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Reconstruction of the vibronic-state density matrix based
on pump-probe state-resolved energy spectra
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We propose a scheme based on perturbation theory to reconstruct a molecular density matrix (DM) using
the pump-probe state-resolved energy spectra. By applying the scheme to an O+

2 system produced via strong-
field ionization, we demonstrate that the reconstruction scheme can retrieve the populations and coherences of
vibrational-electronic (vibronic) states while maintaining good robustness. We further extend the strong-field
transient ionization model to include the rotational degree of freedom. The evolution of the vibronic-state DM
can be recovered, benefiting from the population stabilities between adjacent fractional revivals. The retrieved
signals quantitatively capture the distinguishing decay features of the vibronic coherences. Our strategy paves
the way toward understanding elaborate vibronic-state DMs in molecular systems.
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I. INTRODUCTION

Ultrafast coherent dynamics occurs after a set of ionic
states are prepared coherently by laser ionization [1–4]. The
established electronic coherences result in (sub)femtosecond
electronic dynamics, which is often known as charge migra-
tion [4–7]. In molecular systems, the vibrational-electronic
(vibronic) coherences correlate electronic dynamics with sig-
nificantly slower nuclear motions. Such a process is referred
to as charge transfer, which plays a key role in chemical
reactions and biological processes [8,9]. Essentially, all infor-
mation on “postionization” molecular dynamics is encoded
in the reduced density matrix (DM) of ions, that is, ρmn,
including the populations ρmm and coherences ρmn (m�=n).
To understand photoionization processes and manipulate the
subsequent coherent dynamics, it is necessary to obtain the
reduced DM of the ion ensemble.

In the last decade, different theoretical approaches were
developed to simulate photoionization processes in atomic
systems, such as the time-dependent configuration interac-
tion singles (TDCIS) method [10–12], multiconfigurational
time-dependent Hartree-Fock (MCTDHF) method [13], and
time-dependent density functional theory (TDDFT) [14]. Us-
ing these methods, properties of the reduced DM were exten-
sively studied, especially for ionic coherence [10,11,15,16]. In
general, establishing coherence requires the bandwidth of the
laser pulse to be greater than the energy separation between
ionic states. Moreover, periodic ionization provided by mul-
ticycle strong-field infrared (IR) pulses or attosecond pulse
trains can also selectively create ionic coherences [16,17]. In
contrast, for molecules, calculating the reduced DM via full
ab initio methods while considering both the nuclear motion
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and photoionization has been challenging to data. Instead, the
sudden ionization assumption is often used to investigate the
evolution of the DM in closed ionic systems. In this simplified
model, the ionic vibronic states are fully coherent and the
populations obey Franck-Condon (FC) distributions. Subse-
quently, the electronic coherences typically decay in a few
femtoseconds owing to the interplay of multiple vibrational
modes for polyatomic molecules [18–20]. Because of the the-
oretical difficulties in calculating the molecular reduced DM,
it is important to obtain a method of reconstructing it from
experimental detection signals.

With prior knowledge of the basis sets, complete de-
termination of the DM elements leads to a tomographic
reconstruction of a quantum state. For pure-state systems,
the populations and coherences are strictly associated and
can be retrieved simultaneously from the interference signals
[21,22]. However, in mixed-state systems, the populations
and coherences are not necessarily related; therefore, their
reconstructions are independent. Over the last few decades,
various strategies were proposed to achieve tomographic
reconstructions of mixed states, including (i) nonlinear wave-
packet interferometry [23], (ii) reconstruction from dedicated
designed multidimensional spectroscopy [24], and (iii) recon-
struction from terahertz-assisted photoelectron spectroscopy
[25]. The time-evolved DM of Kr+ has been experimentally
reconstructed within subfemtosecond temporal accuracy us-
ing attosecond transient absorption spectroscopy (ATAS) [1].
In general, previous studies on mixed states mainly focused on
few-state atomic systems, and related research on molecular
systems is rare because of the complexities induced by nuclear
motion. Recently, the modification of electronic coherence via
vibronic dynamics was observed in Br+

2 using ATAS, which is
a promising step toward exploiting vibronic-state coherence
[26].

In this paper, we propose a scheme to reconstruct the
mixed-state DM for atoms and diatomic molecules. The
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scheme is based on perturbation theory in combination with
state-resolved energy and quantum beat (QB) spectra. By ap-
plying the scheme on an O+

2 system, we discuss its feasibility
and robustness. Furthermore, this reconstruction scheme is
found to work well even when considering molecular rotation.

The remainder of the paper is organized as follows. In
Sec. II, we describe the theoretical framework, starting with
the quantum Liouville equations (QLEs) in Sec. II A, then the
principle of the reconstruction scheme in Sec. II B. Our results
and discussions are presented in Sec. III. In Sec. III A, the re-
construction method is first applied to the O+

2 system without
considering molecular rotation. In Sec. III B, the strong-field
transient ionization model is extended to include the rotational
degree of freedom (RDOF). The scheme is then executed on
O+

2 while considering the RDOF. Our conclusions are summa-
rized in Sec. IV. Note that atomic units are used throughout
the paper unless otherwise indicated.

II. THEORETICAL METHODS

The following theoretical methods are developed for
atomic and diatomic molecular systems and the reconstruc-
tion scheme is specifically established for diatomic molecular
systems.

A. Quantum Liouville equations

To describe the interaction between an ionic system and
probe pulses, we propagate the ionic DM by solving the
QLEs. The density operator for a mixed state is expressed as

ρ̂ =
∑

k

|�(k)〉Pk〈�(k)|, (1)

where Pk represents the probability that the ionic system is
in a pure state �(k). In a given basis of states, the DM can
be expressed as ρmn with m(n) representing the m(n)th state.
Time evolution of the DM in the driving of a laser field E (t )
is described by the QLEs

i
∂

∂t
ρmn = (Em − En)ρmn − E (t ) ·

∑
o

(umoρon − ρmouon),

(2)

where umn is the transition dipole matrix (TDM) element
between the states m and n. Em is the mth-state eigenenergy.

To investigate molecular systems without the nonadiabatic
couplings, the Born-Oppenheimer (BO) approximation is usu-
ally used [27,28]. Specifically, in the following example of
O+

2 , where there is no avoided crossing among the states a4�u,
b4�−

g , and f 4�g [shown in Fig. 2(b)], the nonadiabatic cou-
pling can be considered negligible, and the BO approximation
is a good approximation. Molecular dynamics near an avoided
crossing or conical intersection is usually complex and such
nonadiabatic dynamics is beyond the scope of this work [29].
In the BO approximation, the DM can be expressed in terms
of vibronic states ρmn

i j = 〈ψmχm
i |ρ̂|ψnχ

n
j 〉. Here, χm

i (R) and
ψm(r; R) are the wave functions of the ith vibrational state on
the mth potential energy curve (PEC) and the mth electronic
state, respectively. r and R refer to the electronic and nuclear
coordinates, respectively. Then, the vibronic-state QLEs are

expressed as

i
∂

∂t
ρmn

i j = (
Em

i − En
j

)
ρmn

i j − E (t ) ·
∑
o,l

(
umo

il ρon
l j − ρmo

il uon
l j

)
,

(3)

where umn
i j = 〈χm

i |umn(R)|χn
j 〉 is the vibronic-state TDM ele-

ment. Em
i is the eigenenergy of state |ψmχm

i 〉.
If the interaction occurs over a longer time, for example, on

a several-picosecond timescale, the molecular rotation cannot
be ignored. To include the RDOF, the density operator need
to be expanded in the rotational-vibronic (rovibronic) states
|miJM〉. The rovibronic state is expressed as a product of a
vibronic state and rotational state YJM . Here, J and M are
the rotational and magnetic quantum numbers, respectively.
The polar axis orientation is along the polarized direction
of Epump(t ). At room temperature, higher-energy rotational
states are less populated. Centrifugal distortion effects can
be neglected, which ensures the rationality of multiplying a
vibronic state with different rotational states Ylm. Inserting
|miJM〉 into Eq. (2) produces vibronic-state QLEs

i
∂

∂t
ρmn

iJM, jJ ′M ′ = (
Em

iJ − En
jJ ′

)
ρmn

iJM, jJ ′M ′

− E (t )
∑

o,l,J ′′,M ′′

(
umo

iJM,lJ ′′M ′′ρ
on
lJ ′′M ′′, jJ ′M ′

− ρmo
iJM,lJ ′′M ′′uon

lJ ′′M ′′, jJ ′M ′
)
, (4)

where umn
iJM, jJ ′M ′ = umn

i j 〈JM|ûmn · Ê|J ′M ′〉 with ûmn and Ê rep-
resenting the unit vectors of the TDM element and the electric
field. Em

iJ is the eigenenergy of rovibronic state |miJM〉, which
can be expressed as

Em
iJ =Em

i + [
Bm

e − αm
e (i + 0.5)

]
[J + (J + 1)]. (5)

Here, Bm
e is the rotational constant in the rigid rotor approxi-

mation. αm
e is the rotational-vibrational coupling constant. In

Sec. III B, the rotational constants in the example of O+
2 are

taken from NIST [30].
In the above QLEs, we ignore decoherence factors,

such as predissociation and spontaneous radiation on typ-
ical nanosecond-to-microsecond timescales [31,32] because
the maximum delay time is merely 2 ps in our simulations.
The QLEs are integrated using the fourth-order Runge-Kutta
method with a time step of 
t =2.5 a.u. Convergence is
tested by reducing the time step in selected calculations.
The delay-dependent kinetic energy release (KER) spectrum
of fragments in the vibronic-state representation can be ex-
pressed as

S(EKER, td ) =
∑

m

ρmm
dis (EKER, td )/p. (6)

Here, EKER(p) = 1
2μ

p2 is the kinetic energy with μ and p
being the reduced mass and momentum of the fragments,
respectively. ρmm

dis (EKER) is the population of the dissociative
state with energy EKER on the mth PEC. The QB spectrum in
the KER-frequency space is then calculated using

P(EKER, f ) =
∣∣∣∣
∫

dtd S(EKER, td )e−i2π f td

∣∣∣∣. (7)
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FIG. 1. (a) Illustration of the reconstruction scheme on an one-
dimensional H+

2 model. The potential of H+
2 is set to be V (x) =

−1/
√

2 + (x − 1.25)2 − 1/
√

2 + (x + 1.25)2 whose eigenenergy of
the lowest three bound states are −0.943, −0.656, and −0.410
a.u., respectively. The initial reduced density matrix of the ions
is produced via strong-field ionization of H2 by interacting with
a two-cycle 800-nm pulse with an intensity of 1×1013 W/cm2

[33,34]. In the probing step, the target states are coupled by probe 1
(two-cycle, 1×1012 W/cm2 laser pulses with w1 =0.275 a.u.), then
excited to the continua by probe 2 (ten-cycle, 1×1013 W/cm2 laser
pulses with w2 =1.1 a.u.). (b) Delay-dependent photoelectron spec-
tra. (c) Probe-2-only photoelectron spectrum S(0) and delay-averaged
photoelectron spectrum S̄(2). For clarity, the first and third peaks are
magnified by factors of 3 and 10, respectively. The relative variations
are given in percentage form. (d) Quantum beat spectrum of (b). (e)
Retrieved time domain signals T̄ (1)

mn /ρ
(0)
22 . Exact |ρ (0)

mn |/ρ (0)
22 are shown

as the horizontal lines. (f) Retrieved density matrix elements. The
coherences are denoted by (m, n) in the lower panels.

B. Principle of the reconstruction scheme

In this section, we illustrate the reconstruction scheme by
taking a three-level H+

2 model as a prototype whose DM is
generated via strong-field ionization of H2 [33,34]. A sketch
of the scheme is presented in Fig. 1(a). Generally, after pump
ionization, the ionic system is prepared as a mixed state. The
reduced DM is then detected by the delayed probe pulses,
which comprise a transition pulse (probe 1) and a narrowband
high-frequency excitation pulse (probe 2). These two probes
are separated in time and the corresponding electric fields are
given by

Ei(t ) = E0
i e−2 ln(2)[(t−t d

i )/τ ]2
cos

[
ωi

(
t − t d

i

) + φi
]
, (8)

where the subscript i = 1, 2 represents probe 1 and probe 2,
respectively. Here, τi is the pulse duration, E0

i is the electric
field amplitude, ωi is the laser frequency, φi is the carrier-
envelope phase (CEP), which is equal to 0 in calculations,
and t d

i is the center of the probes. In our strategy, the de-
lay time td is set as t d

1 . A similar form is used for the
pump pulse with the subscript i = pump. The combination
of the two probes realizes a two-step process. First, probe 1

couples the target states and mutually transfers their pop-
ulations. Second, probe 2 excites the target states to their
continuous counterparts (photoelectron spectra in the case of
the three-state H+

2 model). The bandwidth of probe 2 must
be smaller than the energy gaps among the target states to
guarantee state-resolved energy peaks in the continua. Once
the TDM elements between the target states and continua are
known, population retrieval is intuitive because the intensi-
ties of the energy peaks are proportional to the product of
the target populations and TDM elements. However, the key
problem is that accurate bound-continuum TDM elements are
almost impossible to obtain theoretically or experimentally.
In the reconstruction scheme, we bypass this difficulty by
scrutinizing the relative variations in the peak intensities.

First, we derive the perturbation formula for the DM in-
teracting with the probe-1 pulse. Starting from a pure state
�(k) =∑

mc(k)
m ψm, where c(k)

m is the amplitude of eigenstate
ψm, the m-state population at the end of probe 1 t f

1 can be
derived based on second-order perturbation theory

∣∣c(k)
m

(
t = t f

1 ; td
)∣∣2

≈ ∣∣c(k,0)
m

∣∣2+
∑

n

|umn ·Ẽ1(ωmn)|2(∣∣c(k,0)
n

∣∣2 − ∣∣c(k,0)
m

∣∣2)

+
∑

n

2Im
(
umn ·Ẽ∗

1(ωmn)c(k,0)
m c(k,0)∗

n eiwmntd
)
. (9)

Here, c(k,0)
m is short for c(k)

m (t f
pump), which is the state amplitude

at the end of the pump pulse t f
pump, ωmn=En−Em is the energy

difference, and Ẽ1 denotes the frequency component of probe
1. Then, the population in DM form can be obtained by inco-
herently superposing Pk|c(k)

m |2 over all k:

ρmm
(
t = t f

1 ; td
)

≈ ρ (0)
mm+

∑
n

|umn · Ẽ1(ωmn)|2(ρ (0)
nn −ρ (0)

mm

)

+
∑

n

2
∣∣umn · Ẽ1(ωmn)ρ (0)

mn

∣∣sin
(
ωmntd − φ1 + δ(0)

mn

)
, (10)

where δ(0)
mn is the phase of ρ (0)

mn and ρ (0)
mn =ρmn(t f

pump) is the DM
element at t f

pump, which will be reconstructed.
In Eq. (10), the first term is the zero-order term and is the

initial m-state population. The second term is a second-order
term representing the populations transferred from other target
states. The third term represents the interferences between the
zero- and first-order perturbation terms, leading to coherent
oscillations with different frequencies of ωmn. Clearly, all m-
state-related DM elements are encoded in the delay-dependent
population ρmm(td ). They are then mapped onto the continua
via excitations by the probe-2 pulses. From the analysis of
energy spectra, the DM can be reconstructed. In the follow-
ing, we describe our reconstruction strategy in four steps and
illustrate each step on the three-state H+

2 model.
(i) Delay-dependent state-resolved energy spectra

S(2)(Ec, td ) are obtained by performing pump-probe-1-
probe-2 operations. Here, Ec denotes the energy of the
continuum. The delay-averaged spectrum is then calculated
using S̄(2)(Ec) = ∫

dtd S(2)(Ec, td )/t (tot)
d with t (tot)

d being the
total delay time. The maximum intensity at each energy peak
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is denoted as S̄(2)
m , which contains information on the first

two terms in Eq. (10). In the case of the three-state model,
the delay-dependent photoelectron spectrum is calculated
using S(2)(Ec, td ) = ∑

m ρmm
c (p2

e/2, td )/pe with pe being
the electron momentum of the continua. S(2) and S̄(2) are
presented in Figs. 1(b) and 1(c), respectively. Detailed laser
parameters are given in the Fig. (1) caption.

(ii) The probe-2-only spectra S(0)(Ec, t d
2 ) are obtained by

performing pump-probe-2 operations. In principle, they are
delay independent if the probe-2 bandwidth is sufficiently
narrow. The corresponding maximum intensity at each energy
peak is denoted as S(0)

m , which only contains information on
the first term in Eq. (10). In the three-state model, S(0) is
depicted as the solid black line in Fig. 1(c).

(iii) When the bound-continuum excitation is a single-
photon process, population information is linearly stored in
the spectra S̄(2) and S(0). Based on Eq. (10), a set of linear
equations relating to the target-state populations can be estab-
lished at the state-resolved energy peaks

∑
n αmn(ρ (0)

nn −ρ (0)
mm )

ρ
(0)
mm

= S̄(2)
m −S(0)

m

S(0)
m∑

n αm′n(ρ (0)
nn −ρ

(0)
m′m′ )

ρ
(0)
m′m′

= S̄(2)
m′ −S(0)

m′
S(0)

m′
......

. (11)

Here, αmn=|umn · E1(ωmn)|2. With prior knowledge of the
TDM umn and frequency spectrum E1 (it can be de-
tected experimentally using a spectrometer), population ratios
ρ (0)

nn /ρ (0)
mm can be retrieved by inverting the above linear equa-

tions. In the case of the three-state model, the values of
(S̄(2)

m − S(0)
m )/(S(0)

m ) are labeled beside the energy peaks. Us-
ing Eq. (11), relative populations are retrieved, which are
indicated by red squares in Fig. 1(f). It can be seen that
the retrieved values agree well with the exact values (black
circles).

(iv) To retrieve coherences, the QB spectrum must be
calculated. Figure 1(d) shows the QB spectrum of the delay-
dependent signals S(2)(td ) in the three-state model. Each QB
corresponds to one pair of states, labeled as (m, n). By per-
forming the inverse Fourier transform on each isolated QB at
its energy peak, oscillation signals T (1)

mn (td ) with a frequency
of ωmn can be distilled whose envelope is denoted as A(1)

mn(td ).
According to Eq. (10), the relative coherence amplitude can
be obtained as ∣∣ρ (0)

mn (td )
∣∣

ρ
(0)
m′m′

= A(1)
mn(td )

2
√

αmnS(0)
m

ρ (0)
mm

ρ
(0)
m′m′

. (12)

In Fig. 1(e), we display the inverse-Fourier-transformed sig-

nals in the form of T̄ (1)
mn /ρ

(0)
m′m′ = |T (1)

mn |
2
√

αmnS(0)
m

ρ (0)
mm

ρ
(0)
m′m′

. Exact values of

|ρ (0)
mn |/ρ (0)

m′m′ are also presented by horizontal lines for com-
parison. As shown, the amplitudes of the retrieved oscillation
signals are slightly smaller than the exact values. These inac-
curacies are caused by the high-order perturbation terms and
can be reduced by using weaker probe-1 pulses. The retrieved
coherence amplitudes are represented as blue diamonds in
Fig. 1(f). Furthermore, the phase δ(0)

mn of the coherence ρ (0)
mn

can be derived directly from the phase at the frequency center
of the QB. Note that phase retrieval is not a focus of this study
and is not discussed in detail in this paper.

FIG. 2. (a) Illustration of the reconstruction on the O+
2 system

at θ =90◦. The neutral O2 is first ionized by the pump pulse. Then
the generated ionic mixed-state interacts with the probe pulses. The
polarized directions of probe 1 and probe 2 are perpendicular. Dis-
sociation signals are detected along the polarized direction of probe
2. (b) Potential energy curves of O+

2 . The gray area represents the
region of vertical ionization. (c) The populations and (d) degrees of
coherences of the vibronic states at θ =90◦ calculated by the transient
ionization model. A 790-nm 15-fs pump pulse with the intensity of
1.5×1014 W/cm2 is adopted to ionize the neutral molecules.

As proof of principle, the reconstruction results for the
three-state model demonstrate the feasibility of our scheme.
To ensure that the scheme operates normally, several criteria
need to be pointed out. First, the number of equations in
Eq. (11) should be greater than or equal to N−1, where N
is the number of target states. Extra equations further restrict
relations among the target states, leading to more reliable
results. Second, the laser intensity of probe 1 cannot be signif-
icantly high because this method operates in the perturbation
region. A rough estimate of the intensity is given by αmn<

0.05. Third, significant relative variations (S̄(2)
m −S(0)

m )/S(0)
m

would be beneficial to experimental measurements. This re-
quires large population differences between target states. Such
a condition can be readily satisfied in molecular systems be-
cause there are always vibronic states at the edge of the FC
region with small populations.

III. RESULTS AND DISCUSSIONS

A. Reconstruction of density matrix on O+
2 without molecular

rotation

In this section, we apply the reconstruction method to a
strong-field ionized O2 system without the RDOF. Figure 2(b)
displays the related PECs of O+

2 . The vibronic states of the
first and second excited electronic states, a4�u and b4�−

g ,
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respectively, are chosen to be the reconstruction targets, de-
noted as v

a(b)
i( j) . For these two states, previously calculated

spectroscopies using a multireference configuration interac-
tion (MRCI) method have achieved high accuracies [35].
Additionally, various experiments focusing on dissociative
ionization and nuclear dynamics on O2 and its ions were
reported [36–39]. The results can be quantitatively reproduced
by considering the bound a4�u, b4�−

g , and dissociative f 4�g

states [38]. In the following reconstructions, the dissociation
signals are detected to produce the state-resolved energy spec-
tra. Throughout the simulations, dipole transitions from other
electronic states are not included since they fall outside the
resonant region because of the laser parameters used here.

1. Vibronic-state transient ionization model

Before the reconstruction, we adopt a transient ionization
model to assess the reduced DM of O+

2 after strong-field ion-
ization. This model was originally applied to atomic xenon,
and the results were in good agreement with those calculated
using the TDCIS method [16]. Recently, we extended this
model to molecular systems and verified its validity on a
one-dimensional H+

2 system [34]. For strong-field ionization
with multiple vibronic states involved, the DM at the end of
the pump pulse t f

pump can be expressed as

ρmn
i j

(
t f
pump

) =
∫ t f

pump

−∞
dt

√
�m

i (t )�n
j (t )

× sgn[Epump(t )](2−Pm−Pn)/2eiωmn
i j (t f

pump−t ). (13)

Here, �m
i (t ) represents the transient ionization rate from neu-

tral to the ionic state vm
i at instant time t and can be modeled

by the product of the ionization rate at the neutral equilib-
rium and the FC factor, �m

i [Epump(t )]=�m[Epump(t )]cm(FC)2
i .

Pm(n) describes the inversion symmetry of the ionization
orbital, with 1(−1) representing the g(u) symmetry. This
equation can be interpreted as follows. At each ionization
instant, a pure state is populated according to the tran-
sient ionization rate before propagating freely. Finally, these
pure states are superimposed at t f

pump so that a mixed state
is constructed. In fact, after each transient ionization, the
wave packets still couple with each other under the influ-
ence of the residual pump field [34,38]. To account for
the laser coupling effect, we prepare the pure-state DM at

t as ρ
mn(ins)
i j (t )=

√
�m

i �n
j sgn[Epump(t )](2−Pm−Pn)/2, then propa-

gate it in the residual pump field by solving the QLEs.
At the end of the pump pulse, the mixed-state DM reads

ρmn
i j =∫ t f

pump

−∞ dtρmn(ins)
i j (t f

pump, t ), where ρ
mn(ins)
i j (t f

pump, t ) is the

pure-state DM at t f
pump propagated from t . A more detailed

discussion can be found in Ref. [34].
In the simulations, the ionization rate is calculated by the

molecular Ammosov-Delone-Krainov (MO-ADK) theory and
denoted as �ADK

m (θ, t ), which depends on the angle θ between
the laser polarization and molecular axis [40]. Using a pump
pulse with an intensity of 1.5 × 1014 W/cm2, we calculate the
reduced DM of O+

2 . Taking the angle of 90◦ as an example,
Figs. 2(c) and 2(d) show the vibronic-state populations and de-
grees of coherences (DOCs), respectively. The DOC between

two vibronic states is given by gmn
i j = |ρmn

i j |/√ρmm
ii ρnn

j j whose
value varies between 0 and 1. As shown, the local maxima of
the DOCs are distributed around ωab

i j ≈ωpump. This is because
the ionization orbitals, 1πu for a4�u and 3σg for b4�−

g , have
opposite parities [16,34]. Moreover, it is clear in Fig. 2(c) that
the population differences between vb

0 − vb
6 and va

6 − va
14 are

significantly large, which satisfies the third criterion stated in
Sec. II B. In this case, the populations transferred from vb

j to va
i

will induce large relative variations in the KER peaks, which
facilitates experimental measurements.

2. Reconstruction process and results

Now we reconstruct the DM elements of O+
2 at θ =90◦.

The DM calculated using the transient ionization model is
henceforth described as “exact.” The sketch of the reconstruc-
tion is illustrated in Figs. 2(a) and 2(b). Based on the selection
rule, the TDM elements of a4�u-b4�−

g and a4�u- f 4�g are
perpendicular and parallel to the molecular axis, respectively.
Therefore, the polarized direction of probe 1 is set parallel
to the pump pulse (0◦) to couple the states a4�u and b4�−

g .
The polarized direction of probe 2 is along the molecular
axis (θ = 90◦) to initiate excitation from a4�u to f 4�g. The
dissociation signals are detected along the polarized direction
of probe 2. For such a three-state system of O+

2 , Eq. (11) needs
to be replaced by

∑
j α

ab
i j

(
ρ

bb(0)
j j − ρ

aa(0)
ii

)
ρ

aa(0)
ii

= S̄a(2)
i − Sa(0)

i

Sa(0)
i

, (14)

where αab
i j = |uab

i j ·Ẽ1(ωab
i j )|2. S̄a(2)

i and Sa(0)
i denote the inten-

sities of the va
i -state KER peaks of the spectra S̄(2) and S(0),

respectively. Because the dipole transition from b4�−
g to f 4�g

is forbidden, the number of linear equations established from
the KER peaks always equals the number of target states va

i
in one set of pump-probe signals. To retrieve the vb

j -state pop-
ulations, it is necessary to establish more equations. For this
purpose, we adopt two sets of probe-1 pulses with frequencies
of 0.05 and 0.055 a.u. Their pulse durations and intensities are
two optical cycles and 1 × 1012 W/cm2, respectively. Under
these laser parameters, vb

0 −vb
6 can be resonantly coupled to

va
6 −va

11. To excite va
6 −va

11 and produce a state-resolved KER
spectrum, a 40-fs 635-nm pulse with an intensity of 2×1012

W/cm2 is adopted as probe 2. Note that this wavelength is not
unique and other wavelengths can also be used as long as the
target states va

i are excited to the continua.
Figure 3(a) shows the delay-dependent KER spectra at

ω1 = 0.055 a.u. The energy peaks are separated owing to the
narrow bandwidth of probe 2. For each peak, there are weak
∼30 fs and evident 2–3-fs oscillations along the delay time,
which intrinsically stem from the vibrational and vibronic
coherences, respectively. Here, the words “vibrational” and
“vibronic” denote the vibrational states in the same electronic
PEC and different electronic PECs, respectively. By averaging
the signals over the delay times, the spectrum S̄(2) is obtained,
as indicated by the red dashed line in Fig. 3(b). The spectrum
S̄(2) at ω1 = 0.05 a.u. and the probe-2-only spectrum S(0) are
also presented as the blue dotted and black solid lines, respec-
tively. Beside each peak, the relative variations are given in
percentage form. Given these values, 12 linear equations are
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FIG. 3. (a) Delay-dependent KER spectra at ω1 = 0.055 a.u.
(b) Delay-averaged S̄(2) and probe-2-only S(0) spectra. Relative vari-
ations (S̄a(2)

i − Sa(0)
i )/Sa(0)

i are given in the form of percentage next
to the energy peaks. Corresponding state va

i of each peak is la-
beled on the right. (c) Quantum beat spectrum of (b). (d) The
retrieved time-domain signals T̄ ab(1)

i j (td )/ρaa(0)
99 from several vibronic

QBs [red boxes in (c)]. Exact values of |ρab(0)
i j |/ρaa(0)

99 [labeled by
(i, j)] are presented as horizontal lines for comparison. In retrieving
the time-domain signals, a Nuttal window is used to improve the
signal-to-noise ratio.

established according to Eq. (14). By inverting the set of linear
equations, we retrieve the relative populations of va

6 − va
11 and

vb
0 − vb

6. The results are shown as black squares in Figs. 4(a)
and 4(b), where the error bars represent the stability of the re-
construction and will be discussed in the next section. Clearly,
the retrieved populations agree well with the exact populations
especially for the states va

6 − va
11.

Next, we reconstruct the coherence amplitudes based on
the retrieved relative populations. Figure 3(c) shows the QB
spectrum at ω1 = 0.055 a.u. The vibronic QB reflects the
coherence between states va

i and vb
j . Following the recon-

struction step (iv), the time-domain signals are obtained
by performing the inverse Fourier transform on the QBs
at peak crests. Figure 3(d) shows several retrieved signals
T̄ ab(1)

i j (td )/ρaa(0)
99 whose maximum amplitudes match the exact

values |ρab(0)
i j |/ρaa(0)

99 (horizontal lines) well.
So far, our retrieved populations and coherence amplitudes

have been in excellent agreement with the exact values for the
O+

2 system. This demonstrates the capability of the scheme
in reconstructing the vibronic-state DM for real molecules.
Note that the CEPs of the pump and probe-1 pulses must
be synchronized when detecting the vibronic coherences to
guarantee subcycle time resolution [34]. Otherwise, the vi-
bronic coherences will be hidden in the random fluctuations
of the delay-dependent signals, which are usually ignored and
regarded as noise signals in experiments. After averaging over
delay times, the coherence-induced fluctuations disappear.

FIG. 4. Retrieved relative populations of (a) va
i and (b) vb

j at
θ =90◦ for the case ω1 = 0.05 and 0.055 a.u. Error bars are given
by the standard deviations of the mean values. Results considering
the systemic errors of 85%αab

i j and 115%αab
i j are represented as the

blue inverted triangles and red triangles, respectively. Exact values
are represented as hollow circles connected by solid lines. (c), (d)
Same as (a), (b), but with ω1 = 0.04 and 0.045 a.u. (e), (f) Same as
(a), (b), but at θ =60◦. (g), (h) Same as (a), (b), but considering the
volume effect. “VI” refers to relative values of the volume-integrated
density matrix elements, ρ̄

aa(0)
ii /ρ̄

aa(0)
99 or ρ̄

bb(0)
j j /ρ̄

aa(0)
99 .

However, the S̄(2) signals can still be extracted to retrieve the
relative populations. In other words, there are no restrictions
on the CEPs in the retrieval of populations.

3. Robustness of the reconstruction scheme

In this section, we discuss the robustness and reliability
of the reconstruction scheme. From the steps described in
Sec. II B, it can be deduced that accurate reconstruction of the
DM fundamentally relies on the precise retrieval of the rela-
tive populations. According to Eqs. (11) and (14), two types of
reconstruction errors will be produced after solving the linear
equations. The first is the random error derived from impre-
cisions in the relative variations (Sa(2)

i − Sa(0)
i )/Sa(0)

i . These
imprecisions can be caused by the experimental measurement
errors and the setup instabilities. We simulate the random
errors by adding random fluctuations within ±3% to the KER
signals at every delay time. By repeatedly performing the re-
construction steps (i) to (iii), a series of retrieved populations
are obtained. The resulting random errors are exhibited as
error bars on the retrieved values, as shown in Fig. 4. The
second type of reconstruction error is referred to as the sys-
tematic error. This originates from the inaccurate estimate of
αab

i j , which depends on the TDM element uab
i j and the estimate
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of Ẽ1. Currently, molecular spectroscopic parameters can be
calculated via high-level quantum-chemistry-based methods
[27,35]. Accuracies in vibronic-state TDM elements are usu-
ally verified by comparing the calculated radiative lifetimes
with experimental measurements [41,42]. For Ẽ1, the accuracy
depends on the calibration of the laser intensity. Generally,
traditional calibration methods have large errors when deter-
mining laser intensities; for example, when normalizing the
signal yields to the ADK rates or calculating the laser inten-
sity at the focus using experimental parameters. However, in
recent years, new calibration strategies with a few percent in-
accuracies were proposed and achieved [43,44]. Considering
the inaccuracy of both uab

i j and Ẽ1, we introduce the systematic
error by multiplying αab

i j by a constant of 85% or 115% in
Eq. (14). As shown in Figs. 4(a) to 4(f), the systematic errors
are exhibited as deviations from the exact values.

For the case of ω1 =0.055 and 0.05 a.u., Figs. 4(a) and
4(b) show the retrieved populations with errors. Both the
systematic and random errors are larger for states vb

j than
states va

i . The reason fundamentally lies in Eq. (14). In ef-
fect, it is the relative populations ρ

bb(0)
j j /ρ

aa(0)
ii that are being

retrieved. Given an inaccuracy of ρ
bb(0)
j j /ρ

aa(0)
ii , the error of

ρ
bb(0)
j j or ρ

aa(0)
ii is proportional to its own value. Consequently,

the error bars and deviations are larger for states vb
i with larger

populations. For the systematic errors, 85%αab
i j (115%αab

i j )
leads to a unified increase (decrease) in the retrieved values.
This is because ρ

bb(0)
j j /ρ

aa(0)
ii is inversely proportional to αab

i j in
Eq. (14). For the random errors, the error bars for vb

0 and vb
6

are especially larger in Fig. 4(b). This is caused by the small
values of αab

i0 and αab
i6 , which connect vb

0 and vb
6 to the KER

spectra. Thus, vb
0 and vb

6 can only exert limited influence on
the KER spectra. Conversely, slight disturbances in the signals
can cause noticeable errors on the retrieved populations of vb

0
and vb

6.
In our scheme, the target states can be selected by con-

trolling the probe-1 parameters. For example, by changing
ω1 to 0.045 and 0.04 a.u., the states va

i with higher energies
are resonantly coupled with vb

0 − vb
6. Figures 4(c) and 4(d)

show the corresponding retrieved results. As shown, the rel-
ative populations of va

8-va
14 can be retrieved accurately in this

case. To further demonstrate the universality of the scheme,
we also proceed with the retrieval at θ = 60◦. The results
are presented in Figs. 4(e) and 4(f). The different population
distributions at θ = 60◦ are perfectly recovered. This indicates
that tomography of the angular dependent DM can be realized
by adjusting the polarized directions of the pump or probe
pulses.

Experimentally, depending on where strong-field ion-
ization happens to occur within the pump beam, ionized
molecules should be characterized by a position-dependent
DM. Actually, with different types of probe-2 pulses, two
different levels of reconstructions can be achieved: (1) Recon-
struction of the volume-integrated DM and (2) reconstruction
of the position-dependent DM. In both cases, the volume
effect of the probe-1 pulse can be neglected. This is due
to the weak intensity of probe 1, ∼1012 W/cm2, which is
two orders of magnitude lower than that of the pump pulse.
Therefore, the probe-1 beam can be loosely focused in the

experiment, so that its waist radius is significantly larger than
that of the pump beam and the probe-1 spatial intensities are
nearly flat within the pump focus. For the reconstruction of
the volume-integrated DM, probe 2 is still set to be an IR
pulse to induce the one-photon dissociation. Similar to probe
1, the probe-2 pulse is also weak (∼1012 W/cm2) and can be
loosely focused. Then its waist radius is much larger than
that of the pump. The volume effect is only contributed by
the pump beam. In the example of O+

2 , the volume-integrated
KER spectrum for a pump beam with a spatial peak intensity
I0 is calculated using S(vol)(I0) = ∫ I0 S(I ) ∂V

∂I dI , where S(I ) is
the KER signals at a pump intensity I and ∂V

∂I dI is the dif-
ferential volume at that intensity [45,46]. Considering a thin
ensemble slit along the beam direction, dV can be given in a
two-dimensional (2D) configuration dV = π

2 lr2
0

dI
I [47]. Here,

l and r0 are the width of the slit and the waist radius of the
pump beam, respectively. Using the volume-integrated KER
spectra and following the reconstruction steps in Sec. II B,
the “effective” DM elements are retrieved. The results are
shown in Figs. 4(g) and 4(h). The reconstructed DM ele-
ments are compared with the volume-integrated ones, which
are expressed as ρ̄mn

i j (I0) = ∫ I0 ρmn
i j (I ) ∂V

∂I dI . Here, ρmn
i j (I ) is

the intensity (position)-dependent DM. It is clear that the
volume-integrated DM elements ρ̄mn

i j can still be retrieved
quantitatively while considering the volume effect. It is worth
noting that ρ̄mn

i j is of practical significance. If the volume effect
of probe pulses is negligible and the signals are generated via
linear processes, such as single-photon dissociation and ion-
ization, the molecule ensemble can be described sufficiently
by the volume-integrated DM. To reconstruct the position-
dependent DM, broadband extreme ultraviolet or x-ray pulses
should be adopted as probe 2 whose beam can be focused to
a much smaller size than the pump beam [1,2,48,49]. In this
scenario, a well-defined pump-intensity region is selected by
probe 2 and the position-dependent DM can be reconstructed
by using photoelectron spectra. The procedure is similar to
the steps used on the three-state model in Sec. II B, where
photoelectron spectra are also used as the continua.

In principle, preparation of the target system is not lim-
ited by the ionization mechanisms in the reconstruction of
the DM. Whether laser or collision ionization, less-populated
vibronic states always exist, which can be used to generate the
state-resolved KER spectra. Corresponding KER peaks will
possess large relative variations induced by dipole transitions
from other target states, which are easier to be measured
experimentally and used to reconstruct the DM. However,
there is one drawback of using the KER spectra as the energy
spectra. Namely, multiple sets of pump-probe experiments
must be performed to obtain sufficient equations in such V-
type system of O+

2 (b4�−
g −a4�u− f 4�g). This drawback can

be overcome by using other state-resolved energy spectra,
such as the absorption spectra or the photoelectron spectra. In
this case, the relative variations (S(2) − S(0) )/S(0) originating
from all the target states are simultaneously probed. Sufficient
linear equations can be established solely from one set of the
pump-probe experiment. The downside is that several of the
relative variations would be too small to be detect experimen-
tally. Therefore, high-precision measurement is required. In
general, the reconstruction scheme can be readily applied to
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more complex molecules. The premise is that the target states
must be connected by dipole couplings.

B. Reconstruction of density matrix on O+
2 with molecular

rotation

After pump ionization, the ionic DM essentially evolves
under the influence of molecular rotation, which has a typi-
cal timescale of picoseconds. In this section, we explore the
feasibility of the reconstruction while considering molecular
rotation.

1. Rovibronic-state transient ionization model

First, we extend the transient ionization model described
in Sec. III A to include the RDOF. Generally, for an initial
DM, before interaction with any laser pulse, it is assumed
that the ensemble of rovibronic states reaches thermal equi-
librium [50,51]. In the example of O2, the rovibronic states
in the ground electronic state X 3�−

g of O2 are assumed to
be prepared initially in an incoherent manner and populated
according to the Boltzmann distribution. At room temperature
of T = 300 K , the excited vibrational states of X 3�−

g have
negligible population, so the rovibronic state can be simply
denoted as |0JM〉, where |0〉 represents the ground vibrational
state of X 3�−

g . For transient ionization from one single state
|0JM〉 at an instant time t , the released electrons related to
different ionic rovibronic states |miJ+M+〉 eventually possess
the same momentum at the end of the pump pulse t f

pump.
By tracing out the degree of freedom of the free electrons,
a coherent superposition of |miJ+M+〉 is established. In the
assumption of sudden ionization, the amplitude of |miJ+M+〉
is given by the product of the overlap integral 〈miJ+M+|0JM〉
and the ionization rate

√
�ADK

m (θ, t ). In this case, two con-
ditions guarantee a nonzero amplitude: The first is M+ =M
and the second is that the two rotational states have the same
parity. By incoherently summing up the pure states generated
from all the rotational states |0JM〉, a mixed state is produced
at t . The corresponding instant DM is given by

ρ
mn(ins)

iJ+ M+, jJ+′
M+′ (t ) = 〈mi|0〉〈0|n j〉

∑
J,M

CBol
J 〈J+

M+|
√

�ADK
m

× |JM〉〈JM|
√

�ADK
n |J+′

M
+′ 〉

× sgn[Epump(t )](2−Pm−Pn)/2, (15)

where 〈mi|0〉 = cm(FC)
i is the square root of the vibronic-state

FC factor, CBol
J is the coefficient of the Boltzmann distribution,

and the final exponential term represents the parity effect of
the electronic ionization orbitals. By integrating over the pulse
duration, the rovibronic-state DM at t f

pump is obtained

ρmn
iJ+M, jJ+′

M

(
t f
pump

)=
∫ t f

pump

−∞
dtρmn(ins)

iJ+M, jJ+′
M

(t )e
−iωmn

iJ+ , jJ+′ (tf−t )
. (16)

Here, ωmn
iJ+, jJ+′ =Em

iJ+ − En
jJ+′ is the energy gap between two

rovibronic states. To account for the dipole coupling effect
during the pump pulse, the instant DM, ρ

mn(ins)

iJ+ M, jJ+′
M

, is fur-

ther propagated in the residual electric field by solving the

rovibronic-state QLEs. Thus, the mixed-state DM at t f
pump is

given by

ρmn
iJ+M, jJ+′

M

(
t f
pump

) =
∫ t f

pump

−∞
dtρmn(ins)

iJ+M, jJ+′
M

(
t f
pump, t

)
, (17)

where the integrand is the DM element at t f
pump propagated

from t .
In the following, we focus on the influence of the RDOF on

the vibronic-state DM. First, the rovibronic-state reduced DM
of O+

2 is calculated using Eq. (17) with the same pump pulse
used in Fig. 2. In the calculation, only the rovibronic states
of a4�u and b4�−

g are considered when solving the QLEs
during the pump pulse. This is because that the rovibronic
states of f 4�g have negligible effect on the generation of
the bound-state DM. After calculating ρmn

iJ+M, jJ+′
M

, the angular

dependent vibronic-state DM is produced by summing up all
the rotational states

ρmn
i j (θ )=

∑
J+J+′

M

ρmn
iJ+M, jJ+′

M
Y ∗

J+M (θ )Y
J+′

M
(θ )e

iωmn
iJ+ , jJ+′ td

. (18)

Figures 5(a) and 5(b) display the angular-dependent va
i -

state populations at t f
pump without and with the RDOF,

respectively. In general, similar patterns are displayed in both
cases. Only slight differences are observed around θ ≈ 0◦.
Specifically, the populations at θ = 0◦ obey and deviate from
the FC distribution in Figs. 5(a) and 5(b), respectively. In
the case without the RDOF, the FC distribution is caused
by the sudden ionization assumption and the disappearance
of the a4�u-b4�−

g dipole transitions at θ = 0◦. In the case
with the RDOF, the deviations at θ = 0◦ are entirely induced
by dipole coupling between the rovibronic states of a4�u

and b4�−
g . For other angles, the population distributions are

almost the same in these two cases. To illustrate this point, we
present the va

i -state populations at θ = 90◦ as hollow circles in
Figs. 5(a) and 5(b) (right y axis); as shown, they are basically
identical. To further compare the coherences in the two cases,
Figs. 5(c) and 5(d) show the vibronic DOCs at θ = 90◦. Note
that their patterns are extremely similar. The maximum value
in Fig. 5(d) remains close to 1 when considering molecular
rotation. This indicates that the RDOF has limited effects on
the generation of the vibronic-state reduced DM when strong-
field ionization occurs on a timescale of tens of femtoseconds.

However, as the delay time increases, the RDOF begins
to influence the vibronic-state DM. Figure 5(e) shows the
va

i -state populations at θ = 90◦ as functions of the delay
time. Note that the populations exhibit revival structures at
approximately 4 and 8 ps, which correspond to the 1/4 and
1/2 fractional revivals of a4�u, respectively. The full rota-
tional revival periods Trev = h/(2Bm

e ) are 15.10 ps for a4�u

and 12.96 ps for b4�−
g . Figure 5(f) presents several vibronic

and vibrational DOCs at θ = 90◦. As shown, both decrease
rapidly with increasing delay time. Specifically, the vibra-
tional DOCs [labeled as (i, i′)aa] decay exponentially within
several picoseconds, whereas the vibronic DOCs [labeled as
(i, j)] decay significantly faster within one picosecond, and
fluctuate with small values (<0.3) in the subsequent free
evolutions. Generally, the distinguishing decoherences origi-
nate from the destructive interferences of the rotational states,
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FIG. 5. (a), (b) Angular-dependent va
i -state populations (left y

axis). The populations at θ =90◦ are depicted as the hollow circles
connected by solid lines (right y axis). (c), (d) Degrees of vibronic
coherences at θ =90◦. Left panels represent the results calculated
by the vibronic-state transient ionization model [without rotational
degree of freedom (RDOF)], right panels by the rovibronic-state
transient ionization model (with RDOF). (e) va

i -state populations at
θ = 90◦ as functions of the delay time. (f) Several time-evolving
vibrational and vibronic degrees of coherences θ = 90◦. (i, j) and
(i, i′)aa represent the vibronic and vibrational state pairs, respectively.

that is, dephasing of the exponential terms in Eq. (18). The
energy gaps among the rotational states in the same electronic
state are significantly smaller than those in separate electronic
states. Therefore, more time is required for the rotational
states to become out of phase when they are in the same
electronic state, leading to the slower decoherences of the
vibrational DOCs.

In terms of electronic coherences, the decoherences and
recoherences are found to occur periodically in diatomic
molecules owing to nuclear vibrational motions [26,34]. Our
theoretical results indicate that, once the RDOF is considered,
the electronic recoherences will be attenuated on a timescale
as short as subpicosecond because of the rapidly decay-
ing vibronic coherences [see Fig. 5(f)]. This finding agrees
with several experimental observations in small molecules,
in which the picosecond decays of the electronic coherences
produced by either laser excitation or ionization have been
probed by high-harmonic or ion spectroscopy [3,52]. For
polyatomic molecules, the molecular rotation barely affects

the electronic decoherence because coherence typically de-
cays on a timescale of a few femtoseconds. The decoherence
mechanism is dominated by the interplay of multiple vibra-
tional modes [18–20].

2. Reconstruction process and results

Essentially, this reconstruction scheme is used to retrieve
the DM elements represented by a set of stationary states.
Once the RDOF is considered, the vibronic states are no
longer stationary, and their populations and coherences evolve
over time. However, as shown in Fig. 5(e), the va

i -state and
vb

j -state populations are almost constant between adjacent
fractional revivals. This feature allows the nearly stable pop-
ulations to be retrieved using our method. To verify the
feasibility, we choose the vibronic-state DM at θ = 90◦ as
the target. The setups of the pump and probe pulses are the
same as in Fig. 2(a). In this case, the magnetic quantum
numbers M of |miJ+M〉 populated by the pump pulse do not
change during the subsequent interactions with the probe-1
pulses. In the calculations, the vibronic-state QLEs [initial
DM for each delay is obtained by Eq. (18) with td replaced
by td −2.5τ1] and rovibronic-state QLEs provide almost iden-
tical population transfers between a4�u and b4�−

g when only
probe 1 is used. Therefore, as an approximation, we solve
the vibronic-state QLEs to calculate the KER spectra in the
driving of the two probes. Namely, we assume that the RDOF
has limited influence on the results for an interaction with
tens-of-femtosecond laser pulses. To further reduce the effects
of the RDOF, the probe-2 pulses can be replaced by shorter
x-ray pulses generated at the free electron laser (FEL) facility
[53].

Subsequently, we apply the reconstruction scheme in the
delay interval 700–1400 fs [shaded area in Figs. 5(e) and 6],
during which the populations are stable. In the reconstruction,
the same probe pulses as in Fig. 4(c) are adopted. Figure 6(a)
presents the delay-dependent KER spectra at ω1 = 0.045 a.u.
By comparing this with Fig. 3(a), it is found that the coherent
oscillations with the RDOF are much weaker than those with-
out the RDOF. This is considered reasonable since the DOCs
significantly reduced after the pump pulse [see Fig. 5(f)].
Following the reconstruction steps (i) to (iii), we retrieve the
relative populations, which are shown as hollow squares in
the shaded area of Figs. 6(b) and 6(c). The error bars orig-
inate from the ±3% random fluctuations of the dissociation
signals and are very small so that a stable reconstruction
is guaranteed. The populations outside the shaded area are
then obtained by calibrating the delay-dependent intensities
of the va

i -state-resolved KER peaks using solely the probe-
2 pulses. These retrieved populations at several delay times
are also indicated by hollow squares. Clearly, the retrieved
results are in good agreement with the exact values. Based
on the retrieved relative populations, the associated vibronic
coherences can readily be obtained by performing an inverse
Fourier transform on the QBs. Figure 6(d) shows several
retrieved time domain signals T̄ ab(1)

i j /ρ
aa(0)
99 . For comparison,

the exact values of |ρab(0)
i j |/ρaa(0)

99 are also given as the red
dashed lines. The amplitudes of the retrieved signals repro-
duce the distinguishing decay features of the coherences well.
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FIG. 6. (a) Delay-dependent KER spectra at ω1 =0.045 a.u. Re-
construction strategy is applied in the delay interval 700–1400 fs
(shaded area). Retrieved relative populations of (b) va

i and (c) vb
j

(hollow squares) at some delay times. Exact populations are shown
as the black dotted and blue solid lines. The vibronic states are
labeled by i and j at 1400 fs on the right. (d) Several retrieved time
domain signals T̄ ab(1)

i j /ρ
aa(0)
99 . Exact relative coherences |ρab(0)

i j |/ρaa(0)
99

[labelled by (i, j)] are shown as the red dashed lines.

This implies that the reconstruction scheme is still capable of
retrieving vibronic-state DM elements when considering the
RDOF.

In the above reconstructions, the key point is to find
a time interval in which the target populations are rela-
tively stable. The stabilities can be verified by analyzing
the delay-dependent energy spectra using solely the probe-
2 pulses. In the framework of the rovibronic-state transient
ionization model, further calculations indicate that popu-
lation stabilities still exist at higher laser intensities of
∼1015 W/cm2.

IV. CONCLUSION

In summary, we propose a pump-probe reconstruction
scheme to retrieve mixed-state DM elements. This scheme is
particularly suitable for the reconstruction of a molecular DM
in the basis of vibronic states. We apply the reconstruction
scheme to an O+

2 system produced by strong-field ionization.
Quantitative agreements between the retrieved DM elements
and the exact values indicate the feasibility of the scheme.
Robustness tests indicate that this scheme is reliable against
random and systematic errors, which derive from signal in-
stabilities and the inaccurate calibration of laser intensity,
respectively. To explore the influence of molecular rotation,
we further extend the strong-field transient ionization model
by including the RDOF. We find that the RDOF plays a
negligible role in the generation of the vibronic-state DM
by strong-field ionization on a femtosecond timescale. How-
ever, during the subsequent free evolution, dephasing of the
rotational states results in decays of the vibronic and vibra-
tional coherences on timescales of subpicosecond to several
picoseconds. But the vibronic-state populations remain stable
between adjacent fractional revivals. Benefiting from the sta-
bilities, the scheme still works and is capable of reconstructing
the evolving DM.

Note that it is essential to ensure the CEPs of the pump
and probe pulses are synchronized when retrieving the vi-
bronic coherences. Otherwise, the vibronic coherences will be
hidden in random fluctuation signals, while the relative popu-
lations remain retrievable. Overall, our reconstruction method
is general and can be applied to other complex molecules on
the condition that the target states are connected by dipole
transitions. The target DM is not limited by generation mech-
anisms, such as laser excitation or ionization and collision
ionization. The key point of the reconstruction is to find a
delay interval in which the populations are stable.
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