a value 2ωσ n when adiabatically tuning all the interactions
to zero.
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FIG. 5. Energy gaps � j = Ej − E0 (with respect to the ground
state |E0〉) of a few-body bosonic mixture NA = 2 and NB = 2 as a
function of the intercomponent coupling gAB at equal trapping fre-
quency ratio η = 1, intracomponent interaction strength gB = 0 for
the second component and (a) gA = −0.5, (b) gA = 0, (c) gA = 0.5
for the first component. Whether the corresponding eigenstates are
actually excited depends on the quench protocol. Different colors
(line styles) refer to the center-of-mass (c.m.) quantum number in
the eigenstate |Ej〉. The c.m. is a decoupled degree of freedom in this
harmonic confinement. The insets represent a zoom-in on regions
with avoided crossings which are indicated by circles and caused by
gA 	= gB asymmetry. Curves of different colors (line styles) may only
cross. All quantities are given in harmonic units.

In [88], each component consists of two particles trapped
within the same parabolic confinement η = 1. Both compo-
nents experience a sudden but weak trap quench of the same
magnitude and the system’s response is studied for differ-
ent intracomponent and intercomponent interaction strengths.
Importantly, the c.m. motion decouples while the quench
operator prevents transitions among eigenstates possessing
different c.m. parity. By performing an exact diagonalization
method based on a correlated basis (see [88] for more details)7

up to four breathing mode frequencies have been identified

7It can be applied to bosonic mixtures of NA � 2 and NB � 2
particles subject to contact interactions in a 1D harmonic trap.

and analyzed. These are reproduced in Fig. 5 as a function
of the intercomponent coupling gAB for three different intra-
component interaction values gA [Figs. 5(a)–5(c)], assuming
gB = 0. The curve colors (line styles) encode the c.m. quan-
tum number of the responsible eigenstates |Ej〉, while the
reference state |Eref〉 is the ground state |E0〉 of even c.m.
parity.

The blue dotted curve is a double excitation of the c.m.
harmonic oscillator, the �c.m. mode. Thus, it is independent
of interactions gA, gB, and gAB. The three black solid curves
are interaction-sensitive relative motion modes. They have
been labeled �+, �− (�A, �B) for species-(anti)symmetric
parameter choice, i.e., gA = gB (gA 	= gB), and �AB. All of
them are STP curves. The �AB mode is quite shallow, weakly
affected by intracomponent interactions and degenerates with
�c.m. at strong coupling gAB. The two lower ones are very
sensitive to intracomponent interactions and, depending on
the presence of the species-exchange symmetry,8 they either
intersect or experience a bending in the vicinity of avoided
crossings [Figs. 5(a) and 5(c) at gAB ≈ 0].

Thus, for a weak species-symmetric trap quench, the
system features 2–4 of the above-mentioned breathing fre-
quencies depending on the strength of interaction parameters.
For a weak species-asymmetric trap quench, all the above-
mentioned modes are still energetically accessible plus one
extra mode of a comparable frequency. Indeed, based on our
discussion on the 1+1 mixture, we anticipate an eigenstate
with odd c.m. parity and even global parity to eventually con-
tribute to the dynamics. The corresponding breathing mode
frequency is represented by the red dashed curve in Fig. 5. We
observe again a monotonous decrease of the mode frequency
with increasing coupling gAB until it energetically separates
from one of the relative modes at gAB ≈ 1 and, finally, sat-
urates to a value of 1.0 at gAB � 4. Its frequency is barely
affected by gσ . Interestingly, the mode is again invisible to
numerical approaches which ignore the entanglement as we
evidence by comparing a numerically exact solution to a SMF
ansatz.

B. Few-body Bose polaron

Now we turn our attention to a single impurity NB =
1 in a few-body majority environment having NA = 5 or
10 particles. In contrast to [88], here, we initiate the breath-
ing dynamics by relaxing only the B component, while the
A component is affected indirectly via the intercomponent
coupling gAB. Representative breathing motions in each com-
ponent can be seen in Fig. 6. At η = 1 the c.m. motion still
decouples from the relative motions. In particular, the quench
operator may mediate between eigenstates of different c.m.
parity inducing eventually a special breathing mode caused by
population of an eigenstate with odd c.m. parity. Furthermore,
there is only one particle in the B component. Thus, a double
excitation state |NA〉 ⊗ |NB − 2, 2〉 (see Sec. IV A) does not
exist and we expect that one of the relative modes (black
solid curves in Fig. 5), whose frequency is notably affected
by interactions, will not be present.

8Corresponding to a map xi �→ yi at gA = gB.
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FIG. 6. Breathing oscillations of the one-body densities of the majority component ρA
1 (x) (first row) and the impurity ρB

1 (y) (second row)
at a fixed majority-component interaction gA = 0.5 for NA = 5 and NB = 1 particles initiated by preparation of the ground state of even global
parity followed by an abrupt change of the trap ratio from η = 1.05 to 1. Columns 1–3 correspond to different intercomponent couplings:
(a) gAB = 0.5, (b) gAB = 1.0, and (c) gAB = 1.5. Note that the initial state displays the onset of phase separation in (b) and a pronounced
core-shell phase in (c). All quantities are given in harmonic units.

In Figs. 7 and 8 we show the excitation spectrum of the
breathing dynamics initialized by quenching the equilibrated
system at trap ratio η = 1.05 to 1, i.e., partially releasing
the trap of the impurity. The majority component consists of
NA = 5 (Fig. 7) or NA = 10 (Fig. 8) particles subject to several
different majority component interactions gA [Figs. 7(a)–7(c)
and 8(a)–8(c)]. Only frequencies of modes whose contribu-
tion is above 10% of the maximum amplitude �max in the
averaged power spectrum are shown. Additionally, each fre-
quency data point (full circle) is represented as a pie chart
of two different colors and encodes the contribution of the
breathing observables to the averaged power spectrum (see
Sec. III B): blue color for the impurity ŷ2 and red color for the
majority component

∑
i x̂i

2. The decomposition into colors
tells us whether the respective mode is a single-species mode
or whether it is of a mixed character and to what extent.
Furthermore, the color intensity indicates the participation of
the respective mode in the breathing dynamics as compared
to the most relevant mode at fixed gAB (a more intense color
indicates a stronger contribution). Finally, the crosses repre-
sent frequencies of modes excited by the same procedure but
numerically ignoring the entanglement in the initial state and
the subsequent dynamics (SMF approximation).

Let us first focus on Fig. 7(b), the case of a noninteract-
ing majority species (gA = 0). At gAB = 0 only the impurity
is excited (blue circle) performing a breathing motion with
frequency � = 2 as expected. As one increases the coupling
strength (gAB > 0), a second mode of decreasing frequency
emerges resulting in a beating. This mode has the largest
contribution to the ongoing dynamics and is of a mixed type,
i.e., it appears both in the majority and impurity breathing
observables. For the latter reason it can correspond to the �AB

mode of even c.m. parity or to the hybrid sloshing mode of
odd c.m. parity we introduced in the previous section. The
quench operator can mediate among eigenstates of different
c.m. parity so both are allowed to be populated. Considering
limited frequency resolution and the possibility of a quaside-

generacy of the red (dashed) mode with a black (solid) mode
observed in Fig. 5, it is likely that the observed mode gets a
contribution from both eigenstates. For that reason, no partic-
ular eigenstate label can be assigned to it. The frequency of
the other mode experiences only a slight variation � ≈ 2. It is
represented to a larger extent in the majority component, has
a minor amplitude, and is reproduced by a SMF ansatz. Thus,
we assign it to the �A mode encountered in Sec. IV A (cf.
black curves in Fig. 5), though here it is less sensitive to gAB

variation, supposedly due to the particle-number imbalance.
Around gAB ≈ 0.75 the lower frequency splits into two

branches of comparable significance, resulting altogether in
three modes. One of the emerging branches possesses a
continuously decreasing frequency with increasing gAB ap-
proaching the value � = 1. It matches the description of the
hybrid sloshing mode which was emphasized in Sec. IV A
(cf. red dashed curve in Fig. 5). Interestingly, it is equally
represented in both subsystems despite the particle-number
imbalance and quench asymmetry. The other frequency
branch bends and starts recovering towards � = 2 with in-
creasing gAB while gradually becoming a pure signature of the
impurity motion only (the blue slice dominates at gAB = 2). It
matches the functional behavior of the �AB mode (STP curve)
mentioned in Sec. IV A (cf. the black solid curves in Fig. 5).

At weak negative coupling (gAB < 0) one observes also a
beating behavior, although here both frequencies are increas-
ing with decreasing gAB. The dominant frequency in the power
spectrum is more sensitive to the coupling variation, is of a
mixed type and reproducible by a SMF ansatz (�AB mode),
while the second is barely affected and primarily represented
in the majority component (�A mode). Below a certain thresh-
old (gAB < −0.4) one observes low-amplitude traces of a third
frequency.

We discover several major alternations in the excitation
spectrum when the majority component becomes interact-
ing. For weakly attractive (gA = −0.5) majority particles in
Fig. 7(a) the coupling-insensitive mode frequency is seem-
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FIG. 7. Frequencies � of breathing modes excited by quenching
the ground state |E0〉 of the Bose polaron for NA = 5 and NB = 1,
meaning a change in the trap ratio from η = 1.05 to 1.0, shown as
a function of the intercomponent coupling gAB for a fixed majority
component interaction (a) gA = −0.5, (b) gA = 0, and (c) gA = 0.5.
Each frequency data point (full circle) is divided into two sectors
(of different colors) representing the contribution of the breathing
observables 〈∑i x̂2

i 〉t or 〈ŷ2〉t to the averaged power spectrum � at
that frequency (see Sec. III B). The corresponding color intensity in-
dicates the relative strength with respect to the maximum amplitude
�max in the averaged power spectrum for fixed gAB and only modes
with contribution above 10% of �max are presented. Crosses stand for
frequencies of modes excited within the SMF approximation. Black
dashed line indicates the entanglement entropy SvN of the initial state.
All quantities are given in harmonic units.

ingly absent. At positive increasing gAB the bifurcation of
the continuously decaying frequency takes place already for
a very weak coupling strength (gAB ≈ 0.1). It can be related
to the fact that the phase separation also takes place at weaker
couplings. The character of the excited modes is mostly the
same as for gA = 0. At negative decreasing gAB we observe an
emerging multifrequency breathing composed of three modes.
The lower-frequency mode loses amplitude in favor of higher-
frequency modes (−0.4 < gAB < −0.1). Then it turns into a
single-frequency breathing (gAB < −0.4) affecting both com-
ponents in a similar way.

For weakly repulsive (gA = 0.5) majority particles in
Fig. 7(c) the coupling-insensitive mode frequency is still

IMPURITY

MAJORITY

FIG. 8. Same as in Fig. 7 but for NA = 10. All quantities are
given in harmonic units.

present though energetically shifted downwards to � = 1.9.
The respective mode is weakly represented in the overall
dynamics and affects mainly the majority component. The
sensitivity to gA is yet another indicator that this is the
�A mode. The point of bifurcation in the lower-frequency
branch is located at a stronger coupling gAB ≈ 1.8. Phase
separation takes place also at stronger couplings which sup-
ports our previous conjecture. At negative gAB below a
certain threshold (gAB < −0.3) a third mode is excited. In
contrast to gA = 0, this additional mode is rather mani-
fested in the impurity breathing and has a larger frequency.
In summary, the majority component interaction gA deter-
mines the coupling value at which the bifurcation takes
place as well as the offset of the coupling-insensitive fre-
quency and whether it can be addressed by the current
quench protocol.

Next, we double the number of majority component atoms
to get an idea of how it affects the excitation spectrum. In
the following, we compare the corresponding subfigures of
Figs. 7 and 8. We note that at NA = 10 the interval of the
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considered couplings is gAB ∈ [−0.5, 1.0] as the convergence
is more challenging to achieve beyond gAB > 1. At gA = 0
[Fig. 8(b)] the bifurcation point is located at a smaller value
of gAB compared to the NA = 5 case [see Fig. 7(b)]. Increasing
the particle-number imbalance accelerates the phase sepa-
ration [49]. The coupling-insensitive �A mode frequency is
barely affected by the particle-number imbalance.

At gA = −0.5 [Fig. 8(a)] and positive gAB the minimum
of the �AB frequency mode is shifted to larger frequen-
cies and smaller values of the coupling gAB. The frequency
value recovers back to � = 2 more quickly already at gAB ≈
0.75. The coupling-insensitive �A mode becomes visible at
negative gAB and even dominates the breathing dynamics,
although the amplitude decays considerably towards gAB =
0 and there are only minor traces left at positive coupling
(0.25 < gAB < 0.4). It is certainly present in the breathing
dynamics at positive gAB, but the contribution is not signif-
icant enough to overcome the set threshold. The respective
frequency is shifted to � ≈ 2.4. At gA = 0.5 [Fig. 8(c)]
the frequency of the coupling-insensitive �A mode expe-
riences a slight shift downwards. At negative gAB it gains
amplitude with decreasing gAB until it becomes a dominant
mode below gAB � −0.25. The bifurcation point at posi-
tive gAB is unfortunately not visible within the covered gAB

interval.
Lastly, we want to emphasize the importance of entangle-

ment in our Bose polaron setup. To this end, we neglect it both
in the initial state and in the subsequent dynamics (crosses
in Figs. 7 and 8). The first striking observation is that in the
SMF case, at most two frequencies can be extracted. The
mode we are missing from the exact simulations is the one
whose frequency is a monotonically decreasing function of
gAB, making appearance at finite positive gAB. We call a mode,
which is not reproducible by a SMF ansatz, an entanglement-
sensitive mode. It can be assigned to the eigenstate of odd
c.m. parity, also called hybrid “sloshing” mode. Regarding
the persistent modes, the �A mode with coupling-insensitive
frequency is overall well captured by the species mean-field
ansatz, although it tends to overestimate the frequency for
large positive values of gAB. The �AB mode, whose frequency
is STP function of gAB, in general is not well matched by SMF
ansatz either mispredicting the location [Fig. 7(c)] or the exact
value [Fig. 7(a)] of the minimum. Even if both the location
and the value of the minimum are well matched [Fig. 7(b)]
there is an increasing discrepancy for strong positive gAB. For
a larger particle number (Fig. 8), the consistency between
approximated and exact frequencies is much better, though
here also we have a mode not reproducible by a SMF ansatz
featuring the same functional behavior.

To summarize, we are able to excite up to three breathing
modes in the Bose polaron setup by quenching only the impu-
rity. First, there is a coupling-insensitive �A majority mode.
Its frequency can be manipulated by the particle-number im-
balance or the majority component interaction. Second, there
is a monotonically decreasing frequency making appearance
at finite positive gAB and converging towards � = 1.0 with
increasing gAB. It cannot be described by the species mean-
field ansatz and matches the functional behavior of the hybrid
sloshing mode encountered in the 1 + 1 and 2 + 2 mixtures.
Third, we have a large-amplitude �AB mode which is of a

IMPURITY

MAJORITY

FIG. 9. Frequencies � of breathing modes for NA = 5 and NB =
1 as a function of the intercomponent coupling gAB at fixed majority
component interaction gA = 0. The trap ratio is quenched in (a) from
η = 0.536 to 0.51 and in (b) from η = 4.2 to 4. Color coding accord-
ing to Fig. 7. Black dashed line indicates the entanglement entropy
SvN of the initial state. All quantities are given in harmonic units of
the majority component.

mixed type. The mode frequency is STP function of gAB with
a minimum being sensitive to gA and NA.

C. Impact of the trap

Let us now focus on the impact of the external trap, more
specifically we consider a situation where the length scale of
the impurity lB = √

1/η, set by the parabolic trap, is either
broader (lB = 1.4) or narrower (lB = 0.5) in the postquench
system. The quench strength is still 5% of the original trap
parameter.

We start with the case of a “broad” impurity η = 0.51.
In Figs. 9(a) and 10(a) we show the breathing spectrum for
NA = 5 and 10 majority atoms, respectively. To gain an intu-
itive picture we set gA = 0. For the decoupled case gAB = 0,
the lowest-frequency mode is caused by the eigenstate
|NA〉 ⊗ |0, 0, 1〉, corresponding to a standard breathing of the
impurity at frequency � = 1.02. It is the only mode excited.
Once coupled (gAB 	= 0), several other eigenstates may
become populated leading to additional breathing modes. The
states in question can be continuously traced back to the low-
energy eigenstates of a decoupled impurity. First, we have the
state |NA − 1, 1〉 ⊗ |0, 1〉 corresponding to a hybrid sloshing
mode at frequency � = 1.51. Then follows a quasidegenerate
manifold of three modes: two majority component modes at
the same frequency � = 2 caused by |NA − 1, 0, 1〉 ⊗ |1〉 and
|NA − 2, 2〉 ⊗ |1〉, and a second order breathing of the
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FIG. 10. Same as in Fig. 9 but for NA = 10. All quantities are
given in harmonic units of the majority component.

impurity at frequency � = 2.04 mediated by |NA〉 ⊗
|0, 0, 0, 0, 1〉. Any higher-frequency modes are unlikely
to be involved.

At weak coupling gAB there is only one relevant mode
excited. It originates from the state |NA〉 ⊗ |0, 0, 1〉 and is
barely detectable in the majority component breathing. The
corresponding frequency is STP function of gAB with a mini-
mum at gAB ≈ 0.5 for NA = 5 [Fig. 9(a)] and at gAB ≈ 0.25
for NA = 10 [Fig. 10(a)]. At strong positive gAB, a beating
behavior emerges. The amplitude of the additional mode in-
creases gradually with increasing gAB while the corresponding
frequency � ≈ 1.2 is only weakly affected by the intercom-
ponent coupling or the particle number. At negative moderate
gAB there is also a beating. The major amplitude mode, orig-
inally being an impurity mode (blue), evolves gradually into
the majority component mode (red). The other mode appears
just below gAB < −0.25 and affects primarily the majority
species.

The SMF fits well the lowest frequency at negative gAB

and at weak positive gAB until the minimum is reached. After-
wards, it overestimates the frequency having larger deviations
at stronger positive gAB. We witness that SMF is incapable to
identify an emerging mode at positive gAB, though at negative
gAB it does register the beating behavior. It implies that the ad-
ditional modes entering the dynamics at positive and negative
gAB are of a different character. Based on the insights gained
in the previous section, namely, the presence of a breathing
mode which is inaccessible to the SMF treatment, we conjec-
ture that the additional mode emerging at positive gAB stems
from the hybrid sloshing mode |NA − 1, 1〉 ⊗ |0, 1〉 at gAB = 0

and � = 1.51. Its contribution grows as the entanglement
becomes stronger.

Next, let us focus on the case of a “narrow” impurity η = 4.
The corresponding breathing spectrum is depicted in Fig. 9(b)
for NA = 5 and in Fig. 10(b) for NA = 10 majority atoms.
At gAB = 0 we excite only the standard breathing mode of
the impurity at frequency � = 8 caused by the eigenstate
|NA〉 ⊗ |0, 0, 1〉. Considering the amount of available even
parity eigenstates with energies up to eight quanta (40 for
NA = 5 and 45 for NA = 10), one might naively think that
many modes would be excited at finite gAB. This is not the
case as we count only up to six frequencies. They are well
separated from each other and admit a convenient classifica-
tion: impurity modes (blue) with � > 6 and majority modes
(red) with � < 4.

The impurity features a beating composed of two modes at
weak coupling. The gap between the corresponding frequen-
cies grows with increasing gAB. The one of smaller amplitude
vanishes around gAB ≈ 1.0. The contribution of the other
mode fades away quickly afterwards until it also disappears.
At strong gAB the impurity motion assimilates the majority
component breathing. Both modes are reproducible by SMF
ansatz, though SMF overestimates their contribution to the
overall dynamics at strong gAB.

Regarding the majority modes there is one with a nearly
constant frequency (� ≈ 2) entering the dynamics already at
weak coupling and making a large contribution to the ma-
jority motion across all coupling values. At weak gAB it is
accompanied by an oscillation of a smaller frequency. As the
ground state is nondegenerate at gAB = 0, this frequency cor-
responds to the gap between the two blue-colored frequencies.
It also consistently disappears beyond gAB > 1 along with the
impurity modes. The latter are actually replaced by modes
of lower frequency. One of them is of particular interest. It
appears at gAB ≈ 1 for NA = 5 and at gAB ≈ 0.5 for NA = 10
gaining weight with increasing gAB. The corresponding fre-
quency is a linearly decreasing function of gAB. It can be
extrapolated to frequency � = 5 at gAB = 0, matching the
energy gap between the ground state |NA〉 ⊗ |1〉 and the hybrid
sloshing mode eigenstate |NA − 1, 1〉 ⊗ |0, 1〉. The entangle-
ment is once again indispensable to account for the respective
breathing mode.

To summarize, quenching a broad impurity excites less
breathing modes barely affecting the majority motion.
Quenching a narrow impurity excites more modes which are
energetically well separated: high-frequency impurity-type
and low-frequency majority-type modes. In both cases we
evidence the presence of an entanglement-sensitive mode.
It becomes relevant after some coupling threshold and can
be traced back to a hybrid sloshing excitation |NA − 1, 1〉 ⊗
|0, 1〉 at zero coupling.

D. Breathing of the first excited state

The Hamiltonian (1) has global reflection symmetry. The
eigenstates are therefore separable into two classes of even
and odd global parity. The quench operator does not vio-
late that symmetry. Accordingly, an even global parity initial
state can be expanded within the subspace of even eigen-
states. The odd global parity space of the Hamiltonian has
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its own “ground state,” meaning the lowest-energy eigenstate
of that subspace. If initialized in such a state, how will each
species respond following our quench procedure? Will it be a
few-mode breathing within each component, as for the even
global parity ground state, or a more complex motion in-
volving many modes? If only a few modes participate, how
different are the respective frequencies as compared to the
even global parity ground state?

To address the above questions, we start again with the
example of a particle-balanced few-body Bose-Bose mixture
(see Sec. IV A) at η = 1. There are several major differences
regarding the odd global parity subspace. First, in the non-
interacting regime the odd global parity “ground state” is
twofold degenerate, composed of states where a single par-
ticle of either component is excited by one energy quantum:
|NA − 1, 1〉 ⊗ |NB〉 and |NA〉 ⊗ |NB − 1, 1〉 with respect to har-
monic oscillator basis. Once the degeneracy is lifted at finite
coupling, the perturbed eigenstates can be distinguished by
the c.m. quantum number. Since both states are likely to be
populated after the quench, we need to consider each of them
as a reference state when evaluating the energy gaps to the
neighboring eigenstates. The frequencies of excited modes
following a quench of the impurity trap will be contained
within the set of these energy gaps. Second, the first-order
breathing manifold for odd global parity subspace is com-
posed of three quanta excitations at zero interaction. There
are eight of them in total. Half of them are excitations within
a single component: |NA − 1, 0, 0, 1〉, |NA − 2, 1, 1〉, and the
same for B species. The other four distribute the three avail-
able quanta over both components: |NA − 1, 1〉 ⊗ |NB − 2, 2〉,
|NA − 1, 0, 1〉 ⊗ |NB − 1, 1〉, and the other way around (B ↔
A).

In Fig. 11 we show the energy gaps between a ref-
erence state of even or odd c.m. parity (first or second
column, respectively) and energetically closest eigenstates
(c.m. quantum number indicated by color) as a function of
the intercomponent coupling gAB for three different intracom-
ponent interaction regimes (rows).

Let us begin with the reference state of even c.m. parity
(first column). First, there is a single constant frequency mode
� = 2 (blue dotted) for any interaction values. Second, there
is a single frequency being a monotonically increasing func-
tion of gAB (green dashed-dotted) and saturating to � = 3 at
strong positive gAB. Third, among the three black solid curves
there is one very weakly dependent on the interactions and it
recovers to � = 2 at strong positive gAB, whereas the other
two are highly susceptible to interactions and reach values
beyond � = 3. Finally, the lower red dashed curve represents
the other reference state of odd c.m. parity. Regarding the
frequencies of the remaining three red dashed modes, one
of them behaves similar to the green dashed-dotted solid
mode, while the other two are highly sensitive to interactions.
Some of the crossings seen at gA = 0 [Fig. 11(b)] among
the black solid and red dashed curves become avoided at
finite gA [Figs. 11(a) and 11(c)] caused by broken-species
exchange symmetry. Overall, most frequencies reach values
above � = 2 and there is nothing common to the breathing
spectrum of the even c.m.-parity ground state (see Fig. 5)
except the constant frequency mode.

FIG. 11. Energy gaps � j = |Ej − Eref | with respect to lowest-
energy reference eigenstates |Eref〉 of odd global parity and even (first
column) or odd (second column) c.m. parity in a few-body bosonic
mixture NA = NB = 2. The gaps are functions of the intercomponent
coupling gAB at equal trapping frequency ratio η = 1, intracom-
ponent interaction strength gB = 0 for the second component, and
(a) gA = −0.5, (b) gA = 0, (c) gA = 0.5 for the first component.
Whether the corresponding eigenstates are actually excited depends
on the quench protocol. Different colors (line styles) refer to the
center-of-mass (c.m.) quantum number in the eigenstate |Ej〉. The
c.m. is a decoupled degree of freedom in this harmonic confinement.
The insets represent a zoom-in on regions with avoided crossings
which are indicated by circles and caused by gA 	= gB asymmetry.
Curves of different colors (line styles) may only cross. All quantities
are given in harmonic units.

Focusing now on the reference state of odd c.m. parity
(second column), we notice that all five frequencies en-
countered in Fig. 5 have here a corresponding match. The
reason is that the reference state is a simple c.m. excitation,
being a constant energy shift independent of the interaction
strength. Correspondingly, the even global parity ground state
and eigenstates responsible for the first-order breathing dis-
cussed in Sec. IV A are just spectrally shifted by a common
constant. Thus, the corresponding energy gaps remain intact.
The four black solid curves are the additional new modes.
The lowest one corresponds to the even c.m.-parity reference
state of odd global parity. There is one with a monotonically
decreasing frequency and two of them are STP functions
of gAB very sensitive to interactions akin to the red dashed
mode frequencies. In the Bose polaron setup there are two
less “three-quanta” states since the two-particle excitations of
the impurity are obviously excluded. However, there is also
one more state, namely, a three-particle excitation |NB − 3, 3〉
in the majority component. Thus, the first-order breathing
manifold is composed of seven eigenstates in total. Now, we
initialize an odd global parity ground state for the subsequent
breathing dynamics (see representative examples in Fig. 12 to
be compared with Fig. 6) and extract the frequencies of par-
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FIG. 12. Breathing oscillations of the one-body densities of the majority component ρA
1 (x) (first row) and the impurity ρB

1 (y) (second
row) at a fixed majority-component interaction gA = 0.5 for NA = 5 and NB = 1 particles initiated by preparation of the first excited state of
odd global parity followed by an abrupt change of the trap ratio from η = 1.05 to 1. Columns 1–3 correspond to different intercomponent
couplings: (a) gAB = 0.5, (b) gAB = 1.0, and (c) gAB = 1.5. All quantities are given in harmonic units.

ticipating modes shown in Fig. 13. We immediately recognize
the frequency pattern from Fig. 7. In particular, we evidence a
coupling-insensitive �A frequency at � ≈ 2, a monotonically
decaying hybrid sloshing mode converging to � = 1 and �AB

mode being an STP function of gAB. There are, however, sev-
eral differences. Importantly, both odd global parity reference
eigenstates are participating in the dynamics, as indicated by
the lowest-frequency curve. They are of opposite c.m. parity.
Based on the excitation pattern (cf. Fig. 11) the odd c.m.
reference state has a larger contribution than the one of even
c.m.. Second, at weak positive gAB the two odd global parity
reference states are dominating the dynamics. The energy gap
between them grows with increasing gAB and approaches its
limiting value � = 1. Meanwhile, there is a gradual transfer
of population to the hybrid sloshing eigenstate with a mono-
tonically decaying frequency. Finally, at gA = 0.5 and positive
intermediate gAB ≈ 1 as well as at negative gAB we identify
some minor traces of additional modes absent for the even
global parity ground state.

To summarize, the breathing response of an odd global
parity ground state as compared to the actual ground state of
even global parity displays notable differences in the density
oscillations but bears strong similarity in the Fourier spec-
trum. We found an additional low-frequency mode of a mixed
type arising from the degeneracy splitting of the odd global
parity ground state.

V. SUMMARY

The breathing dynamics of a few-body Bose polaron in a
one-dimensional species-selective parabolic confinement has
been investigated in this work by means of the multilayer mul-
ticonfiguration time-dependent Hartree method for bosons.
The dynamics has been triggered by a weak trap quench of the
impurity for different intercomponent couplings gAB ranging
from weak attractive to intermediate repulsive values. The ma-
jority motion was affected indirectly via the majority-impurity
interaction gAB. We extracted the frequencies of excited modes

from the breathing observables by using a compressed sens-
ing algorithm. From this we constructed an averaged power
spectrum and classified the modes according to their overall
contribution to the dynamics. We also determined whether
a mode is of majority or impurity type judged by the rela-
tive strength of respective observables in the averaged power
spectrum. To highlight the importance of entanglement in our
setup, we performed the same quench procedure for a species
mean-field ansatz, which assumes that a wave function can
be written as a single product state of combined majority
coordinates and the impurity coordinate.

Different regimes of system parameters have been ad-
dressed. The majority component was noninteracting (gA =
0), weakly attractive (gA = −0.5), or weakly repulsive (gA =
0.5) consisting either of NA = 5 or 10 particles and different
ratios of species trapping frequencies including equal local-
ization length (η = 1), a “broad” impurity (η = 0.51), and a
“narrow” impurity (η = 4.0) have been taken into account.
Finally, we studied the impact of global parity symmetry on
the breathing spectrum. To this end, we initialized the system
in the first excited state having odd global parity as opposed
to the ground state which is even.

For equal traps (η = 1) we detected up to three modes.
First, at a weak majority-impurity interaction there is a two-
mode beating. One mode is of a majority type. It does a
comparatively small contribution to the overall breathing dy-
namics while its frequency is insensitive to gAB variations,
albeit depending on gA and NA. It reminds us of the �A mode
found in a few-body two-component mixture [88], though
utterly flattened supposedly due to the particle-number im-
balance and the absence of the complementary �B mode.
Interestingly, it becomes suppressed for a weakly attractive
majority species at positive gAB. The frequency of the sec-
ond mode decreases monotonically as a function of gAB

until it bifurcates into two distinct frequencies. One of them
keeps decreasing and becomes equally represented in both
components. Other parameters such as majority-component
interaction strength gA or the number of majority atoms NA
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FIG. 13. Frequencies � of breathing modes excited by quench-
ing the odd global parity ground state |E1〉 of a Bose polaron NA = 5
and NB = 1 from a trap ratio η = 1.05 to 1.0 as a function of the
intercomponent coupling gAB for a fixed majority component inter-
action (a) gA = −0.5, (b) gA = 0, and (c) gA = 0.5. Color coding as
in Fig. 7. Black dashed line indicates the entanglement entropy SvN

of the initial state. All quantities are given in harmonic units.

barely affect this frequency. Why does the frequency behave
this way? The corresponding mode is caused by an eigenstate
of odd c.m. parity and even global parity. Its eigenenergy
is independent of interactions. As the ground-state energy is
a monotonically increasing function of gAB and saturates at
hard-core interaction, we obtain a monotonically decreasing
energy gap between the two states. Importantly, it cannot be
observed for species-symmetric trap quenches and is not a
particular feature of the Bose polaron setup but of a two-
component mixture in general. Furthermore, the entanglement
needs to be taken into account to make the mode numeri-
cally visible as we demonstrate by a comparison to a species
mean-field ansatz. The other frequency emerging out of the
bifurcation bends and saturates back to the noninteracting
frequency value with increasing gAB while dominating the
impurity motion. It reminds us of the coupling-sensitive �AB

mode found in a few-body two-component mixture [88],
though here it appears to be much more sensitive to system
parameters such as gA and NA.

By broadening the impurity trap (η = 0.51), only one
mode can be excited at weak gAB. It is of impurity type.
The corresponding coupling-sensitive frequency features a
minimum at positive gAB and saturates at large gAB. With
increasing impurity-majority interaction, a beating emerges.
At positive gAB the additional mode is sensitive to the en-
tanglement, while at negative gAB both frequencies are well
matched by the SMF ansatz. For a tightly trapped impu-
rity (η = 4) up to six frequencies can be observed, though
many more modes are in principle available. At weak gAB

we have two impurity-type modes and a single majority-type
mode. The two impurity-type modes are of high frequency but
are quickly fading away with increasing gAB. At strong gAB

the impurity oscillations start imitating the majority motion.
The lower-frequency majority-type mode has a large contri-
bution to the ongoing dynamics except at very weak gAB,
while the corresponding frequency is rather insensitive to the
intercomponent interaction. At finite positive gAB we evidence
the emergence of an entanglement-sensitive mode whose fre-
quency is a monotonically decaying function of gAB. Thus,
the entanglement-sensitive mode is sustained even when the
center-of-mass motion cannot be decoupled and, surprisingly,
the corresponding frequency maintains its overall qualitative
behavior.

Regarding the first excited state of odd global parity as an
initial state for the breathing dynamics, we found the corre-
sponding excitation spectrum to bear strong similarity to the
one of even global parity ground state. It can be understood
as follows. Some of the eigenstates lying in the odd global
parity subspace have energies corresponding to the ones of
even global parity subspace except for a constant energy shift,
which is an integer number (in harmonic units) corresponding
to a c.m. excitation. Nevertheless, there are also differences.
For a weakly repulsive majority species and at intermediate
gAB we observe several additional modes absent in the ground-
state spectrum. This is not surprising since the lowest-energy
breathing manifold accessible to the first excited state is larger
as compared to the ground state. Importantly, there is a slow-
frequency mode equally represented in both components. It is
caused by the degeneracy of the first excited state. For that rea-
son, the frequency starts at � = 0 when gAB = 0. It saturates
towards � = 1 with increasing gAB because the eigenenergy
of the first involved state is a monotonically increasing and
saturating function of gAB while the second is independent of
gAB.

VI. CONCLUSIONS

Overall, the few-body Bose-polaron breathing spectrum
has been studied and compared to the one of a particle-
balanced Bose-Bose mixture. The species-asymmetric trap
quench protocol employed in this work allowed to couple
eigenstates of different c.m. parity (at η = 1) as opposed
to a species-symmetric trap quench. We excited a different
kind of a breathing mode. The eigenstate responsible for
this mode can be traced back to a hybrid sloshing excitation
|NA − 1, 1〉 ⊗ |NB − 1, 1〉 at zero interactions. We gave an
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interpretation of the motion induced by this mode for a simple
1 + 1 mixture: for a Gaussian background one-body density
it induces a breathing motion while for a parity-symmetric
two-hump profile we observe a simultaneous outward and
inward sloshing motion of the two humps. The mode relies
on the presence of entanglement, while its frequency is a
monotonically decreasing function of gAB. This opens the
perspective to study the relation between the mode amplitude

and the degree of entanglement, stored in the many-body com-
posite state, adding yet another item into the analysis toolbox
of breathing mode diagnostics.
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[42] T. Sowiński and M. Á. García-March, Rep. Prog. Phys. 82,
104401 (2019).

[43] O. E. Alon, R. Beinke, and L. S. Cederbaum,
arXiv:2101.11615.

[44] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[45] L. Cao, V. Bolsinger, S. Mistakidis, G. Koutentakis, S. Krönke,

J. Schurer, and P. Schmelcher, J. Chem. Phys. 147, 044106
(2017).

[46] E. Bentine, T. Harte, K. Luksch, A. Barker, J. Mur-Petit, B.
Yuen, and C. Foot, J. Phys. B: At., Mol. Opt. Phys. 50, 094002
(2017).

043304-17

https://doi.org/10.1016/B978-0-08-010586-4.50015-8
https://doi.org/10.1088/0034-4885/72/6/066501
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1103/PhysRevLett.103.150601
https://doi.org/10.1103/PhysRevA.85.023623
https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevLett.109.235301
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1126/science.aah6616
https://doi.org/10.1103/PhysRevLett.103.170402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11065
https://doi.org/10.1103/PhysRevLett.115.135302
https://doi.org/10.3254/978-1-61499-694-1-325
https://doi.org/10.1088/0034-4885/73/11/112401
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1080/00018735400101213
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.78.1311
https://doi.org/10.1103/PhysRevA.96.031601
https://doi.org/10.1088/1367-2630/aa8a2e
https://doi.org/10.1103/PhysRevA.97.033612
https://doi.org/10.1103/PhysRevA.98.033610
https://doi.org/10.1103/PhysRevA.99.023601
https://doi.org/10.1103/PhysRevResearch.2.033142
https://doi.org/10.1103/PhysRevResearch.2.032011
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.91.163201
https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1063/1.1703687
https://doi.org/10.1126/science.1100700
https://doi.org/10.1038/nature02530
https://doi.org/10.1088/1361-6633/ab3a80
http://arxiv.org/abs/arXiv:2101.11615
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1063/1.4993512
https://doi.org/10.1088/1361-6455/aa67ce


MAXIM PYZH AND PETER SCHMELCHER PHYSICAL REVIEW A 105, 043304 (2022)

[47] A. Barker, S. Sunami, D. Garrick, A. Beregi, K. Luksch, E.
Bentine, and C. Foot, J. Phys. B: At., Mol. Opt. Phys. 53,
155001 (2020).

[48] K. Keiler and P. Schmelcher, Phys. Rev. A 100, 043616
(2019).

[49] M. Pyzh and P. Schmelcher, Phys. Rev. A 102, 023305 (2020).
[50] M. Pyzh, K. Keiler, S. I. Mistakidis, and P. Schmelcher,

Entropy 23, 290 (2021).
[51] T. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
[52] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 (1999).
[53] J. Abraham and M. Bonitz, Contrib. Plasma Phys. 54, 27

(2014).
[54] C. R. McDonald, G. Orlando, J. W. Abraham, D. Hochstuhl,

M. Bonitz, and T. Brabec, Phys. Rev. Lett. 111, 256801 (2013).
[55] H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, Phys. Rev.

Lett. 91, 250402 (2003).
[56] G. E. Astrakharchik, R. Combescot, X. Leyronas, and S.

Stringari, Phys. Rev. Lett. 95, 030404 (2005).
[57] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,

Phys. Rev. Lett. 92, 130403 (2004).
[58] A. Altmeyer, S. Riedl, C. Kohstall, M. J. Wright, R. Geursen,

M. Bartenstein, C. Chin, J. H. Denschlag, and R. Grimm, Phys.
Rev. Lett. 98, 040401 (2007).

[59] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
Pupillo, and H.-C. Nägerl, Science 325, 1224 (2009).

[60] B. Fang, G. Carleo, A. Johnson, and I. Bouchoule, Phys. Rev.
Lett. 113, 035301 (2014).

[61] A. Di Carli, C. D. Colquhoun, G. Henderson, S. Flannigan,
G.-L. Oppo, A. J. Daley, S. Kuhr, and E. Haller, Phys. Rev.
Lett. 123, 123602 (2019).

[62] D. Luo, Y. Jin, J. H. V. Nguyen, B. A. Malomed, O. V.
Marchukov, V. A. Yurovsky, V. Dunjko, M. Olshanii, and
R. G. Hulet, Phys. Rev. Lett. 125, 183902 (2020).

[63] T. H. Johnson, M. Bruderer, Y. Cai, S. R. Clark, W. Bao, and
D. Jaksch, Europhys. Lett. 98, 26001 (2012).

[64] B. Huang, I. Fritsche, R. S. Lous, C. Baroni, J. T. M. Walraven,
E. Kirilov, R. Grimm et al., Phys. Rev. A 99, 041602(R)
(2019).

[65] P. T. Grochowski, T. Karpiuk, M. Brewczyk, and K.
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