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Effective two-level approximation of a multilevel system driven by coherent and incoherent fields
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The numerical simulation of multiple scattering in dense ensembles is the mostly adopted solution to predict
their complex optical response. While the scalar- and vectorial-light-mediated interactions are accurately taken
into account, the computational complexity still limits current simulations to the low saturation regime and ig-
nores the internal structure of atoms. Here, we propose to go beyond these restrictions, at constant computational
cost, by describing a multilevel system by an effective two-level system that best reproduces the coherent and
total scattering properties in any saturation regime. The correspondence of our model is evaluated for different
experimentally realistic conditions such as the modification of the driving field polarization, the presence of stray
magnetic fields, or an incoherent resonant electromagnetic field background. The trust interval of the model is
quantified for the D2 line of 87Rb atoms, but it could be generalized to any closed transition of a multilevel
quantum system.
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I. INTRODUCTION

The response of dense ensembles to coherent optical
illumination is a paradigmatic situation to study multiple scat-
tering dynamics in which collective effects can be prominent.
They lead, for instance, to modifications of the scattering
properties such as line shifts and broadening [1] in one-
dimensional (1D) [2] and two-dimensional (2D) systems [3],
sub [4] and superradiance [5], the optical phase profile en-
gineering [6] to control the reflection properties [7] of a
single-atomic layer or the localization of light in different
regimes [8,9]. Simulations of the coupled dipole equations in
the linear-optics regime include interference effects such as
coherent backscattering [10,11], which was also predicted
using random walk simulations including the atomic internal
structure complexity [12,13].

In contrast with the preceding cases, when increasing
the saturation parameter, the system deviates from its lin-
ear response [14], requiring a full quantum treatment that
scales dramatically with the atom number. An ensemble of
N multilevel systems (MLS) with k levels each yields the
diagonalization of a kN × kN matrix and is computationally
out-of-range when considering more than a few particles. For
dilute systems, one- and two-atom forces were derived from a
semi-classical N-atom master equation [15] and it was showed
that resonance fluorescence photon absorption leads to repul-
sive forces in optical molasses that affect the equilibrium of
forces and modifies the cloud geometry [16].

In a mean-field approach where entanglement between
atoms is neglected, the full density matrix can be factorized
as the product state of single atom density matrices reducing
the matrix dimensions to kN × kN thus improving the sim-
ulation capabilities up to few thousand particles. For a given
computational power, the traditional trade-off for numerical
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simulations is either to consider the internal atomic structure
[17,18] while reducing the number of particles or to model
real atoms by two-level systems (TLS) [19]. The latter allows
a quantitative comparison with experiments only in specific
situations where the experimental conditions allow one to sup-
press spurious transitions [1]. It represents a loss of generality
and a limitation for the general comparison of theory and
experiments in the limit of dense and saturated ensembles.

In this paper, we show that an effective TLS can prop-
erly approximate the scattering properties of a MLS, with
exact correspondence in certain conditions. To this end, we
numerically solve the optical Bloch equations (OBE) for a
single MLS driven by a coherent field that originates either
from a probe laser or from neighboring atoms via coherent
scattering. We then fit the effective TLS model parameters
to the coherent and total scattering rates obtained from the
density matrix calculations. In this study, we detail the influ-
ence of the driving field polarization, stray magnetic fields,
and incoherent resonant electromagnetic field background on
the effective TLS parameters.

Section II introduces the relevant quantities discussed
throughout this paper and derives the optical response of a
TLS driven by a coherent field and an incoherent background.
Section III details the calculation for the exact solution of a
MLS and its comparison to an effective TLS. As an exam-
ple, Sec. IV quantitatively compares the effective TLS that
best corresponds to the closed transition of the D2-line of
87Rb which is formed by the hyperfine states Fg = 2 and
Fe = 3. The numerical simulations performed in Sec. IV could
be carried for any multilevel quantum system with a closed
transition.

II. TWO-LEVEL SYSTEM DYNAMICS

Our study begins with the scattering dynamics of two-level
systems. We remind in Sec. II A the standard expressions
[20,21] of the density matrix elements from which the

2469-9926/2022/105(4)/043105(9) 043105-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8086-9691
https://orcid.org/0000-0001-9708-755X
https://orcid.org/0000-0003-4458-0089
https://orcid.org/0000-0001-6352-482X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.043105&domain=pdf&date_stamp=2022-04-07
https://doi.org/10.1103/PhysRevA.105.043105


R. VEYRON et al. PHYSICAL REVIEW A 105, 043105 (2022)

coherent, incoherent, and total scattering rates are derived.
In Sec. II B, we derive the expressions of the same quantities
when the two-level systems TLS is driven by a coherent field
and an incoherent field background.

A. Scattering rate under coherent drive

The total scattering rate is an essential quantity describing
the influence of the light field on the atom. It gives the number
of photons emitted per unit of time [20]: R(tot)

sca = �ρee where
� is the natural linewidth and ρee the excited state population.
This total scattering rate can be decomposed in terms of a
coherent scattering rate R(coh)

sca = �|ρeg|2 that represents scat-
tering events that are temporally coherent with respect to the
driving field and an incoherent scattering rate R(inc)

sca = R(tot)
sca −

R(coh)
sca that, by energy conservation, is the difference between

the two previous ones. Computing these rates requires de-
riving expressions for the density matrix population ρee and
slowly varying coherence ρeg, both obtained by solving the
steady-state regime of the OBE driven by a coherent field

ρeg = −i√
2

√
s′

c

1 + s′
c

1 + 2iδ√
1 + 4δ2

,

ρee = 1

2

s′
c

1 + s′
c

, (1)

where sc = 2�2
c/�

2 is the on-resonance saturation parameter,
s′

c = sc/(1 + 4δ2) is the effective saturation parameter, �c is
the coherent Rabi frequency, and δ = (ω − ω0)/� the normal-
ized detuning between the laser frequency ω and the atomic
transition ω0.

From Eq. (1) the coherent and total scattering rates are
given by

R(coh)
sca = �

2

s′
c

(1 + s′
c)2 ,

R(tot)
sca = �

2

s′
c

1 + s′
c

. (2)

In the regime of weak saturation (sc � 1), the atom response
is linear in sc and temporally coherent. This is the regime
of the linear dipole approximation that is convenient for
coupled dipole simulations. In the opposite strong saturation
regime (sc � 1), the TLS can be saturated, and the temporally
incoherent scattering dominates. This is the regime of the
Mollow triplet where the incoherent scattering rate scales as
s′2

c /(1 + s′
c)2.

To move from an ideal TLS to the effective TLS, we follow
the work of the authors of [22] where the author computes
analytically the scattering rates for the case of a π polarization
and shows that the saturation intensity is reduced by a factor
of α. We then introduce an effective TLS ansatz under a
saturating driving field and in perturbed conditions

R(coh)
sca = �

2

β

α

s′
c/α

(1 + s′
c/α)2 ,

R(tot)
sca = �

2

s′
c/α

1 + s′
c/α

. (3)

Equation (3) corresponds to an effective TLS with a corrected
saturation parameter s′

c/α. The factor β/α accounts for mul-

tilevel corrections (Sec. IV) where α comes from a geometric
factor due to the coupling strength of the transitions and β is
an amplitude factor of the coherent scattering field.

B. Scattering rate in coherent and incoherent drives

For a TLS, coherences between atomic states are driven
by the field complex amplitude. Therefore, a temporally inco-
herent field (frequency broadband and/or temporally isotropic
polarization) gives an average coherence of zero for averaging
time longer than the field spectral width. Thus, only the inten-
sity of the incoherent field affects the OBE by incoherently
pumping the populations at a rate of �si/2 where si is an ef-
fective saturation parameter for the incoherent intensity [20].
For a coherent field with Rabi frequency �c and detuning δ,
and an incoherent intensity with saturation parameter si, one
obtains the following OBE:

∂ρge

∂t
= −

(
iδ� + �

2

)
ρge + i�c

2
(ρgg − ρee),

∂ρgg

∂t
= − si

2
�(ρgg − ρee) + i�c

2
(ρge − ρeg) + �ρee. (4)

The steady-state solution of Eq. (4) is

ρeg = −i√
2

√
s′

c

(1 + s′
c + si )

1 + 2iδ√
1 + 4δ2

,

ρee = 1

2

s′
c + si

1 + s′
c + si

. (5)

Equation (5) shows that populations can be transferred by
both the coherent and incoherent light while coherences are
driven only by the coherent field but damped in the saturation
regime by both fields, i.e., coherences are reduced by the total
saturation parameter s′

c + si.
The above expressions of the density matrix elements of a

TLS in an incoherent background [Eq. (5)] allow generalizing
the effective TLS ansatz [Eq. (3)] in

R(coh)
sca = �

2

β

αeff

s′
c

αeff(
1 + s′

c
αeff

)2 ,

R(tot)
sca = �

2

( s′
c

αeff

1 + s′
c

αeff

+
si
αc

1 + si
αc

)
, (6)

where the corrections to the scattering rates are

αeff = α(1 + si ),

αc = 1 + s′
c. (7)

III. MULTILEVEL SYSTEM DYNAMICS

In this section, we give the master equation that describes
the density matrix evolution of a multilevel atomic system and
the coherent and total scattering rates [20].

The master equation in the rotating frame at ω includes
the hyperfine splitting Hamiltonian HHF coming from the
atomic energy structure, the first-order Zeeman magnetic
shift Hamiltonian HB, and the electric-dipole interaction
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Hamiltonian between the atom and the driving field

dρ

dt
= − i

h̄
[HHF + HB + HAF , ρ]

+�

(
2Je + 1

2Jg + 1

) ∑
q

D[�q]ρ, (8)

where �q is the lowering operator for the polarization
q = mg − me, D the Lindblad superoperator defined as
D[�q]ρ = �qρ�†

q − 1/2(�†
q�qρ + ρ�†

q�q). The electric-

dipole Hamiltonian is HAF = −d̂E where d̂ = −er̂ is the
dipole moment and E the electric field with the polarization ε.
In this work, the master equation was traced over the environ-
ment to obtain the OBE for the multilevel atom. Rewriting the
density matrix components as a column vector ρ, we obtain a
set of linearly coupled equations

dρ

dt
= Mρ, (9)

where the matrix M contains the matrix elements for all inter-
actions and are detailed in Eq. (A4) in the Appendix.

The last interaction to be added to the master equation is
an incoherent field background. The interaction between a
broadband incoherent field such as a black-body radiation and
a MLS was previously studied [23–25]. Master equations en-
able one a detailed description of the system composed of
an atom and a bath. We obtain the Lindblad equations via
two simplifications. First the Born-Markov approximation
assumes a weak coupling (� � ω0) and a vanishing bath
memory time [23–25]. Second, the secular approximation,
where the coherences and the populations evolve indepen-
dently, neglects interference effects (Zeeman coherences).
Under these approximations, the master equation of an in-
coherently driven system simplifies to rate equations on
the populations only. As detailed in the Appendix, under
the influence of an on-resonance temporally incoherent field,
the master equation of a coherently driven system is modified
by including terms in the matrix M to account for incoherent
population transfer.

For a multilevel atom, the coherent and total scattering
rates in the steady state are defined as

R(coh)
sca = �

∑
q

|〈�q〉|2,

R(tot)
sca = �

∑
q

〈�†
q�q〉. (10)

In our method, these rates are obtained by solving the
MLS master equation in the steady state by setting dρ/dt = 0
either with symbolic computations for pure polarizations to
determine the exact analytical formulas or numerically other-
wise. We checked that the results of both methods are totally
consistent. From the density matrix solution, we compute
the exact coherent and total scattering rates using Eq. (10).
The parameters αeff and βeff are then obtained by fitting the
exact rates with the effective TLS model from Eq. (6). For
simplicity, in the following, these parameters will be noted as
α and β.

FIG. 1. Two standard polarization cases and their dependence on
ellipticity ζ and quantization axis (z). (a) For 
 = 0, the polarization
lies in the (x, y) plane and is circular for ζ = 1 with a perpendicular
quantization axis. (b) For 
 = π/2, the polarization lies in the (x, z)
plane and is linear for ζ = 0 with a parallel quantization axis.

IV. EFFECTIVE TLS OF THE D2 LINE OF RUBIDIUM 87

To study the role of experimental imperfections such as
polarization orientation, DC magnetic fields, and incoherent
background on the scattering rates, we restrict our model to
multiple degenerate closed states. As an example, we choose
to simulate our model on all Zeeman states of the transi-
tion |Fg = 2〉 → |Fe = 3〉 of the 87Rb D2 line and restrict
ourselves to situations where the power broadening is much
smaller than the hyperfine energy splitting. Also, the ratio
of scattering rates between the |Fe = 3〉 and |Fe = 2〉 states
(44 � detuned from |Fe = 3〉) is about 1000 for sc = 60 on the
closed transition. As a result, the transition from |Fg = 2〉 to
|Fe = 3〉 is considered to be closed in the range sc ∈ [0.1, 30].
In the following, we therefore neglect the residual coupling to
other hyperfine excited and ground states. In the steady-state
regime, these couplings would lead to depumping out of the
considered transition. Our study is therefore valid only before
depumping occurs and is robust for closed transitions.

The role of the driving field polarization (Sec. IV A), DC
magnetic field (Sec. IV B), and isotropic incoherent field
(Sec. IV C) are studied independently. The quantization axis
is taken as εz.

A. Role of polarization: σ±, π, and elliptical

In this section, only the coherent drive-field polarization
is being changed at zero magnetic field and zero incoherent
field. We use the spherical basis with respect to the Cartesian
as follows:

ε± = ∓ (εx ± iεy)√
2

, (11)

ε0 = εz. (12)

This polarization ε = (ε−, ε+, ε0) is parametrized in the
spherical basis (ε−, ε+, ε0) by an ellipticity ζ = E0x/E0y and
π polarization projection angle 
 (Fig. 1) as

ε± = ∓ 1√
2‖ε‖ (ζ ∓ cos 
), ε0 = i

‖ε‖ sin 
, (13)

where ‖ε‖ =
√

1 + ζ 2. Using the TLS ansatz of Eq. (3), we
evaluate the parameters α ≡ αε and β ≡ βε that best match
the exact scattering rates. For a given ζ , both scattering rates
R(coh)

sca , R(tot)
sca are computed numerically as a function of the
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FIG. 2. (a) α and (b) β as a function of the ellipticity ζ for a po-
larization in the (x, y) plane (
 = 0), (c) input and output intensities
per polarization, and (d) scalar product of the input and output fields.

coherent saturation parameter sc. αε and βε are the best-fitting
parameter for sc ∈ [0.1, 30].

In the limit case of a σ− circular polarization ε = (1, 0, 0)
parametrized by (ζ ,
) = (1, 0), the atom is pumped in a
perfect two-level cycling transition and is expected to reach
the maximal scattering cross section σ0 = 3λ2/2π with ασ =
βσ = 1. In the opposite limit of a π linear polarization ε =
(0, 0, 1), the populations and coherences were computed an-
alytically [22]. The system formed by five π transitions for
|Fg = 2〉 to |Fe = 3〉 is equivalent to a TLS with a reduced
cross section for which απ = 461/252 = 1.829 and βπ = 1.
In Fig. 2, intermediate ellipticities are obtained by varying
ζ from 1 (circular) to 0 (linear) at 
 = 0. The values of αε

and βε are exact (error bars go to 0), which means that the
scattering rates are also exactly described by Eq. (3). It does
not necessarily mean that this situation is exactly equivalent
to a TLS, that is a scalar scattering problem, since the MLS
is vectorial. The circular and linear polarizations yield the
expected values ασ = 1 and απ = 1.829. Note that the linear
polarization is at a 45◦ angle of the x and y axes. In the absence
of magnetic field bias, the electric field sets the quantization
axis. The same curves would be obtained for 
 = π/2. An
imperfect polarization as could occur in experiments induces
little changes for the circular polarization (ζ = 0) (below 10%
variation on the parameters) even up to ζ = 0.5, while it has
a more pronounced effect for a linear polarization. This is
due to optical pumping in the closed transition that protects
the atomic state. For the same reason, the polarization of the
radiated field differs from the input polarization at maximum
by 8% for an ellipticity about ζ = 0.2.

B. Role of a DC magnetic field

Under a constant magnetic field, magnetooptical effects
occur. We refer to the review [26] for more detail. The Faraday

effect, for example, results in the optical rotation and ellip-
ticity change of the output scattering. The scattering process
is therefore a truly vectorial problem that cannot be exactly
mapped onto the TLS solution due to the output polarization.
In this section, we focus the analysis on the TLS parame-
ters α and β that best mimic the scattering rate amplitude
when the Zeeman degeneracy is lifted by a magnetic field
bias such that B = Bεz. The driving field frequency is kept
constant and is equal to the unshifted transition. The mag-
netic Zeeman shift between two states |Fe, me〉 and |Fg, mg〉
is �(B) = μbB/h̄(gFe mg − gFgmg) where gFe/g are the Landé
factors and μb is the Bohr magneton (see the Appendix). The
strength of magnetic field considered in this study are up to
2 G, which is well below the restriction to the first-order Zee-
man perturbation and results in a frequency shift smaller than
�. The state |Fg = 2〉 (or |Fe = 2〉) has a frequency sensibility
to magnetic shift of 0.12�/G (or 0.15 �/G).

In a σ− polarization case, α = β = ασ [1 + 4(δω + δB)2]
where δB = μbB/h̄�. It simply corresponds to a TLS probed
off-resonantly due to the Zeeman shift and the driving-
field detuning. Due to optical pumping, only the two states
|Fg = 2, mg = −2〉 and |Fe = 3, me = −3〉 are occupied in the
steady state. The atomic response is the one of a TLS and
the results of Eq. (2) are exactly recovered. In this situation,
the Zeeman shift can be experimentally compensated by the
driving-field detuning. Interestingly, for a linear polarization
aligned with a magnetic bias (π polarization), the scattering
rates are also exactly given by the effective TLS Eq. (2) with
α = απ (1 + 4δ2

B
41

1008απ
+ 4δ2

ω ) and β = 1. These expressions
can be derived by solving the linear system of Eq. (9) con-
taining all π transitions. In this situation, the sensitivity of
the scattering rates to the detuning is reduced by a factor of

41
1008απ

≈ 0.02 with respect to the σ polarization case. As a
result, for pure σ or π polarizations, α and β have well-known
lower and upper limits. We consider now deviations from
these ideal cases by studying the influence of the ellipticity
ζ in the (x, y) plane corresponding to 
 = 0, and in the (x, z)
plane corresponding to 
 = π/2. α and β from Eq. (6) are
together fitted from the scattering rates obtained by numeri-
cally solving Eq. (9) and plotted with error bars within 95%
confidence interval of the fits parameters.

As expected, Fig. 3 (
 = 0) shows that the scattering rates
are sensitive to the polarization. The growing error bars for an
increased ellipticity indicate a growing deviation from the ef-
fective TLS behavior. The offset between the curves is merely
due to the Zeeman shift. The relative error between the simu-
lated scattering rate and the model of Eq. (3) is plotted in terms
of the maximum and the standard deviation of the relative
error over the range of the saturation parameter sc used for the
fitting. It shows that the model has a maximum relative error
which does not exceed 6% for the total scattering rate, which
happens only for an ellipticity of 1. The coherent scattering
rate is more sensitive to the ellipticity with up to 50% relative
error. Nevertheless, for quasi-circular polarizations (ζ ≈ 1) as
is typically used in σ absorption imaging, the MLS reduces to
a TLS.

Figure 4 presents the influence of the ellipticity in the
(x, z) plane. For ζ = 0, corresponding to a π polarization, the
TLS is exact with little dependence on the magnetic field. As
the ellipticity is increased, this TLS behavior becomes less
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FIG. 3. (a) α and (b) β as a function of the ellipticity ζ in the case
of 
 = 0. ζ = 1 is circular and ζ = 0 is linear along εx and does not
correspond to a π polarization. For any ellipticity, B is perpendicular
to the electric field. The maximum and the standard deviation of the
relative error between the approximated TLS solution and the exact
calculation of the (c) excited state population and (d) density matrix
coherence.

accurate with increasing error bars on the fitting parameters.
Consequently, π polarization imaging will be less accurate to
define the absorption cross section and the atom numbers.

C. Role of an incoherent drive

The scattering cross section is also modified in the presence
of an incoherent field. It could be, for example, generated by a
thermal lamp, or by the temporally incoherent response of the
surrounding atomic gas to the coherent excitation. Here, we
consider the influence of a partially polarized incoherent field

FIG. 4. (a) α and (b) β as a function of ε in the case of 
 = π/2.
ζ = 1 is circular and ζ = 0 is linear along εz and does correspond
to a π polarization. The maximum and the standard deviation of the
relative error between the approximated TLS solution and the exact
calculation of the (c) excited state population and (d) density matrix
coherence.

on the coherent and incoherent scattering response of a MLS
probed by a coherent σ− polarized light under zero magnetic-
field offset. Electromagnetic fields are here considered as
temporally incoherent if their coherence time is smaller than
the Rabi period, meaning that the density matrix coherences
are zero, on average, while the excited state populations are
nonzero. An incoherent field yields optical pumping without
coherence.

We consider a partially σ− polarized incoherent field that
could, for example, be generated by the incoherent scatter-
ing of a σ− polarized coherent field. This incoherent field
is parametrized by a polarization degree r ∈ [0, 1] in the
form sσ

i = rsi and siso
i = (1 − r)si where the sσ

i /siso
i /si are,

respectively, the σ− polarized, isotropic, or total saturation
intensities expressed relatively to the saturation intensity of
σ− polarized light. With such definition, r = 1 describes a σ−
polarized incoherent field while r = 0 describes an isotropic
incoherent field.

In the limit r = 1, both the coherent and incoherent fields
are σ− polarized. The atomic population are pumped in the
closed transition and the situation is exactly described as in
Sec. II B with scattering rates given by Eq. (6) where δ = 0
and α = 1. In the opposite limit r = 0, a purely isotropic
incoherent field drive will redistribute the ground-state pop-
ulation. In the absence of the coherent-field drive (sc = 0),
the populations are equally redistributed among the Zeeman
states. Interestingly, we notice that for large saturation pa-
rameters si, the total population in the excited state can be
higher than 1/2. It is indeed bounded by the number of excited
Zeeman states over the total number of states which is 7/12
for the considered transition of 87Rb. The total excited state
population ρee in the absence of coherent field sc = 0 can be
analytically derived from the master equation (see Appendix)
and is given by

ρee = 7

12

si/
30
12

1 + si/
30
12

. (14)

In the low saturation regime, i.e., si � 1, Eq. (14) reduces
to ρee = 1

2
si

αiso
where αiso = 15

7 is the reduction of the cross
section for an isotropic and incoherent field.

We consider now the general case of a MLS driven simul-
taneously by a partially polarized incoherent field (r ∈ [0, 1])
and by a coherent drive sc. In the Appendix, the master equa-
tion given by Eq. (A4) is expressed in the form of Eq. (A9) and
the steady-state solutions of all elements of the density matrix
are obtained by an algebraic solver. The algebraic solution
has the form of a ratio of polynomials containing few 100
terms. This exact algebraic solution of the scattering rates is
compared to a phenomenological model of a TLS

R(coh)/� = β

2α

sc/α(
1 + siso

i / 30
12 + sσ

i /α + sc/α
)2 ,

R(tot)
sca /� = η(r, si, sc) + 1

2

sc/α

1 + siso
i / 30

12 + sσ
i /α + sc/α

,

η(r, si, sc) = η0 − η∞
1 + sc

α(1+siso
i / 30

12 +sσ
i /α)

+ η∞, (15)
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FIG. 5. (a) Variations of the total excited state population and
(b) σ_-polarized coherences with r = 0.5 and si = 5 in blue and the
fits in red using Eq. (15).

where α, β, η0, and η∞ are fitting parameters. To minimize the
number of fitted parameters, the saturation intensity correction
of the isotropic incoherent field was fixed to 30/12. In this
model, α quantifies the reduction of the coherent absorption
cross section, β < 1 quantifies the reduction of coherent-field
emission with respect to a perfect TLS. η(r, si, sc) is the part
of the total excited-state population induced by the incoherent
field drive. This contribution of the excited state population
includes states which are coupled to all three fields (e.g.,
|Fe = 3, mF = −3,−2,−1, 0, 1〉) and states coupled only to
the isotropic polarization (e.g., |Fe = 3, mF = 2, 3〉). This
excited-state population η(r, si, sc) has a complex dynamic
that depends on the polarization ratio of the incoherent field
r, the value of the incoherent si and coherent sc saturation
intensities. For a given couple of the parameters r and si, we
observe that this contribution varies monotonically from η0

in absence of coherent drive and saturates at η∞ for large
coherent drive sc � si. The model given in Eq. (15) repro-
duces the saturation behavior with a crossover at sc/α = 1 +
siso

i / 30
12 + sσ

i /α.
As an example, the total scattering rate and coherent scat-

tering rate are given as a function of sc for r = 0.5 and
si = 5 in Fig. 5. We observe that the equivalent TLS given
by Eqs. (15) describes well the dynamics with a standard
deviation of the relative error below 1% on this example.
The excited state population offset at sc = 0 is due to the
incoherent drive. We compare the TLS model and the exact
solution by fitting the parameters α(si, r), β(si, r) η0(si, r),
and η∞(si, r). The fits are realized at a fixed incoherent in-
tensity si ∈ [0, 10] and polarization degree r ∈ [0, 1] and for
a coherent intensity sc varying between 0 and 10si. In this
parameter range (sc � 100) the closed transition approxima-
tion holds at least for 500 scattering events. The results are
shown in Fig. 6. As a comparison, the expected parameters
for an exact TLS are α = 1, β = 1, and η0 = η∞ given by the
second term in Eq. (6) which are indeed the exact solutions
found for a polarized incoherent field (r = 1). For r = 1, the
MLS is optically pumped in an exact TLS. As the incoherent
drive polarization is randomized r → 0, the fitted parameters
slightly deviate from these initial values with a complex be-
havior that is mostly driven by optical pumping mechanisms.
In absence of coherent drive, the excited state population η0

increases as a function of the incoherent saturation intensity.
For an isotropic incoherent drive, this excited-state population
can even exceed 1/2 [cf. Eq. (14)] as all 12 states become

FIG. 6. Model parameters (a) α, (b) β, (c) η0, and (d) η∞ as a
function of the incoherent intensity si for polarization degrees r ∈
[0, 1] by step of 0.1. The shaded area represents the 95% confidence
interval of the fits and is very small on the plots. In (c), the limit case
r = 0 and r = 1 exactly coincide with the analytical solutions given
in Eq. (14) and the second term of Eq. (6), respectively.

equally populated. In our model, the coherent scattering rate
only depends on α and β. For large and unpolarized inco-
herent drive, the coherent scattering rate can be reduced by
up to a factor of 1/2 with respect to the pure TLS. This
reduction is essentially due to Clebsch-Gordon coefficients
entering in the calculation of β. As checked numerically, the
polarization of the coherently scattered field is exactly aligned
with the input field (σ polarized). This was expected given
that the incoherent field cannot drive coherence between the
Zeeman sublevels and therefore does not alter the scattered
polarization [Eq. (A8) in the Appendix].

V. DISCUSSION

The combined coherent and incoherent response of atoms
in the saturated regime has a strong impact on the interpre-
tation of fluorescence and absorption imaging of ensembles.
Experimental imperfections are the common explanations
[27] for the reduction of the atomic cross section. With this
argument, the absolute determination of atom numbers is
subject to a precise calibration of the experimental condi-
tions which is often questioned. In Fig. 2, we showed that
the effective TLS description of a multilevel atom is very
robust to polarization imperfections, especially for the case
of σ -polarized light. We attribute this robustness to optical
pumping mechanisms that protects the stretched-state hy-
perfine transition [|Fg = 2, mF = −2〉 to |Fe = 3, mF = −3〉
in σ−]. This pumping was additionally observed in the
steady-state solutions of the OBE via a strong imbalance
of the repartition of the population that favored the |Fg =
2, mF = −2〉 state even for ζ ∈ [0.5, 1]. This optical pump-
ing protection of σ transitions is not specific to the imaging
transition of the D2 line of Rb and will be applicable to any
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Zeeman-degenerated closed transition. In the absence of Zee-
man degeneracy, it was additionally shown that MLS behaves
exactly as an effective TLS for any drive polarization. As
expected for 87Rb, the cross section reduction factor α varies
from 1 (σ ) to 1.829 (π ) depending on the driving-field polar-
ization.

On the other hand, stray magnetic field strongly impact
the calibration of the scattering cross section of a σ -polarized
probe [Fig. 3(a)]. Nevertheless, this correction, which is solely
given by detuning of the coherent drive from the extreme TLS
transition, can be exactly compensated for by tuning the drive
frequency on resonance with the extreme TLS transition in
experiments. It is therefore not a concern for cross section cal-
ibrations. In addition, due to the symmetry of the first-order
Zeeman splitting, the cross section correction of a π -polarized
probe is independent of the stray magnetic-field amplitude if
it is aligned along the linear polarization axis.

As mentioned earlier, in the presence of a stray magnetic
field, light scattering is a vectorial process, and the coherent
scattered-field polarization is not aligned with the drive. Nev-
ertheless, in the specific case of σ and π polarized light with a
magnetic bias well defined with respect to light polarization,
both atom-light and magnetic interaction are diagonalized
in the same basis leading to an aligned output field. The
scattering process is therefore scalar in these two situations
with additional robustness to imperfections for the σ polar-
ized drive [Fig. 2(d)]. Polarization and stray magnetic-field
imperfections have therefore little influence on the reduction
of the cross section.

In this work, we showed that the presence of an incoherent
background that would mimic the temporally and spatially
incoherent scattering from other atoms in the ensemble, will
notably reduce the single atom scattering cross section. This
results in systematics errors on absorption imaging measure-
ments of atom numbers in the saturation regime and/or at
large optical thickness [3,28]. For large optical depths, via
multiple scattering mechanisms, most of the coherent drive
will be converted into incoherent radiation. A total conversion
of field leads to si = sc which gives an upper bound for the
modification of α = 1 + si. In the limit of large saturations,
atoms are driven in the Mollow triplet regime [29] and their
radiation contributes to create a strong incoherent radiation
bath.

The effective TLS provides a microscopic model that in-
corporates into α and β the full complexity of the MLS and
can be used to perform quantitative numerical simulations of
light propagation in a large ensemble of atoms. For instance,
Figs. 2(a) and 2(b) defines the exact response of a single
atom to any polarization excitation. In numerical simulations,
knowing the polarization of the excitation (probe or scattered
fields), such precalculated coefficients can be used to accu-
rately model the multiple-scattering response which spares to
solve the MLS dynamics.

VI. CONCLUSION

In this paper, we thoroughly studied the total and coherent
scattering rates of a MLS illuminated by different configura-
tions of the electromagnetic field that correspond to situations

often encountered in experimental realization. We proposed to
map these scattering properties to the one of an effective TLS
model which is particularly relevant to reduce the complexity
of multiple scattering simulations. We showed that, at zero
magnetic field, our effective TLS model describes exactly
the scattering rates of a MLS for any saturation parameter.
In the presence of stray magnetic fields that lift the Zeeman
degeneracy, the amplitude of the scattered fields is well de-
scribed by the TLS model, with an exact mapping for the
specific case of σ and π polarizations. For other polariza-
tions, vectorial scattering (magneto-optical effects) can occur.
Our scalar model cannot exactly render such rotations but
proved to be robust for σ -polarized scattering. In the limit of
strong saturation, incoherent scattering dominates. In dense
ensembles, the dynamic of a single atom will be affected by
this incoherent electromagnetic background. We showed that,
while the MLS dynamic becomes complex, an equivalent TLS
model can be adapted to enlighten the general behavior and
main scattering response. In particular, we noticed that, even
though the intrinsic reduction α of the saturation intensity
stays close to 1, the effective reduction αeff is proportional
to the incoherent background intensity thus reducing the co-
herent scattered field. This work gives an upper bound to
situations in which a TLS model applies and can be extended
to any atom having a cycling transition.
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APPENDIX

In the following, we briefly give the formalism used to
calculate the steady-states solutions of the density matrix that
were used to evaluate the atomic scattering cross section. A
detailed derivation of the formalism can be found in [20].

The lowering operator between two hyperfine states Fg and
Fe is given by

�q =
∑

Fg,mg,
Fe,me

λ(Fg, mg, Fe, me, q)|Fg, mg〉〈Fe, me|, (A1)

where

λ(Fg, mg, Fe, me, q) = (−1)Fe+Jg+1+I
√

(2Fe + 1)(2Jg + 1)

×〈Fg, mg|Fe, me; 1, q〉
{

Je Jg 1
Fg Fe I

}
,

(A2)

with the curly brackets denoting the Wigner-6 j symbol.
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The expectation values involved in the coherent and total scattering rates of Eqs. (10) using Eq. (A1) are

〈�q〉 =
∑

Fg,mg,
Fe,me

λ(Fg, mg, Fe, me, q)ρFe,me,Fg,mg

∑
q

〈�†
q�q〉 = (2Jg + 1)/(2Je + 1)

∑
Fe,me

ρFe,me,Fe,me . (A3)

So the coherent scattering is given by the optical coherences and the total scattering by the population of the excited state.
Projecting Eq. (8) onto the general states 〈α, mα| and |β, mβ〉, the full master equation for an arbitrary number of hyperfine

and Zeeman states reads

ρ̇α,mα,β,mβ
= − i

2

⎡
⎣∑

Fe,me

�∗(α, mα, Fe, me)δαgρFe,me,β,mβ
+

∑
Fg,mg

�(Fg, mg, α, mα )δαeρFg,mg,β,mβ

−
∑
Fg,mg

�∗(Fg, mg, β, mβ )δeβρα,mα,Fg,mg −
∑
Fe,me

�(β, mβ, Fe, me)δgβρα,mα,Fe,me

⎤
⎦

− i(δαgδeβ − δgβδαe)�FgFeρα,mα,β,mβ
− i�α,mα,β,mβ

(Bz )ρα,mα,β,mβ
− �

2
δαeρα,mα,βmβ

− �

2
δβeρα,mα,βmβ

+ δαgδgβ
∑

q,Fe,F ′
e

�(−1)−α−β (2Je + 1)

{
Jg Je 1
Fe α I

}{
Jg Je 1
F ′

e β I

}√
2α + 1

√
2β + 1

×〈Fe, mα − q|α, mα; 1,−q〉〈F ′
e , mβ − q|β, mβ ; 1,−q〉ρFe,mα−q,F ′

e ,mβ−q. (A4)

The first four terms in Eq. (A4) are the field terms, followed by the laser detuning, the Zeeman splitting, and finally three
decay terms proportional to �. ρi,mi, j,mj are the density matrix elements, δi, j is the Kronecker symbol, �Fg,Fe = ω − ωFg,Fe is the
detuning of the laser compared to the atomic hyperfine transition from Fg to Fe. The magnetic field is along εz, the Landé factors
are gi. The Zeeman shift is given by �α,mα,β,mβ

(Bz ) = μbBz

h̄ (gαmα − gβmβ ). The Rabi frequency depends on Clebsch-Gordan
coefficients and the field complex amplitude

�(Fe, me, Fg, mg) =(−1)Fe+Jg+1+I
√

(2Fe + 1)(2Jg + 1)〈Fg, mg||Fe, me; 1, mg − me〉
{

Jg Je 1
Fe Fg I

}
�

(Jg,Je )
mg−me

, (A5)

where �
(Jg,Je )
q = −2〈Jg| | er | |Je〉E (+)

0q /h̄ with 〈Jg||er||Je〉 being the reduced dipole matrix element between the states Jg and Je.

E (+)
0q is the positive rotating amplitude of the electric field defined as E(t ) = ∑

q∈{−,+,0}(−1)qε−qE (+)
0q eiωt + c.c.. The coupling

between two Zeeman states is expressed with the Wigner-6 j symbol and Clebsch-Gordan coefficients expressed with the Wigner-
3 j symbols

〈Fg, mg||Fe, 1; me, q〉 = (−1)Fe−1+mg
√

2Fg + 1

(
Fe 1 Fg

me q −mg

)
, (A6)

〈Fe, me||Fg, 1; mg,−q〉 = (−1)Fg−me−1
√

2Fe + 1

(
Fe 1 Fg

me q −mg

)
. (A7)

The optical coherence, under the adiabatic approximation where the coherences are always in equilibrium with respect to
the population evolution (ρ̇eg ≈ 0), for a transition between me and mg on resonance is given by Eq. (A8). It depends on the
population difference and on Zeeman coherences. In the case of a pure polarization (aligned with only one element of the
spherical basis), if the Zeeman coherences start at zero then they remain zero at steady state, so the optical coherences are
directly given by the population difference. Otherwise, Zeeman coherences can be driven and contribute to the scattering rates

ρe,me,g,mg = − i

�

∑
m′

g

�(m′
g, me)ρg,m′

g,g,mg − i

�

∑
m′

e

�(m′
g, m′

e)ρe,me,e,m′
e
. (A8)

To include an incoherent field background in the master equation, Zeeman coherences are neglected in Eq. (A8). Writing a
master equation only for incoherent field terms leads to the following rate equations with saturation si = 2�2

i /�
2:

�ρ̇α,mα,α,mα
= δαe

∑
i

�2
i (mα, i)ρg,i,g,i − δαe

(∑
i

�2
i (mα, i)

)
ρα,mα,α,mα

× δαg

∑
i

�2
i (i, mα )ρe,i,e,i − δαg

(∑
i

�2
i (i, mα )

)
ρα,mα,α,mα

. (A9)
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Finally, the full master equation including all effects is obtained by adding the terms of Eqs. (A9) to (A4). Also, solving the
full master equation at zero magnetic field, without coherent driving field (sc = 0) and keeping the decay terms, one obtains the
total excited-state population given in the main text in Eq. (14).
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