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Nondipole effects in tunneling ionization by intense laser pulses
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The limit of decreasing laser frequency cannot be considered independently from nondipole effects due to the
increase in the laser-induced continuum electron speed in this limit. Therefore, in this work, tunneling ionization
in the adiabatic limit is considered for an effective field that includes effects beyond the electric-dipole term to
first order in 1/c, with c being the speed of light. The nondipole term describes the interaction resulting from
the electric dipole-induced velocity of the electron and the magnetic-field component of the laser. The impact
of this term on the ionization rate, tunnel exit point, momentum at the tunnel exit, and electron dynamics is
discussed. In the appropriate limit, the results of a nondipole strong-field approximation approach and those of
the strict adiabatic limit, where time and field strength are parameters, are discussed. The nondipole strong-field
approximation approach is used to identify nonadiabatic modifications of the initial conditions. The results open
up an avenue to include nondipole effects in the initial tunneling ionization step in semiclassical models of
strong-field and attosecond physics.
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I. INTRODUCTION

Single ionization of atoms and molecules is the initial key
process that triggers a range of dynamics in strong-field and
attosecond physics [1,2]. The force on the electron from the
field may steer it back to scatter on the parent ion. This
laser-driven electron motion may lead to high-harmonic gen-
eration, high-energy above-threshold ionization, or multiple
ionization [3]. The initial ionization step is also key in the
interpretation of, e.g., attoclock experiments [4–6], as well
as in time-resolved perspectives on laser-induced electron
diffraction [7,8] and strong-field holography [9,10].

When the angular frequency ω of the laser pulse is much
smaller than the ionization potential Ip (atomic units are used
throughout), the active electron adjusts to the instantaneous
value of the electric field such that ionization may be de-
scribed by static tunneling at an instant in time. This regime is
referred to as the strict adiabatic limit, and this is the regime of
main consideration in this work. In this regime time and field
strength of the laser pulse are parameters in the modeling of
the ionization process. As discussed below, the treatment of
this limit is complicated by the fact that it cannot be consid-
ered independently from a consideration of nondipole effects
[11,12].

Setting aside for a moment these latter nondipole-related
complications, a typical way to proceed is as follows. Af-
ter the adiabatic tunneling step, field-induced dynamics take
place. These dynamics can be captured by classical consider-
ations [3] and, when including phases along the trajectories,
can be used for analysis of interference structures in photo-
electron momentum distributions [13,14]. As a result, in the
adiabatic regime, semiclassical simulation models, where the
first step is quantum-mechanical tunneling and the second is
classical propagation from the exit point (a concept justified,
e.g., by Bohmian analysis [15]), are among the most used

approaches in studying strong-field phenomena. This ap-
proach is often referred to as the two-step model when used
for ionization. When high-harmonic generation is considered,
one uses the word three-step model, where, in the third step,
the electron recombines. Tunneling, being the first step in this
adiabatic regime, is central in these models, and for this reason
there is interest in applying analytical tunneling rate formulas
for atoms [16–19] and molecules [20–22]. Modifications of
tunneling by permanent dipoles [22,23] and polarizabilities
[5,24,25] have also been considered.

Along with the rate, the initial conditions at the tunnel
exit are central for the semiclassical simulation. At the tunnel
exit, tunneling theory predicts a Gaussian distribution in the
momentum transverse to the polarization direction [26], when
the field is not too strong [27], and predicts, at the exit point,
a vanishing momentum in the longitudinal field (polarization)
direction. In particular the latter initial condition has caused
some challenges when pursuing agreement between semi-
classical models and experimental data. For example, when
modeling strong-field ionization at near-infrared fields, it was
found that taking a nonvanishing initial value for the longitu-
dinal momentum along the laser polarization direction could
sometimes improve the agreement between the semiclassi-
cal two-step model and experiment [28–30]. The theoretical
justification for such a nonvanishing longitudinal initial mo-
mentum is nonexistent in the strict adiabatic tunneling limit,
i.e., when tunneling is considered to occur in a field that can
be considered static from the point of view of the much faster
electronic timescale. However, analytical approaches, which
include nonadiabatic effects in the tunneling step, such as the
strong-field or Keldysh-Faisal-Reiss approximation [31–33],
give predictions for nonvanishing initial momenta along the
polarization direction at the tunnel exit when ω is nonvan-
ishing; see the review in [34] for a very thorough discussion
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of the Keldysh theory, including discussions of the physical
nature of exit points and initial momenta at those points. See
also Refs. [35–40] for related theoretical discussions.

In the present work, the situation is elucidated by con-
sidering nondipole effects on the ionization rate, tunnel exit,
momentum at the tunnel exit, and electron dynamics. Accord-
ing to the Keldysh criterion, the tunneling picture becomes
appropriate as γ = ωκ/F0 � 1 for κ2/2 = Ip, where F0 is the
field strength [31]. In this adiabatic limit, one could expect the
tunneling description to become increasingly accurate as ω

decreases. However, the limit of decreasing ω cannot be con-
sidered independently of nondipole effects [11,12]. Namely,
when ω decreases, the quiver velocity of the electron F0/ω

increases, and the nondipole effect due to the magnetic-field
component of the laser pulse cannot be neglected [11,12]. At
first glance, the magnetic component impedes a description
in terms of an effective electric-dipole-type interaction, and
this could be a reason why analytical descriptions including
nondipole effects have applied the strong-field approximation
(SFA) approach (see, e.g., Refs. [41–46]).

It is the purpose of this work to deal with nondipole effects
in tunneling caused by intense fields (∼1014 W/cm2) and to
discuss how tunneling concepts can be applied for a suitably
defined effective nondipole field in the nonrelativistic, adia-
batic regime described by

F0/c � ω � Ip/2. (1)

The latter inequality ensures that tunneling at the instanta-
neous field strength is accurate; the factor of 1/2 is due to the
nondipole correction discussed below. Note that in this work,
the adiabatic parameter is taken to be ∼ω/Ip. For a discus-
sion of its relation to the Keldysh parameter, see Ref. [47].
As illustrated below, it is possible to have a small Keldysh
parameter and at the same time have Eq. (1) fulfilled. The
former inequality ensures that nondipole effects are captured
by expansion of the vector potential to first order in 1/c and
that the nondipole SFA Hamiltonian is accurate [48]. Equa-
tion (1) applies to atoms and molecules for midinfrared fields
at intensities covered by laser sources that are currently being
developed [49] and where nondipole effects have been ob-
served [50,51]. In this regime, access to analytical approaches
is important for interpretation of data showing signatures
of nondipole effects. Note in passing that nondipole effects
have also been observed with near-infrared fields [52–56];
see Refs. [57–59] for recent reviews of nondipole effects in
intense laser pulses. At near-infrared wavelengths the adia-
baticity condition in Eq. (1) is fulfilled to a lesser degree than
at midinfrared fields, and therefore, the concept of tunneling
at an instantaneous field strength is less valid. Moreover, for
a fixed laser intensity, the strong-field nondipole effect de-
creases with decreasing wavelength since the nondipole term
scales as F0/ω.

This paper is organized as follows. In Sec. II, the theory
and the results are presented and discussed. Section III gives
the conclusion and an outlook.

II. THEORY AND DISCUSSION

The present analysis will be based on an approximate
description of the nondipole effects to order 1/c. In the high-

intensity, high-frequency regime [60–67], it has been known
for some time that the leading-order nondipole correction
is given by the effect of the magnetic-field component of
the laser pulse on the electric-dipole-induced motion of the
electron along the laser polarization direction. As detailed in
Ref. [48] this interaction is also dominant in intense mid-
infrared fields, and the associated Hamiltonian is called the
nondipole SFA Hamiltonian [48], where the term SFA refers
to the fact that the approximate Hamiltonian is accurate when
the field is strong. Equation (1) specifies the condition on ω

for the applicability of that approach for a given field strength.
This approach was recently applied to laser-assisted scatter-
ing [68] and photoelectron momentum distributions [46], in
the latter case, leading to conclusions regarding nondipole-
induced shifts of momentum distributions that are confirmed
by time-dependent Schrödinger equation simulations [45]. For
a typical strong laser pulse with a peak intensity of ∼1014

W/cm2, the nondipole SFA Hamiltonian approach was shown
to be accurate in semiclassical modeling at a wavelength of
3400 nm in Ref. [48], and the approach becomes more accu-
rate with increasing wavelength. In the numerical examples
below, wavelengths of 3200 and 6400 nm are considered.

A. Nondipole strong-field-approximation
Hamiltonian approach

Consider a laser that is linearly polarized along the z di-
rection and propagates along the x direction. For simplicity
the pulse is assumed to contain sufficiently many cycles, say,
10 or more, such that the variation of the envelope can be
neglected compared with the variation in the carrier. The
Hamiltonian with full inclusion of retardation reads

H = [p + A(η)]2/2 + V (r), (2)

with V (r) being the effective single-electron potential and η =
ωt − xω/c. The vector potential is expanded to first order in
1/c,

A(η) = A0(t ) + A1(x, t ), (3)

with A0(t ) = A(η)|η=ωt and A1(x, t ) = −(ωx/c)∂ηA(η)|η=ωt .
The nondipole SFA Hamiltonian reads [48]

H = [p + A0(t )]2/2 + A0(t ) · A1(x, t ) + V (r). (4)

Compared to the conventional expression for the nondipole
Hamiltonian to order 1/c, the effective Hamiltonian in Eq. (4)
neglects the A1(x, t ) · p term. Neglecting this term, compared
to the term A0(t ) · A1(x, t ), may be accurate when A0(t ) is
large and leads to the nondipole SFA Hamiltonian in Eq. (4).
The accuracy of this approach in the long-wavelength, strong-
field regime was discuss in detail in Ref. [48]. The nondipole
interaction term can be rewritten as

A0(t ) · A1(x, t ) = [ṙD × B1(t )] · r, (5)

where ṙD = A0(t ) is the velocity of the electron in its
electric-dipole-induced motion and B1(t ) = ∇ × A1(x, t ) is
the leading-order magnetic field of the laser pulse. Hence, the
nondipole term describes the interaction of the electric-dipole-
induced motion with the magnetic field. It is noted that the
nondipole term on the right-hand side of Eq. (5) is in the form
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of an electric dipole operator with an effective field given by

F1(t ) = ṙD × B1(t ) (6)

and is directed along the laser propagation direction as per
the cross product on the right-hand side of Eq. (6). A unitary
transformation changes the entire Hamiltonian in Eq. (4) into
the length gauge form, and the result reads

H = p2

2
+ F̃(t ) · r + V (r), (7)

with a nondipole-modified effective field

F̃(t ) = F0(t ) + F1(t ). (8)

For a vector potential in the form A(η) = ẑA0 cos(η), the
electric dipole field F0(t ) = −∂t A0(t ) reads

F0(t ) = ẑF0(t ) = ẑF0 sin(ωt ), (9)

and the nondipole term that follows from the above consider-
ations reads

F1(t ) = x̂F1(t ) = x̂
F 2

0

ωc
sin(ωt ) cos(ωt ) = x̂

F 2
0

2ωc
sin(2ωt ).

(10)
Equation (7) allows the consideration of nondipole terms in
adiabatic tunneling ionization for frequencies fulfilling Eq. (1)
due to the presence of the effective field F̃(t ) given by
Eq. (8). This effective field has the dipole component along
the polarization direction (ẑ) and the nondipole term along
the propagation direction (x̂). To illustrate typical F0(t ) and
F1(t ) fields, it suffices to consider a quarter of a period from
the peak of F0(t ), and Fig. 1(a) shows an example of their
magnitudes for midinfrared wavelengths. The oscillation at
2ω in Eq. (10) explains the factor of 1/2 in Eq. (1).

B. Strict adiabatic limit

In this section, the strict adiabatic limit is considered. In
this limit the time of ionization, denoted by t0, and therefore
the field strength of the laser pulse are considered as parame-
ters, and the tunneling is assumed to occur at an instantaneous
value of the field. This means that the process takes place
for finite, small ω and not too high F0 to conform to the
restrictions set by Eq. (1). It may be helpful to consider some
typical numerical values for the quantities that enter Eq. (1).
For example, at an intensity of 1014 W/cm2 the left-hand side
of Eq. (1) equals 3.9 × 10−4, and for typical atoms the right-
hand side is around 0.2. The angular frequencies for 3200- and
6400-nm light are 1.4 × 10−2 and 7.1 × 10−3, respectively,
which are both within the ω range specified by Eq. (1). The
Keldysh parameters for these two cases are 0.27 and 0.14,
respectively, so it is possible to have condition (1) fulfilled
and at the same time have a Keldysh parameter that is smaller
than unity.

The instantaneous magnitude of the field at the time of
ionization |F̃(t0)| =

√
F0(t0)2 + F1(t0)2 � |F0(t0)| equals the

magnitude of the electric dipole part of the field to order 1/c.
Accordingly, to order 1/c, the tunneling rate to exponential
accuracy is unaffected by the nondipole correction and is
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FIG. 1. (a) Norm of electric field F0(t0) [Eq. (9), solid blue curve]
and F1(t0) [Eq. (10), dashed curves] in a half cycle starting from the
peak of F0(t0) as a function of ionization time t0. The fields F1(t0) are
for wavelengths of 3200 (lower dashed blue curve) and 6400 (upper
dashed red curve), and they have been multiplied by a factor of 10
for clarity. The maxima in |F1(t0)| increase in absolute magnitude for
increasing wavelength. The field strength F0 corresponds to an inten-
sity of 1014 W/cm2. (b) Ionization rate [Eq. (11)] for F0(t0) in (a) and
Ip = 0.5 a.u. (c) Angle θ (t0 ) [Eq. (12)] between the instantaneous
direction of the field F̃(t0) [Eq. (8)] and the polarization direction
for the fields in (a). The amplitude of θ (t0) increases with increasing
wavelength, 3200 nm for the upper blue curve and 6400 nm for the
lower red curve. (d) Position x(t0 ) [Eq. (14)] of the exit point in the
propagation direction for the fields in (a). The amplitude of x(t0)
increases with increasing wavelength, 3200 nm for the lower blue
curve and 6400 nm for the upper red curve.

given by the conventional static-field result [16]

�(t0) ∝ exp

(
− 2κ3

3|F̃(t0)|
)

� exp

(
− 2κ3

3|F0(t0)|
)

. (11)

Figure 1(b) illustrates this function. While the ionization rate
peaks at the peak of F0(t0), it is known that rescattering
trajectories, crucial for much of strong-field physics, are born
over a relatively large interval. For example in Ref. [69],
rescattering trajectories with 1.044 � ωt0/(π/2) � 1.278 [for
the present choice of F0(t )] were considered. So even though
the ionization rate at, say, ωt0/(π/2) � 1.278 is ∼1/3 of the
rate at F0(t0) extrema, the corresponding trajectories play a
role in dynamics, e.g., at high final kinetic energies. Since the
relative strength of the F1(t0) correction increases with time
from the field maximum [Fig. 1(a)], the importance of the
nondipole correction plays a relatively larger role in rescat-
tering trajectories than in direct electrons. A comparison of
Figs. 1(a) and 1(b) shows that ionization at the peak of F1(t0)
is suppressed compared to ionization at times close to the
maximum of F0(t0).

In contrast to �(t0), the tunnel exit points are affected by
F1(t0) to order 1/c. The instantaneous direction of the electric
field makes an angle, θ (t0), with the polarization axis due to
the component along the propagation direction, tan[θ (t0)] =
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F1(t0)/F0(t0) = F0 cos(ωt0)/(ωc), and since θ (t0) is small,

θ (t0) = F0 cos(ωt0)

ωc
. (12)

The function θ (t0) is illustrated in Fig. 1(c). In the electric
dipole approximation, the tunnel exit point can be accurately
obtained by working in parabolic coordinates [5,70] since
the problem involving the sum of the Coulomb potential and
the static-field interaction can be variable separated in these
coordinates. Here, to illustrate how the nondipole term shifts
the tunnel exit point it suffices to consider the field direction
model [70]. The component of the exit point in the polar-
ization direction (opposite the direction of the instantaneous
field) at the time of ionization can be estimated by

rD(t0) � −ẑ
Ip

F0(t0)
, (13)

and it constitutes the exit point in the electric dipole approx-
imation, as indicated by the superscript D. In the approach
including nondipole effects, the time-dependent exit points are
estimated by θ (t0)-dependent projections, and to order 1/c the
result reads

r(t0) = −ẑ
Ip

F0(t0)
− x̂

Ip

F0(t0)
θ (t0). (14)

Equation (14) shows that the nondipole term induces a non-
vanishing exit point along the x̂ propagation direction, and
Fig. 1(d) illustrates typical magnitudes. In the time-of-birth
window for rescattering trajectories (1.044 � ωt0/(π/2) �
1.278 [69]), x(t0) may attain values of the order of 10% of an
atomic unit, and this value increases with wavelength, as seen
from Eq. (12). Note that the variation in wavelength should be
considered while keeping in mind the boundaries defined by
Eq. (1).

Since the instantaneous field direction is not exclusively
along the polarization direction, but rather at an angle θ (t0),
the momenta at the tunnel exit are also affected by the
nondipole term. If the distribution of the initial momenta at the
tunnel exit is modeled by a Gaussian transverse to the instan-
taneous field direction w(v⊥(t0)) ∝ exp[−κv⊥(t0)2/F0] [26],
as is typically done in tunneling-based approaches [14,71], the
momenta along the propagation and polarization directions at
tunneling may be modeled. For simplicity we consider a case
where the initial transverse momentum just after tunneling
v⊥(t0) is in the plane spanned by the two vectors F0(t0)
and F1(t0) and perpendicular to the instantaneous direction
of F̃(t0). The initial momentum at the time of tunneling
is then vx(t0) = v⊥(t0) cos[θ (t0)] � v⊥(t0) in the propagation
direction. In the polarization direction, we obtain vz(t0) =
−v⊥(t0) sin[θ (t0)] � −v⊥(t0)θ (t0) for a given v⊥(t0) from the
distribution w(v⊥(t0)). In this sense, the nondipole term in-
duces an initial component along the longitudinal polarization
direction, which is absent in the electric dipole approach in
the strict adiabatic limit.

The sensitivity of the electron dynamics to the nondipole-
induced changes in the tunnel exit point and momentum at
the tunnel exit is considered by classical trajectory calcula-
tions with full retardation and action of the atomic potential
on the outgoing electron. Figure 2 shows an example of an
electron initially in the hydrogenic 1s state for a set of laser
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FIG. 2. Illustration of the motion of an electron in a laser field
including nondipole effects and a Coulomb potential with unit at-
tractive charge. Position in the (a) polarization and (b) propagation
directions. Velocity in the (c) polarization and (d) propagation direc-
tions as a function of time. The laser wavelength is 3200 nm, and
peak intensity is 1014 W/cm2. The propagation time is three cycles
from the peak of the electric dipole field. The solid blue curves show
the results for the nondipole exit point [Eq. (14)] and a nonzero
choice of the initial vx (t0) = Ip/(3c), where the final distribution
peaks in the propagation direction [48]. The dashed red curves show
results for a dipole exit point and nondipole initial momentum in the
propagation direction. The dotted yellow curves show results for the
electric dipole exit point [Eq. (13)] and vanishing initial momentum.
The thin solid curves show the result for the electric dipole exit point,
no initial momentum, and propagation in the electric dipole field. The
trajectories are started at ωt0/(π/2) = 1.108 and Ip = 0.5 a.u.

parameters similar to those used in an experiment reporting
nondipole effects in the photoelectron momentum distribution
[50] (see the caption of Fig. 2 for laser parameters and ini-
tial conditions). The excursion in the propagation direction
in the nondipole-induced figure-of-eight motion of the free
electron is �1, and therefore, the parameters are at the onset of
low-frequency nondipole effects [11,12]. Figure 2 shows that
there are nondipole-induced changes in the time-dependent
positions and velocities along both the polarization and prop-
agation directions due to the nondipole-induced modifications
at the tunnel exit. In the example considered in Fig. 2, the
inclusion of both the nondipole-induced modification of the
longitudinal momentum at the tunnel exit and the modification
of the tunnel exit point itself leads to a modification of the
dynamics that is different from that obtained by just consider-
ing the nondipole-induced spatial displacement of the tunnel
exit point. The nondipole-induced changes are most clearly
seen in the propagation direction [Figs. 2(b) and 2(d)]. The
abrupt changes in the trajectories at a propagation time of
around 740 a.u. are due to a revisiting of the core region by the
electron; that is, the electron passes the Coulomb singularity
very closely. The dynamics of the continuum electron depends
sensitively on the initial conditions and the combined effect of
the external field and the potential of the residual ion. The full
exploration of this large parameter space is beyond the scope
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FIG. 3. Position of the electron in the propagation direction as
a function of propagation time t after ionization at time t0 taken as
ωt0/(π/2) = 1.108 (blue solid curve from Fig. 2), 1.208 (red, upper
curve at large propagation times), 1.308 (yellow, second curve from
the top at large propagation times), and 1.408. The plot illustrates
the sensitivity to t0 for the case that takes nondipole exit point and
nondipole-induced initial momentum conditions into account. The
laser and system parameters are as in Fig. 2.

of the present work. To illustrate the sensitivity to the dynam-
ics of one important parameter, results for dynamics along the
propagation direction for different ionization times are shown
in Fig. 3. Not surprisingly, there is a relatively large variation
in x(t ). Such variation is typical for this kind of semiclassi-
cal approach, and extensive sampling over initial conditions
and appropriately weighted ionization times is needed for
quantitative predictions. Still, the main point remains clear:
The final momenta can be affected by the nondipole-induced
modifications at the tunnel exit, and therefore, these effects
should be considered in the interpretation of data, such as
holographic and laser-induced diffraction patterns.

C. Nonadiabatic effects of nondipole SFA considerations

The results in this section describe nonadiabatic cor-
rections as captured by the nondipole Volkov phase. The
results follow from a nondipole extension of the dipole re-
sults discussed, e.g., in Refs. [34,72,73]. It may be useful to
stress a fundamental difference compared to the discussion
in Sec. II B. In the nondipole SFA approach in the present
section, the absence of the atomic potential in the action phase
means that there is a simple analytical mapping between initial
and final momenta. In contrast, in Sec. II B, the initial condi-
tions are first identified. Then, in the semiclassical approach,
forward propagation of the classical equations of motion is
performed, and the final momentum for the outgoing electron
is obtained through that simulation.

The starting point in this analysis is a consideration of the
action phase associated with strong-laser-field ionization in
the nondipole-SFA-Hamiltonian approach [46,48],

S(t ) =
∫ t

−∞
[k + Ã(t ′)]2/2 dt ′ + Ipt . (15)

Here the factor Ipt comes from the time evolution of the
initial bound state, and the momentum k is the asymptotic
momentum of the outgoing electron, i.e., the momentum that
can be measured at a detector. Now, the integral term comes
from the nondipole Volkov phase with the nondipole-modified
vector potential

Ã(t ) = A0(t ) + AM (t ). (16)

Here A0(t ) = ẑA0 cos(ωt ), as before, and AM (t ) =
x̂ A2

0
2c cos2(ωt ) is a 1/c nondipole correction to the vector

potential which accounts for the dominant effect of the
magnetic-field component of the electromagnetic field
along the dipole-induced electron trajectories. Clearly,
F1(t ) = −∂t AM (t ), with F1(t ) being the nondipole-correction
field in Eq. (10). Note that the atomic potential does not enter
the action of Eq. (15) explicitly; the potential is reflected only
through the presence of Ip. This impedes the dependence of
the exit point on the spatial variation of the atomic potential.
Therefore, the nondipole SFA action-phase approach cannot
describe situations in which the exit to the continuum occurs
at distances where the atomic potential is not negligible
compared to the dipole interaction of the laser field [5]. In the
strict adiabatic limit, such a potential effect can be accounted
for by improving the approximation leading to Eq. (13), as
described in Refs. [5,70]. The effects of the ionic potential
on the outgoing electron, including those imparted on the
initial conditions, can be taken into account in SFA-related
techniques [10].

In the nondipole SFA approach, the notions of (initial)
momentum at the tunnel exit and the spatial tunnel exit point
come from the consideration of the stationary phase of the
action in Eq. (15) with respect to variation in time; that is,
they come from the interpretation of the consequences of the
condition ∂t S(t ) = 0. The latter equation has complex times
ts = t0 + iτ0 as solutions. These times are solved as

[k + Ã(ts)]2 + κ2 = 0. (17)

Inserting the expression for Ã(t ) in Eq. (17) leads to the
saddle-point solutions

cos(ωts) = ω

F0

{−kz ± i[k2
⊥ + κ2 + (k2 + κ2)kx/c]1/2

1 + kx/c

}
,

(18)
with k2

⊥ = k2
x + k2

y being the momentum transverse to the
polarization direction. The real time t0 is the time of ionization
as in Sec. II B. In the dipole approximation, the factor kx/c
goes to zero.

With the complex ts at hand, the tunnel exit point is found
from Re[r(t0)] = Re{∫ t0

ts
[k + Ã(t )]dt}. The interpretation of

this integral is that the electron moves through the effective
tunneling barrier in imaginary time from ts to t0, i.e., through
the complex time interval t0 − ts = −iτ0. An evaluation of the
integral gives the tunnel exit point at t0,

Re[r(t0)] = ẑ
F0(t0)

ω2
[1 − cosh(ωτ0)]

+ x̂
F0(t0)

4ω3c
F0 cos(ωt0){1 − cosh[2ωτ0)]}. (19)

Here the nondipole modification of the exit point is the com-
ponent after the laser propagation direction, x̂.
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To obtain the momentum at the tunnel exit, consider the
condition Im[∂t S(t )] = 0. A calculation then shows that the
asymptotic longitudinal momentum at the detector kz can be
expressed as

kz = −A0

(
1 + kx

c

)
cos(ωt0) cosh(ωτ0). (20)

This relation means that, at the instant of tunneling, the kine-
matic momentum v(t0) = k + Ã(t0) reads

v(t0) = ẑ
F0

ω
cos(ωt0)

[
1 −

(
1 + kx

c

)
cosh(ωτ0)

]

+ x̂
[

kx + F 2
0

2ω2c
cos2(ωt0)

]
+ ŷky. (21)

The component along the propagation direction (x̂) carries,
for fixed intensity, a ω−2 scaling. Such a scaling was consid-
ered in Ref. [51] to reach agreement between experimental
data obtained in the midinfrared regime and the results of a
two-step semiclassical simulation including nondipole terms
in the propagation of the classical equations of motion after
tunneling.

While the expressions in Eqs. (19) and (21) are generally
valid within the nondipole SFA approach, a connection to the
results obtained in the strict adiabatic limit requires consider-
ation of the limit of small ω in combination with ω fulfilling
Eq. (1); see the beginning of Sec. II B for typical numerical
values for the quantities entering Eq. (1). To proceed, first, the
relation between t0 and τ0 is considered. This relation is ob-
tained by using Re[∂t S(t )] = 0; that is, the real part of Eq. (17)
should be zero. This requirement gives, in combination with
Eq. (20),

k2
⊥ + κ2 = F0(t0)2

ω2

(
1 + kx

c

)
sinh2(ωτ0)

− F 2
0

ω2

kx

c
cos2(ωt0) cosh2(ωτ0). (22)

The relation between t0 and τ0 then reads

sinh2(ωτ0) = (ω2/F 2
0 )(k2

⊥ + κ2) + (kx/c) cos2(ωt0)

(1 + kx/c) sin2(ωt0) − (kx/c) cos2(ωt0)
,

(23)
where the kx-dependent factors on the right-hand side account
for the nondipole modification. In the limit of small ω and to
first order in 1/c it then follows that the dominant contribution
to the imaginary part of ts is given by

cosh(ωτ0) = 1 + ω2(k2
⊥ + κ2)

2F0(t0)2
(1 − kx/c), (24)

and therefore,

cosh(2ωτ0) = 1 + 2ω2(k2
⊥ + κ2)

F0(t0)2
(1 − kx/c). (25)

So in this limit and to first order in 1/c, Eq. (19) for the
tunnel exit point reduces to

Re[r(t0)] = −ẑ
E⊥ + Ip

F0(t0)
(1 − kx/c) − x̂

E⊥ + Ip

F0(t0)
θ (t0). (26)

Here E⊥ = k2
⊥/2, and θ (t0) is defined in Eq. (12). It is read-

ily seen that the expression in Eq. (26) reduces to the one
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FIG. 4. Illustration of the motion of an electron in a laser field
including nondipole and nonadiabatic effects and a Coulomb po-
tential with unit attractive charge. Position in the (a) polarization
and (b) propagation directions. Velocity in the (c) polarization and
(d) propagation directions as a function of time. The laser parameters
and propagation times are as in Fig. 2. The solid blue curves are the
same as in Fig. 2 and show the results for the nondipole exit point
[Eq. (14)] and a nonzero choice of the initial vx (t0) = Ip/(3c), where
the final distribution peaks in the propagation direction [48]. The
dashed red curves show results when the nonadiabatic corrections
in the initial position [Eq. (26)] and initial velocity [Eq. (27)] with
kx = Ip/(3c) are included for ky = 0. The trajectories are started at
ωt0/(π/2) = 1.108 and Ip = 0.5 a.u.

contained in Eq. (14) in the limit of small longitudinal and
transverse momenta.

Regarding the momenta, it is found from Eqs. (21) and (24)
that for small ω, the velocity at the exit point at the time of
tunneling is connected to the final momentum as follows:

v(t0) = −ẑθ (t0)

(
kx + cω2(E⊥ + Ip)

F0(t0)2

)

+ x̂
[

kx + F 2
0

2ω2c
cos2(ωt0)

]
+ ŷky. (27)

In Eq. (27), the first term ẑθ (t0)kx is similar to the relation
discussed in Sec. II B for the initial momentum along the
polarization direction with the exception that in Sec. II B
the momentum was sampled from a Gaussian distribution of
transverse initial momenta at the tunnel exit. Here in the SFA
approach, kx denotes the final momentum at the detector. Any
account of the presence of the atomic potential will break the
simple relation between final k and initial v. The second term
along ẑ in Eq. (27) is identical to the nonadiabatic correction
obtained in the electric dipole approximation (see, e.g., Eq. (5)
in Ref. [72]). The expression also accounts for the initial
condition along x. In this direction, the term proportional to
kx is similar to the one discussed in Sec. II B, again with the
difference that in Sec. II B the initial transverse momentum is
picked from a Gaussian distribution. The second term along
x̂ is the nonadiabatic correction. In the numerical examples
considered in this work, the nonadiabatic terms in Eq. (27)
are larger than the terms proportional to kx.
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From the above results it is seen that in both the strict
adiabatic limit and in the case of the nonadiabatic approach
with the nondipole Volkov phase, the nondipole correction
increases with decreasing ω as 1/ω due to the form of θ (t0)
[Eq. (12)]. This behavior as a function of ω is different from
the dipole result. In the dipole case, the kx term in the ẑ
direction in Eq. (27) is absent, and the longitudinal momentum
at the tunnel exit is proportional to ω as ω → 0, as seen from
the last factor along the ẑ direction in Eq. (27). In considering
these limits, the condition imposed by Eq. (1) should, of
course, be kept in mind. The requirement of a small quiver
velocity F0/ω compared to the speed of light c means that ω

cannot be chosen to be arbitrarily small.
Figure 4 shows an example illustrating, in addition to the

nondipole effects of the strict adiabatic limit, the effect of
the nonadiabatic terms in the initial conditions, i.e., the effect
of including nonadiabatic shifts as in Eqs. (27) and (26).
In Fig. 4, the solid blue curves are as in Fig. 2. That is,
these results are for the nondipole initial conditions in the
strict adiabatic limit in Sec. II B and propagation in the full
nondipole field and Coulomb potential. The dashed red curves
include the nonadiabatic terms in the initial conditions. The
main reason for the difference in the results in the particular
realization of Fig. 4 is due to the extra term in the initial
velocity in the polarization (ẑ) direction in Eq. (27) compared
to the initial nondipole-modified velocity in the strict adiabatic
limit. This extra nonadiabatic term means that the electron
does not traverse the Coulomb singularity at a propagation
time of around 740 a.u. as it does without this additional
nonadiabatic initial offset. A simulation performed under the
same conditions but for 6400-nm light showed no effect of
including the nonadiabatic terms in the initial conditions. This
6400-nm case is still within the frequency range defined by

Eq. (1), and the smaller ω leads to the decrease in the nonadi-
abatic offsets of the initial conditions.

III. CONCLUSION AND OUTLOOK

In summary, a nondipole correction of order 1/c associated
with the dipole-induced motion in the magnetic-field compo-
nent of the laser pulse was considered. The interaction leads
to a term that can be interpreted as an additional electric-
field component directed along the propagation direction of
the laser pulse. In this case, the ionization rate is unaffected
by the nondipole contributions to exponential accuracy. The
tunnel exit and momentum at the tunnel exit, however, are
affected by the nondipole correction. It was illustrated that the
nondipole-induced changes in the initial conditions can lead
to changes in the electron dynamics and the final momentum
distributions. The nonadiabatic modifications of the initial
conditions following a treatment with a nondipole SFA ap-
proach were also considered. The results of this work outline
how to incorporate nondipole effects in the initial tunneling
step and associated phase-space initial conditions and hence
open the exploration of nondipole strong-field and attosecond
physics based on familiar semiclassical two-step ionization
and three-step recombination models.
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