
PHYSICAL REVIEW A 105, 043301 (2022)

Dynamical preparation of an atomic condensate in a Hofstadter band
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The creation of a Hamiltonian in the quantum regime which has nontrivial topological features is a central goal
of the cold-atom community, enabling widespread exploration of novel phases of quantum matter. A general
scheme to synthesize such Hamiltonians is based on dynamical modulation of optical lattices which thereby
generate vector potentials. At the same time, the modulation can lead to heating and serious difficulties with
equilibration. Here we show that these challenges can be overcome by demonstrating how a Hofstadter Bose-
Einstein condensate (BEC) can be dynamically realized, using experimental protocols. From Gross-Pitaevskii
simulations our study reveals a complex, multistage evolution; this includes a chaotic intermediate “heating”
stage followed by a spontaneous reentrance to the BEC. The observed behavior is reminiscent of evolution in
cosmological models.
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I. INTRODUCTION

One of the great challenges in the field of ultracold atoms
is to realize a topological phase of a quantum, many-body
system. While a number of novel Hamiltonians have been
realized experimentally [1–3], often based on artificial gauge
fields [4–13], observing collective physics has remained chal-
lenging. Creating a Hamiltonian with nontrivial topological
properties such as the iconic Harper-Hofstadter model [14]
and addressing it within the quantum regime will enable wide-
ranging explorations of topological phases [15–17]. This has
implications for atomic and condensed matter physics and
other subdisciplines as well.

Almost all schemes for arriving at these Hamiltonians are
dynamical in nature [10,18–21]. In cold-atomic gases they
involve the introduction of time-dependent optical lattices
which generate artificial gauge fields. Unfortunately, this dy-
namical engineering has an important adverse consequence:
heating [22,23], which presents impediments for reaching
the quantum regime. Successfully implementing this time-
dependent or “Floquet” engineering in the quantum regime
is, hence, a central goal of our larger community. Most ur-
gent is to identify the pathways involved in these successful
realizations. Importantly, there are no known fundamental
barriers for arriving in the quantum regime of the classic
Hofstadter model. The MIT group [24] has reported evidence
for a Bose condensate in a Hofstadter band. The Munich group
[2], which has simulated this Hamiltonian and observed topo-
logical features [2], has, however, met difficulties in reaching
the ground state.

It should be emphasized that Floquet generation of topo-
logical bands involves multiband participation with band
crossing and inversion, abrupt band minima transitions, and
complex patterns of flux penetration. In more conventional,
nontopological systems [5] in which new band minima are
created by Floquet engineering the changes in the band struc-
ture are more continuous. This derives from the fact that a
finite critical shaking amplitude is required to obtain new band
minima, which, in turn controls the onset of the equilibration
process. In the Hofstadter case, by contrast, an infinitesimally
small shaking amplitude will shift the ground-state minima
and abruptly initiate equilibration. As a consequence, we find
that the resulting dynamics leads to a chaotic, intermediate
heating stage concomitant with the introduction of flux and
the related reorganization of the complex condensate phase
pattern. The novel dynamics makes Bose-Einstein condensate
(BEC) formation in Floquet-engineered topological systems
both richer and more complicated.

A central goal of this paper is to elucidate how such a
superfluid can be successfully realized given these compli-
cations. This involves characterizing the requisite dynamical
pathways. Instrumental to our paper is, then, the time evo-
lution. Here we emphasize our rather unexpected finding
involving highly chaotic behavior at intermediate times en
route to recondensation in a topological band. We emphasize
that understanding these phenomena should prove an enor-
mous benefit to the cold-atom, as well as to the solid-state
[25–28] and photonics communities [29] with a shared inter-
est in Floquet engineering.
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In our theoretical investigation into the time sequence in-
volved in Hofstadter band condensation, we focus on three
challenges which the system must address. First, there is heat-
ing from the direct application of the Floquet drive. A second
challenge arises from the sudden change of the many-body
ground state. Meeting this challenge requires that the conden-
sate wave function quickly develop a specific and complex
phase pattern. A third challenge comes from accommodat-
ing interparticle interaction effects which are required for
equilibration, but not generally compatible with analytical
predictions based on Floquet engineering.

Our paper reports a rich set of dynamical processes en
route to forming a BEC in a Floquet-Hofstadter band struc-
ture. These observations are derived from Gross-Pitaevskii
(GP) simulations. Despite the aforementioned challenges, we
are able to provide a large body of evidence supporting the
emergence of condensation in a Hofstadter lattice. Moreover,
our analysis shows that a substantial fraction of the atoms
are in the ground state. Interestingly, we observe a multistage
dynamics, which has features in common with models of
cosmological evolution [30]. This starts with a coherent series
of oscillations of the population and is followed by a chaotic
“heating” stage, which is accompanied by an abrupt injection
of magnetic flux [31,32]. We assume no dissipation in our
simulations but, surprisingly observe that the system is ulti-
mately able to spontaneously relax into the new ground state
where condensation occurs. The intermediate heating stage, in
particular, is found to be essential, enabling reentrance to this
new condensate. When the system reaches the steady state, we
are able to extract occupations of different Hofstadter bands,
thus characterizing a small number of excitations which coex-
ist with the BEC in the ground state.

II. FLOQUET-HOFSTADTER THEORY

We follow the approach used by the Munich group [2,22]
for Floquet engineering of the Hofstadter Hamiltonian. This
involves loading bosons into a two-dimensional optical lattice
with a potential which includes both a periodically oscillating
contribution Vos and a static superlattice Vst . We consider a
square lattice having lattice constant a superposed on an ad-
ditional lattice with constant 2a in the y direction. The lattice
potentials are given by

Vst =Vx sin2 (πx/a) + Vy sin2 (πy/a) + Vyl sin2 (πy/2a),

Vos = κ[sin (π/4 + πy/2a) cos (φ0 + ωt − 2απx/a)

+ cos (π/4 + πy/2a) sin (φ0 − ωt − 2απx/a)], (1)

where Vx, Vy, Vyl represent the strengths of the respective
components in the static lattice, κ is the amplitude of the
oscillating lattice which is identically zero before we turn on
the shaking, and φ0 = π/4. The presence of a time-dependent
potential Vos enables the atoms to tunnel in the y direction and
acquire a position-dependent, Aharonov-Bohm–type phase.
Here α is the ratio between the flux per unit cell of the square
lattice � to the flux quantum �0, with �/�0 ≡ α = 1

4 . Our
GP simulations are based on a Hamiltonian which includes
two-body interactions and the single-particle contributions
from both kinetic energy terms and lattice potentials which
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FIG. 1. Characteristics of the Floquet-engineered Hofstadter
model. (a) Illustration of the ideal Hofstadter Hamiltonian which
is the target model, only approximately realized through a lattice-
shaking protocol based on Eq. (1) which is used here. J ′

x, J ′
y are the

x and y axis tunneling parameters, and the phase φ
y
i, j = 2απ i + π

2 j.
The effective flux � inside each square cell is 1

4 times the flux quan-
tum. (b) Preshaking energy band structure at ky = 0 based on Eq. (1),
where the energy E is in recoil units ER. Here ω is the modulation fre-
quency which couples the bands. Unless noted otherwise, throughout
the paper we use [2,22], Vy = 6ER, Vx = 10ER, Vyl = 0.81ER, with
shaking frequency ω = 0.72ER/h̄, where the recoil energy ER =
h̄2(π/a)2/2m, and a is the lattice constant of the underlying square
lattice, and m is the atomic mass. (c) Floquet-engineered Hofstadter
bands at κ = 0.58h̄ω. The energy separation between states k = 0
and (±π/2a, 0) is roughly 0.0025ER. Here and throughout the paper,
the ground state of this Floquet-engineered Hofstadter band structure
is indicated by “min.”

directly implement Eq. (1). We consider a two-dimensional
system.

When the modulation energy h̄ω is much larger than the
effective tunneling parameters, the system approaches the
ideal Hofstadter Hamiltonian [21,33,34]. This Hamiltonian
has only nearest-neighbor tunneling in the x and y directions
denoted by J ′

x and J ′
yeıφ

y
i, j , respectively, where φ

y
i, j = 2απ i +

π
2 j and J ′

x, J ′
y are real. The coordinates here are (x, y) =

(i, j)a. This ideal case, schematically illustrated in Fig. 1(a),
should be contrasted with the Floquet-Hofstadter realization
based on Eq. (1). Our theory implements the full dynamical
Hamiltonian, which naturally includes higher-order terms in
J ′

x/h̄ω and J ′
y/h̄ω.

We characterize this latter Floquet-Hofstadter Hamiltonian
through the resulting band structure. In the absence of shaking
(κ = 0), the band structure obtained from Eq. (1), is shown in
Fig. 1(b). By contrast, when κ assumes the experimental value
[2,22] (κ = 0.58h̄ω) a very different band dispersion emerges
which is presented in Fig. 1(c).

It should be stressed that once a shaking amplitude κ �= 0
is applied, regardless of how small κ is, there is a dramatic
change of the ground state. We contrast the band structures
for the two situations: in the absence of shaking [Fig. 2(a)]
and at a small shaking amplitude κ = 0.1h̄ω [Fig. 2(b)]. Here
the energy minima in the ground band shift their position
abruptly from the band center k = 0 to the band edge k =
(± π

2a , 0). Note that these two quasimomenta k = (± π
2a , 0) are

connected by a reciprocal vector and thus correspond to a
unique state; this is henceforth called the “Floquet-Hofstadter
ground state.”[35]

The ground-state wave functions also exhibit a discon-
tinuous change as can be seen by comparing their behavior
without shaking and with shaking at κ = 0.1h̄ω through their
distribution in momentum space [see Figs. 2(c) and 2(d),
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FIG. 2. Abrupt changes in energy bands and wave functions due
to shaking, obtained from numerical calculations using Floquet the-
ory. (a) Energy bands at ky = 0 without shaking; k is the magnetic
zone quasimomentum. This figure is identical to Fig. 1(b), now
replotted in the framework of Floquet theory. (b) Energy bands at
κ = 0.1h̄ω. Panels (c) and (d), respectively, show ground-state wave
functions in the momentum (p) space at κ = 0 and 0.1h̄ω. These
are labeled as “min” in the Floquet-Hofstadter bands in (a) and (b).
The abrupt change of characteristic momenta as κ varies reflects a
first-order-like transition. Color codes indicate contribution from the
initial bands to the Floquet-Hofstadter bands; intermediate colors in
(b) represent band hybridization. Note that Figs. 1(c) and 2(b) rep-
resent slightly different parameter sets, with the latter chosen for
pedagogical purposes to illustrate more clearly the dramatic change
in the band structure that ensues even at very small κ .

respectively]. In these figures the wave functions are ex-
panded in terms of p = k + G, where G are the reciprocal
wave vectors of the oscillating lattice potential. Before shak-
ing, the atoms are confined to p = (0, 0). [The two extra
spots appearing in Fig. 2(c) are associated with higher re-
ciprocal vectors.] In the presence of lattice shaking a new
set of four characteristic momenta emerge, represented by
p = (± π

2a , 0), (0,± π
2a ). Importantly, a macroscopic popula-

tion of these four-momentum states can serve as a signature
that particles are occupying the ground state of the Floquet-
Hofstadter band.

We simulate the dynamics of the atoms in the Floquet lat-
tice through a GP numerical procedure which uses a graphics
processing unit based quasispectral, split-step method to solve
the GP equation based on fast Fourier transforms [36]. Here
we include a small, nonzero interparticle interaction potential
U0 = 7.5 × 10−4ER. In our numerical simulations, we start
with a condensate in the static lattice Vst and linearly ramp up
the shaking amplitude κ in Vos of Eq. (1). After the ramp, κ is
held constant; from the GP simulations we are able to examine
the full evolution of the time-dependent wave function in both
real and momentum space.

III. CHARACTERIZING THE EVOLUTIONARY
PATHWAYS

Our simulations reveal a rich dynamics when the atoms
transfer to the Floquet-Hofstadter band. We observe three
distinct evolutionary stages, as we follow the momentum-
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FIG. 3. Quench dynamics of Bose condensates undergoing tran-
sition from conventional bands (with κ = 0) to Hofstadter bands (at
κ = 0.58h̄ω) with κ linearly ramped from zero to 0.58h̄ω within
30 T where T is the Floquet period. (a) Time dependence of particle
populations in four characteristic momentum groups labeled using
the color code in the inset: dashed line (red), dashed-dotted line
(purple), thick solid line (green), and thin solid line (blue). The
transfer of boson populations between different groups indicates a
three-stage evolution. After initial oscillations in the first stage, a
“heating” state emerges which then spontaneously transitions to the
final condensation stage. (b) Particle population at py = π/2a for
t = 720 T in the heating stage. The inset is the corresponding image
in the full momentum space within the same 2π/a × 2π/a Brillouin
zone as in the inset of (a), where the blue dashed box indicates
the relevant vertically integrated region. (c) Counterpart of (b) at
t = 1230 T in the condensation stage. The transition from broad
distribution in (b) to sharp peaks along the px direction in (c) provides
some evidence for condensate formation. This analysis shows that a
sizable (about 40%) fraction of the atoms is condensed.

space populations [see Fig. 3(a)]. Below we outline the key
features of each stage. In the first stage (from 0 to 300 T ), we
see a period of coherent oscillations which involves transient
occupations of higher bands. A complicated dynamics then
ensues within the second stage (from 300 to 900 T ). Here the
population becomes widely distributed over different states
and different bands [see Fig. 3(b)]. We refer to this second
stage as the “intermediate heating” stage, where interesting,
highly chaotic behavior occurs. This time period reflects the
nonadiabatic evolution and is reminiscent of the “preheating”
and “turbulent” stages associated with inflationary models of
cosmology [30,37,38]. It is during this second stage, as the
wave function begins to develop a new and complex phase
pattern, that we observe a sudden onset of flux penetration
[31].

By contrast, in the third stage (beginning around 900 T ),
the population starts to settle into the Floquet-Hofstadter
ground state. This appearance of population accumulation into
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FIG. 4. Comparison of real-space phase correlation function and
vortex structure between predicted Floquet-Hofstadter ground state
(left) and final dynamically evolved state from simulations (right)
at t = 6000 T . (a) Absolute value of phase correlation functions
given by g1(�r) = 〈eıφ(i, j)e−ıφ(i+�i, j+� j)〉, where 〈. . . 〉 denotes av-
eraging over different ensembles and different (i, j) positions with
fixed relative displacement �r = (�i, � j)a. Here φ(i, j) is the local
phase of the wave function at r = (x, y) = (i, j)a. This shows a finite
spatial correlation length. (b) Distribution of vortices (blue dots)
and antivortices (red crosses). In the simulations, the checkerboard
arrangements are present in both the distribution of the phase corre-
lations and that of vortices. These are the predicted signatures of the
Hofstadter BEC.

the ground state is suggestive of Bose condensation. One sees
that a rather sharp momentum distribution emerges during
this time [see, for example, Fig. 3(c)]. This matches that of
the ground state shown in Fig. 2(d). We emphasize that the
evolution occurs spontaneously in our simulations [31], which
are calculated without dissipation (consistent with experimen-
tal conditions). Notably, this transition into the final ground
state is only possible in the presence of two-body interactions
which drive collisions and subsequent relaxation into a new
set of momenta.

IV. EVIDENCE FOR CONDENSATION

Motivated by these suggestions of condensation in momen-
tum space, and recognizing that these sorts of analyses are
complicated, we turn to more direct evidence for a condensate
through studies of spatial phase coherence. We wait for time
6000 T when the atomic population is fully settled into a
steady state in momentum space. We then evaluate the phase
correlation in real space, and observe a long-range phase
coherence which extends over 10 sites [see Fig. 4(a)]. This
provides additional and more direct evidence for a BEC in
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FIG. 5. (a) Stroboscopic plot of particle population Np(t ) at four
characteristic momentum spots of the Floquet-Hofstadter ground
state: p = (−π/2a, 0) (dark blue: thick lower solid line), (0, π/2a)
(red: thick upper solid line), (π/2a, 0) (light blue: thin lower solid
line), and (0, −π/2a) (green: thin upper solid line). These spots
correspond to the red dots in the inset of Fig. 3(a). We define Np(t ) =
|ψp(t )|2 where ψp is the wave-function expansion at momentum p.
Dashed lines show the average values of the corresponding popu-
lation curve with the same color. On average, the two spots along
the y (or x) axis are approximately equally occupied. The population
of the two vertical spots is 1.70 times that of the two horizontal
spots, close to the predicted value 1.67. (b) Power spectrum of the
wave function summed over the four characteristic spots Ntot(ε) =∑

p |ψp(ε)|2, where ψp(ε) is the Fourier transform of ψp(t ) from
t = 5900 to 6900 T . At this time the system appears to reach a
dynamical equilibrium. The highest peak is normalized to unity. The
lower peaks (labeled 1, 2, 3) show weak occupation of excited states
whose quasimomenta are indicated in the inset.

the Floquet-Hofstadter ground state (referred to as a “Hofs-
tadter BEC”). At the same time we observe a well-organized
distribution of vortices and antivortices. This distribution
displays a checkerboard pattern which matches theoretical
predictions determined from the ground state. Moreover, this
vortex checkerboard pattern[39] is associated with a similar
correlation length [see Fig. 4(b)].

Following this strong evidence for a Hofstadter BEC,
we next investigate in which Floquet bands the condensate
resides. To this end, we study the time-dependent wave func-
tions at the four characteristic momenta which appear as the
red spots in the inset of Fig. 3(a). The populations associated
with these four spots exhibit oscillatory behavior when viewed
in a stroboscopic fashion [40] [see Fig. 5(a)]. Moreover, the
time-averaged populations agree well with predictions [31]
derived from the ground state in the lowest Floquet-Hofstadter
band.

These time-dependent oscillations reveal coherent super-
positions involving occupations of excited states. We are able
to extract the energy spectrum of these excitations from the
Fourier transform of the wave functions in the time domain
[see Fig. 5(b)]. All Fourier spectra show the same set of peaks
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FIG. 6. Evolution of the Floquet system. (a) Time-dependent momentum-space distribution of the driven system obtained from simulations.
(b) Entropy as a function of time. Several different time frames are labeled by using the same letters as in (a). Note that the longer-time heating,
which is associated with an upturn in the entropy, is evident from (b). (c) The scaling behavior of the entropy with different interaction strengths:
U0 = 4.5 × 10−3ER (blue), 2.08 × 10−3ER (purple), and 7.5 × 10−4ER (red). At t = 1500 T , the sequence of lines from top to bottom is blue,
red, and purple. The scaled time ts is calculated in such a way that ts ∝ 1/

√
U0 and ts = t for U0 = 7.5 × 10−4ER.

consisting dominantly of the ground state with a few excited
states. Comparing with the Floquet-Hofstadter band structure,
we can identify three excited states from the energies of the
weaker peaks [31] [see the inset of Fig. 5(b)]. We specu-
late that these excitations likely relate to the finite coherence
length and defects seen in Figs. 4(a) and 4(b); presumably,
they arise from the nonadiabatic dynamics in the evolution to
the Floquet-Hofstadter ground state.

V. DYNAMICS OF HOFSTADTER BEC FORMATION

While the preceding sections have summarized our central
results, it is useful to understand in more detail the dynamics
we observe in our GP simulations. Particularly noteworthy in
this regard is the quite unusual intermediate heating stage.

A. Numerical details of the Gross-Pitaevskii simulations

The numerical code we use employs [36] GPU-based par-
allel computing and is designed such that it conserves the
particle number. The general GP equation is

ı h̄∂tψ (r, t ) =eıγ

[
− h̄2∇2

2m
− μ + V + gint|ψ (r, t )|2

]
ψ (r, t ),

(2)

where the damping constant γ is set to zero so that our
simulations are dissipationless. Here, μ (set to unity) is the
chemical potential, V = Vst + Vos is the total potential term
[see Eq. (1) for Vst and Vos], and gint is the interaction strength
which determines the interaction energy U0 = gintn0. Here, n0

is the mean particle density. Since U0 is directly tuned in our
simulations, we focus on this parameter instead of gint .

B. Magnetic Brillouin-zone entropy

To more quantitatively characterize these dynamics, in ad-
dition to the population curves shown in Fig. 3, we introduce
an effective time-dependent “entropy” SMBZ calculated using
states in the first magnetic Brillouin zone. This serves to
quantify the disorder in the momentum distribution, and is
defined by the occupation probability associated with different
p (momentum) spots. We caution that this “entropy” relates
to how widely the particle distribution spreads in momentum
space. This does not represent a thermodynamical defini-
tion of entropy. It serves to describe the sharpness of the
momentum peaks over time. As such this “entropy” can, at
intermediate times, decrease with time. Eventually, however,
as in Fig. 6 the system enters the long-time heating period
where the “entropy” monotonically increases.

We define

SMBZ = −
∑

p

ρ(p) ln ρ(p), (3)

where ρ(p) = Np/Nt is the ratio of the particle number Np
at momentum p to the total number Nt . Consistent with the
p-space evolution in Fig. 6(a), we see that the entropy change
is also clearly divided into three stages [see Fig. 6(b)]. Soon
after the initial stage where the entropy is relatively stable,
the entropy enters a “heating” phase where it exhibits a rapid,
exponential-like growth. This is associated with a clear max-
imum in the entropy SMBZ. We believe this rapid growth is
rather generic, as we have seen it in simulating other simpler
Floquet systems, where it has been associated with an “infla-
ton” picture [42]. This picture inverts the usual Bogoliubov
description of the excitation spectrum to describe a collection
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FIG. 7. Evolution of the p-space distribution within and near the intermediate heating stage. At the beginning of the intermediate “heating”
stage we see that the momentum- (p-) space distribution forms streaks in the horizontal direction; these clear up to form sharp spots at later
times when condensation into the Floquet-engineered Hofstadter BEC begins.

of selectively amplified momentum modes which are at lower
energy than the p = 0 initial (unstable) state.

Interaction effects drive this behavior. The analysis of
growth exponents in simpler systems [42] suggests a univer-
sality where the characteristic timescales in the second stage
vary as ∝1/

√
U0. With this in mind, Fig. 6(c) shows the

Floquet entropy presented in terms of rescaled time variables
for three different values of the interaction energy U0. This
scaling with

√
U0 provides an adequate but imperfect fit to

the power-law dependence in the scaling. Notably, this is
consistent with an “inflaton” model described elsewhere [42].

We find the system appears to reach dynamical equilibrium
in the third stage near t = 6000 T . The entropy value in this
time domain is rather stable; nevertheless, after t = 6000 T ,
SMBZ begins to slowly increase. This can be interpreted as
heating in the long-time limit, which is also expected to occur
experimentally.

C. Analysis of the intermediate heating stage

We would like to draw particular attention to the interme-
diate “heating” stage we observe. This represents a crucial
(albeit, transient) step in the evolutionary dynamics in which
there appears to be chaotic behavior, as seen from Fig. 3. In
this section we focus on this behavior by tracking specific
features in the evolution of the system through a sequence
of figures. Whether this chaotic state represents true “tur-
bulence” or not, it should be noted that the GP dynamics
is associated with weak quantum turbulent behavior [43] in
nonequilibrated systems when a persistent source of energy
is applied, along with some degree of intrinsic or inevitable
dissipation and many-body interactions.

Figure 7 illustrates how the momentum-space distribution
of the condensate wave function evolves within and near
the intermediate heating stage. The dispersing or spread-

ing out of the momentum peaks suggests highly chaotic
behavior which is observed over an extended time period.
Here the characteristic momentum peaks exhibit streaks along
the horizontal direction, beginning around 450 T and per-
sisting for approximately another 300 T . After this, new
momentum peaks associated with the new Hofstadter con-
densate appear. It should be noted that the asymmetry
between the x and y directions which leads to the streaks
reflects the gauge used to implement the artificial vector
potential.

Even in our more detailed numerical studies [31] in which
high-momentum states are filtered out of the GP numerics,
where we see a very “purified” dynamical evolution, we al-
ways find an intermediate chaotic heating stage. Strikingly
here the numerical filtering (associated with higher-energy
band occupation) is able to remove most of the disorder
from our momentum- and real-space plots, except during this
chaotic evolutionary stage.

Our numerical simulations enable us to more systemati-
cally investigate the dynamics to determine how the system
effects the transition from a conventional condensate to one
with the highly complex phase pattern of the Hofstadter BEC.
We saw in Fig. 4 that this introduction of phase is reflected
in a checkerboard vortex-antivortex pattern. We now exploit
this pattern to probe how phase coherence is dynamically
established. This is illustrated in Fig. 8 which indicates in
cyan and purple how the vortex and antivortex dislocations
evolve against the background checkerboard pattern. The time
sequence is the same as for Fig. 7. What is striking is the sud-
denness of flux penetration. These vortex-antivortex pairs with
a large fraction of dislocations initially appear precipitously
at 450 T . They then rapidly reorganize as the dislocations
are removed and the extended checkerboard pattern is sys-
tematically developed. Interestingly, this time frame where
flux abruptly penetrates is roughly the same as the onset of
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FIG. 8. Time evolution of the vortex distribution within and near the intermediate heating stage. The time periods here are the same as
in Fig. 7. This figure illustrates the evolution of the wave-function phase. The blue circles (red crosses) represent the vortices (antivortices)
located at positions consistent with predictions based on the Floquet-Hofstadter ground state, while the filled cyan circles (purple stars) indicate
the vortex (antivortex) dislocations.

spreading out of sharp momentum peaks found in the initial
condensate.

VI. CONCLUSIONS

In conclusion, the work in this paper addresses the impor-
tant and complicated question of how one can successfully
guide a wide class of Floquet engineered systems [10,12,44]
into the quantum regime. From our simulations, we show that
a dynamical conversion of a regular BEC into the Hofstadter
ground state can be realized with high efficiency. The dy-
namics involves an intriguing chaotic “heating” stage during
which “magnetic” flux rapidly penetrates.

More generally, this paper addresses a need in the quantum
gas community to prepare novel quantum matter with Floquet
engineering. Concerns about heating are widespread not only
for dynamical preparation of topological matter [45], but more
generally to surmount barriers [46] for reaching the quantum
regime. Quite intriguingly, the system is seen to overcome
these challenges and the way it does so is in many ways rem-
iniscent of evolution in cosmological models; this involves a
similar time progression including an intermediate turbulence
[30] en route to equilibration.
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APPENDIX A: SIMULATING THE IDEAL HOFSTADTER
MODEL BY FLOQUET-ENGINEERED HAMILTONIAN

The general Harper-Hofstadter model we simulate with
Floquet engineering is

HiHH = −
∑
i, j

(J ′
xeıφx

i, j â†
i+1, j âi, j + J ′

yeıφ
y
i, j â†

i, j+1âi, j + H.c.),

(A1)

which can be approached using the Floquet Hamiltonian [with
the lattice potential given by Eq. (1) of the main text] in the
ideal limit of J ′

x/h̄ω → 0 and J ′
y/h̄ω → 0. Here, the tunneling

phases in x and y directions φx
i, j and φ

y
i, j are associated with

the applied vector field in each direction. The same filling fac-
tor can be associated with different gauges [24]. To calculate
the corresponding band structure in a chosen gauge (used in
Ref. [22]), we use the magnetic translation operator to identify
the eigenstates [33]. The results are shown in Fig. 9, where
Fig. 9(a) shows the three-dimensional (3D) band structure,
and Fig. 9(b) shows the two-dimensional (2D) color contour
plot of the lowest band. There are four different ground states
in the lowest band. This is to be contrasted with the unique
ground state of the Floquet-engineered Hamiltonian realized
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FIG. 9. Band structure and wave function for the ideal Hofstadter Hamiltonian. (a) 3D plot of the band structure for the tunneling
parameters J ′

x = J ′
y = 1ER. (b) Color contour plot of the lowest band. There are four different degenerate ground states labeled as min1 at

k = (−π/2a, 0), min2 at k = (0, −π/2a), min3 at k = (0, 0), and min4 at k = (−π/2a,−π/2a).

by implementing Eq. (1) with a moderately large modulation
frequency. The fourfold degeneracy in the ground states of the
ideal Hofstadter model is lifted in the Floquet-engineered case
by higher-order terms in J ′

x/h̄ω and J ′
y/h̄ω which hybridize

states connected by wave vectors introduced by the oscillating
lattice.

We now present more details on the band structure pre-
dicted by Floquet theory. As shown by Fig. 1 in the main
text, there is only one unique ground state corresponding
to two equivalent degenerate states in the lowest band. The
ground state can be expanded in terms of the total momentum
p = k + G at k = (− π

2a , 0). The corresponding amplitude of
the wave function at different G is presented in Fig. 10(a)
where G = n1G1 + n2G2 with G1,2 = ( π

2a ,± π
2a ) being wave

vectors of the oscillating potential Vos and n1,2 being integers.
The distribution of the ground-state wave function has four
dominant peaks in G, which correspond to the four character-
istic p spots shown by Fig. 2 in the main text. The relative
phases of the ground-state wave function at the four spots
are θl − θr ≈ π, θt − θb ≈ π, θb − θr ≈ 2.04 radians, where
the subscripts correspond to the left (l), right (r), top (t), and
bottom (b) momentum spots, respectively. We present an over-
lay picture of the density and phase distributions in Fig. 10(b)
for the ground-state wave function in the Floquet-engineered
case.

By tuning the shaking frequency and the lattice depth in
the Floquet Hamiltonian, we can either go to the limit of an
ideal Hofstadter band or stay with the current Floquet band. In
the following, we consider an intermediate case between the
two scenarios by proper choice of the parameters. We find an
intermediate state that exhibits two minima in the lowest band
(see Fig. 11). We can clearly see a trend of fewer minima in
the lowest band with shallower lattices and smaller shaking
frequencies. One should note, however, though the minima
in Fig. 11(c) seem to be surviving minima in Fig. 11(a) at
k = (± π

2a , 0), in fact, the ground states are quite different for
these two cases.

APPENDIX B: COMPARISON BETWEEN FLOQUET
PREDICTION AND GP SIMULATION RESULTS

1. Comparison of relative phases at the four characteristic p
spots for the ground state

In the main text, we have already seen from the simulations
that the particle distribution is peaked at four characteristic
p spots within the magnetic Brillouin zone (see Fig. 3); this
agrees well with the predictions shown in Fig. 2(d), which
are calculated by diagonalizing the Floquet Hamiltonian. To
be more quantitative, we look at the ratio between the wave-
function amplitudes at the four spots. The time-averaged

FIG. 10. Ground-state wave function of the Floquet band. (a) Momentum-space expansion of the ground state in terms of the reciprocal
vectors G = n1G1 + n2G2. (b) Real-space representation of the wave function showing both phase and amplitude. Note that both the phase
and amplitude distributions display a checkerboard pattern.
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FIG. 11. Effects of increasing the lattice depths. (a) Lowest-energy band for the ideal Hofstadter Hamiltonian calculated using the param-
eters in Fig. 9. (b) Lowest-energy band for the Floquet Hamiltonian with very deep lattices. Here Vy = 20ER, Vx = 22ER, Vyl = 1.0625ER,
h̄ω = 0.99664ER, and κ = 0.58h̄ω. (c) Lowest Floquet band with lattice depths used in the main text. The energy dispersion is shown for the
first magnetic Brillouin zone. And the energy is measured with respect to the lowest energy Emin. The energy units (denoted by the arbitrary
unit [arb]) and Emin are different for different cases.

populations from the simulations shown by Fig. 5(a) are con-
sistent with our predictions extracted from Fig. 10(a). The
occupation at p = (0,± π

2a ) is 1.70 times that at p = (± π
2a , 0),

close to the predicted value 1.67.
We can also check the relative phases between these char-

acteristic spots. From our simulations, we can directly obtain
the wave-function expansion in p space. We find that the
relative phases are as follows: 〈θl − θr〉 ≈ 3.10, 〈θt − θb〉 ≈
3.15, 〈θb − θr〉 ≈ 1.14. These are consistent with our predic-
tion presented in Sec. I, except that there is approximately
a difference of order unity in 〈θb − θr〉. This discrepancy,
though quite robust and also present in our filtered simulations
(to be discussed in Appendix C 2, where the BEC is much
cleaner), seems to be related to interaction effects, as when
we decrease the interaction energy to 2.5 × 10−4ER, the phase
difference increases significantly to 1.44.

2. Comparison of frequency spectrum for both the ground and
excited states

In Fig. 5 of the main text, we have seen that aside from
the dominant ground state in the observed BEC, there are
also excited states. Table I presents a summary of the energy
comparisons which allow us to identify some of these excited
states. When we introduce a high-frequency filtration in our
GP dynamics (discussed in Appendix C 2), we see a negligibly
small occupation of these higher bands.

TABLE I. Identification of the ground state (min) and three ex-
cited states. The table compares energies from simulations (εsim)
and predictions (εpre) for the ground state and excited states in
the Floquet-Hofstadter band. As in the main text, min denotes the
“ground state,” while 1, 2, 3 refer to the same states as appear in
Fig. 5.

Spot index Band index εsim modulo h̄ω εpre modulo h̄ω

min 1 −0.011 −0.012
1 2 0.054 0.057
2 3 0.070 0.068
3 1 0.014 0.013

3. Comparison between the real-space correlation functions and
vortex structure

The BEC we obtain from simulations is a combination of
mostly the ground state and a small number of excited states,
which is also reflected in the finite coherence length in real
space (see Fig. 4). To check this more thoroughly, we look
at an even bigger system (4 × 4 times larger). In Fig. 12, we
show the real-space density and phase correlation functions of
the BEC obtained from our GP simulations for such a system.
Indeed, we see defects are present leading to a finite range
for the spatial phase coherence. They appear more directly
(mostly as vacancies) in the vortex-antivortex distribution.

It is important to note that the positions of the vortices and
antivortices in the distribution are not interchangeable as there
is a single, nondegenerate ground state. This can be viewed
as a chiral asymmetry associated with an artificial magnetic
field. The defects we observe are manifested as an absence
of a vortex or antivortex as distinct from dislocations, and we
believe they derive, at least in part, from the excited states
coexisting with the condensate [47].

APPENDIX C: DYNAMICS OF THE HOFSTADTER BEC
FORMATION FROM GP SIMULATIONS

1. Flux penetration dynamics

In Fig. 8 of the main text we discussed the rather precipi-
tous appearance of magnetic flux. Here in this Appendix we
look at this behavior in a more refined way focusing on the
transient period where the vortices first appear. This is illus-
trated in Fig. 13 which shows how the system rapidly evolves
from one state with uniform phase to another with a complex
phase pattern. The color scheme is the same as in Fig. 8 and
the cyan (purple) coloration labels vortex (antivortex) dislo-
cations. This figure illustrates the very transient appearance
of these dislocations. Their initial density is very high which
presumably represents the onset of flux penetration; it then
rapidly decreases as the checkerboard pattern of organized
vortices associated with the Hofstadter BEC begins to emerge.
We speculate that this transient high density of dislocations
might indicate some degree of turbulent behavior which arises
due to the onset of an artificial vector potential.
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FIG. 12. Real-space wave function in larger systems. (a) Absolute value of density correlation function gn
2(�i,� j) = 〈n(i, j)n(i + �i, j +

� j)〉/〈n〉2 where n(i, j) = |ψ (i, j)|2 is the local density. Here, 〈. . . 〉 denotes averaging over different ensembles and different (i, j) positions
with fixed relative displacement (�i, � j). (b) Absolute value of phase correlation function g1. The definition is given in the main text.
(c) Distribution of vortices (blue dots) and antivortices (red crosses). While the unique ground state yields constant density correlation even
at large distance, the phase correlation reveals a finite size for the physically coherent regions. The vortex structure is associated with vortex
defects rather than dislocations; this reflects the absence of vortices and antivortices.

2. Removing high-frequency contributions: Purifying the BEC

The dynamics we simulate in our GP equation do not
involve energy dissipation, once the initial state is estab-
lished [48]. We stress that our simulations without dissipation
are consistent with experimental conditions in atomic sys-
tems. We might expect that in actual experiments, the system
picks up some higher-momentum (p) excitations over longer
timescales. Indeed, these are presumably responsible for the
final heating stage. High-p excitations do occur in our simu-
lations.

It is also informative, then, to compare the behavior of the
system when these high-energy excitations are removed, as
is often done when studying the stochastic GP equation [49].
For this reason, we apply a high-momentum filter at each time
step of the numerical integration, i.e., multiplying the Fourier

transform of the order parameter by a Gaussian function.
Physically, this process may represent intrinsic losses, such
as those due to three-body and other collisions.

When the filtration is weak (where the momentum thresh-
old above which the modes will be removed is high), we
find the behavior is generally unaffected except that the
higher-band excited states are no longer present, and the peak
structure of the target BEC becomes sharper as shown in
Fig. 14.

This can be seen more clearly through a comparison with
the unfiltered case. Figures 14(a) and 14(c) can be contrasted
with Figs. 6(a) and 6(b), while Fig. 14(b) can be contrasted
with Fig. 3(a). This comparison reveals those features arising
from higher-energy states, presumably deriving from the role
of the higher bands. For the most part, the early-time evolution

FIG. 13. Illustration of flux penetration seen at early times within intermediate heating stage.
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FIG. 14. Effects of high-energy filtering in the simulations. (a) Density image in p space at different times. (b) Population curves, as defined
in Fig. 3. At t = 500 T , the sequence of lines from top to bottom is red, purple, blue, and green. (c) Entropy as a function of time. We find that
with a moderate filtration, the system reaches a cleaner BEC state with the excitations almost completely gone. Importantly, the intermediate
heating stage is still present, and persists for a shorter period of time. The final condensation fraction is greatly enhanced. Finally, there is no
sign of long-time heating as seen from the entropy which does not increase in the long-time limit.

is similar. The oscillations which are present without filtration
are greatly diminished, thus suggesting that these may come
from higher band occupation. We stress that the chaotic, inter-
mediate heating stage is still present. We also observe that the
longer-time heating (seen in the entropy plot) vanishes with
filtration and consequently the BEC is more stable. Because
the presence of this longer-time heating appears more realis-
tic, we conclude that the unfiltered case is the more physical.
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FIG. 15. Comparison of coherence between systems with differ-
ent ramping rates at t = 6000 T . (a) Vortex (blue dot) and antivortex
(red cross) distribution of real-space wave function. (b) Absolute
value of phase correlation function g1 for real-space wave func-
tion. The ramp time is 300 T (left panel) and 30 T (right panel),
respectively.

3. Role of Kibble-Zurek mechanism

Here, we want to briefly discuss the role of the Kibble-
Zurek (KZ) mechanism. When a dynamical system crosses
a critical point like a phase transition point by ramping a
key parameter such as the shaking amplitude, the correlation
length in the ordered phase is determined by the ramping
rate. The slower the rate is, the bigger the domain size or
the correlation length. Here, one might wonder if similar
effects are responsible for defects observed in this paper. We
have a similar transition point, but the change of the band
structure and thus the ground-state wave function is abrupt
(and more first-order like) at the critical shaking amplitude
κ = 0.

Our results suggest an absence of important effects associ-
ated with the KZ mechanism. This can be seen by comparing
the real-space distribution of the vortices between cases with
different ramping rates (see Fig. 15). While the right panel in
Fig. 15 corresponds to a very fast ramp (essentially a quench),
the left panel corresponds to a slow process (with a ramping
period 10 times as long). The domain size and phase correla-
tion length are found to be comparable, indicating the lack of
important KZ effects here.

4. Strong interaction effect: Absence of condensation

It is important to investigate the effects associated with
the interaction strength U0 since the validity of Floquet pre-
dictions is based on assuming that such interactions are
negligible. GP simulations allow the simultaneous incorpora-
tion of Floquet engineering along with interaction effects. Our
results show that with a moderately large U0 the evolutionary
behavior tends to be very noisy without clearing up (see
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FIG. 16. Evolution of the p-space distribution for stronger interparticle interactions: U0 = 0.009ER. Here we increase the repulsion by a
factor of 10 compared to that used in the main text. We see that the system seems to never reach the Hofstadter BEC and remains in a chaotic
state throughout the simulation.

Fig. 16). This behavior suggests the failure to form a BEC.
Indeed, this is consistent with observations in Ref. [3], where,

when the collision rate is too high, this is seen to seriously
disturb the single-particle band structure.
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