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Ultrafast control of vibrational states of polar molecules with subcycle unipolar pulses
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We investigate theoretically the nonresonant excitation of vibrational levels in polar molecules by unipolar
radiation pulses of duration much shorter than the characteristic period of the molecule’s vibration. We consider
several profiles of the potential of the interaction of atoms in a diatomic molecule and derive analytically the
probabilities of the molecule’s transition to excited vibrational states when driven by subcycle unipolar pulses.
It is shown that the excitation efficiency is governed by the electric pulse area so that unipolar half-cycle pulses
turn out to be the most efficient ones. We introduce the characteristic scale of the electric pulse area, which
serves as a measure of the pulse action on the vibrational states of the molecule. The results are generalized to
the interaction of excited vibrational and rotational states and it is shown that the behavior of the vibrational
levels’ populations versus the electric pulse area as well as the introduced characteristic scale stays valid.
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I. INTRODUCTION

In recent times there has been great interest in the gener-
ation of few-cycle pulses in terahertz and especially optical
frequency ranges [1–3]. The pulses of such ultrashort dura-
tion seem attractive in multiple applications, such as coherent
control of ultrafast processes in matter or ultrafast optical data
processing [2,4]. Of particular interest in ultrafast photonics
are the half-cycle pulses containing just a half of a field os-
cillation and thus having a constant sign of the electric field.
Such pulses, referred to as unipolar, can be more strictly de-
fined as having nonzero values of the so-called electric pulse
area [5–7]

�SE =
∫ +∞

−∞
�E (�r, t )dt �= 0, (1)

with the electric-field vector �E (�r, t ). Importantly, the elec-
tric pulse area (1) exhibits a fundamental conservation law,
which directly follows from Maxwell’s equations, namely, the
electric pulse area is conserved, when an arbitrary ultrashort
pulse propagates in a nonlinear dissipative medium in the
one-dimensional case [8,9].

As can be easily inferred from Eq. (1), unipolar pulses,
when interacting with charged particles, transfer a nonzero
momentum to them. This fact makes it possible, for ex-
ample, to much more efficiently ionize atoms or accelerate
charges than usual bipolar pulses would [10–14]. It was
also shown that unipolar pulses can efficiently excite elec-
tronic states in resonant media, even though they possess
extremely broad spectra and therefore interact with media
nonresonantly [15,16]. Besides that, the possibility of selec-
tive excitation of the levels in a hydrogen atom by varying
the parameters of the unipolar pulse sequence was demon-
strated [17].

Quite often in experiments it is much easier to produce
not strictly unipolar pulses, but so-called quasiunipolar ones,

which consist of an intense half-cycle burst and a much longer
low-amplitude tail of the opposite sign of the electric field.
The electric pulse area (1) in this case equals zero, which al-
lows us to avoid some technical difficulties related to handling
with the close to zero-frequency spectral components. Impor-
tantly, as it was recently demonstrated, such quasiunipolar
pulses can act on quantum systems almost as strictly unipolar
pulses would, provided the duration of their tail at the trailing
edge is significantly longer than the duration of the leading
burst [17].

Since subcycle unipolar pulses possess an ultrabroad spec-
trum extending up to zero frequency, specific approaches are
needed for their production. So far, a number of methods
for the generation of unipolar and quasiunipolar subcycle
pulses have been suggested [5,18,19]. The most notable ones
rely on the formation of terahertz unipolar precursor pulses
in electro-optical crystals [20,21], excitation of a foil tar-
get by intense femtosecond pulses [22,23], or the control of
the superradiant emission in a layer of a nonlinear resonant
medium [24,25]. Also, the transformation of a bipolar pulse
into a unipolar half-cycle pulse upon its linear reflection from
thin metallic films was obtained in [26]. Besides that, the
possibility of the unipolar half-cycle soliton formation in a
nonlinear medium was demonstrated theoretically [27–32].
Recently, several approaches for the generation of attosec-
ond [33] and terahertz [34] unipolar pulses in plasma were
suggested. Transportation of unipolar pulses can be realized in
coaxial waveguides having no cutoff frequency [35]. Finally,
experimental determination of unipolarity and the electric
pulse area of terahertz radiation emitted by filaments in water
was recently performed [36].

Such subcycle pulses containing less than a single optical
cycle were also studied for the control of molecular dynamics.
In particular, subcycle unipolar pulses were used for effective
molecular orienting and alignment [37–39]. Later, the selec-
tive control of the rotational levels with unipolar pulses was

2469-9926/2022/105(4)/043103(12) 043103-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3880-7833
https://orcid.org/0000-0002-3109-8237
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.043103&domain=pdf&date_stamp=2022-04-05
https://doi.org/10.1103/PhysRevA.105.043103


PAKHOMOV, ARKHIPOV, ROSANOV, AND ARKHIPOV PHYSICAL REVIEW A 105, 043103 (2022)

demonstrated [40]. Several studies also addressed the issue
of the transition of polar molecules to excited vibrational
states upon interaction with few-cycle and subcycle pulses.
The possible role of the electric pulse area (1) in nonres-
onant excitation of molecular vibrational levels by intense
ultrashort pulses was noted in [41], but the investigation was
only performed for bipolar pulses. In Ref. [42] the dissoci-
ation dynamics and angular distribution of the HF molecule
interacting with intense half-cycle and few-cycle pulses was
numerically analyzed. In particular, it was found that for sub-
10-fs pulses the molecule has higher dissociation probabilities
under half-cycle pulses than under other types of pulses.
However, most papers so far studied only the vibration excita-
tion and the molecule’s dissociation under bipolar multicycle
pulses with zero electric pulse area (1). At the same time,
detailed studies of the excitation of the molecule’s vibrational
states by unipolar pulses are lacking.

In this paper we investigate theoretically the ultrafast ex-
citation of vibrational states in polar molecules upon the
interaction with unipolar subcycle pulses. We consider the
pulses much shorter in duration than the characteristic vi-
brational period of the molecules. We obtain the efficient
nonresonant excitation of higher vibrational states in polar
molecules by unipolar pulses. The probabilities of the levels’
excitation were analytically found for the simplest comple-
mented Coulomb potential. Using a more advanced Morse
potential profile, we demonstrate the molecule’s dissociation
by unipolar pulses with large enough electric pulse area. We
also introduce a parameter of molecular scale of the electric
pulse area which fully determines the influence of a subcycle
unipolar pulse on the molecule’s vibrational dynamics.

The paper is organized as follows. In Sec. II we describe
the general model of the molecule’s interaction with sub-
cycle unipolar pulses and derive the general expression for
the probability of transition to the excited states. In Sec. III
we apply the derived expressions to the simplest model of
the interatomic interaction in a polar molecule, namely, a
complemented Coulomb potential, which allows for the an-
alytical treatment. In Sec. IV we focus on a more advanced
Morse potential and investigate the excitation and dissociation
dynamics of polar molecules within this model. Section V
is devoted to the mutual action of the excited rotational and
vibrational levels and we examine how the excitation of the
rotational states influences our findings for the molecule’s
transition to higher vibrational levels. The paper is summa-
rized and concluding remarks are given in Sec. VI.

II. MODEL

We treat the interaction of an excitation pulse with a
molecule using the standard time-dependent Schrödinger
equation for the wave function ψ [43]:

ih̄
∂ψ

∂t
= [Ĥ0 + V̂ (t )]ψ. (2)

Here Ĥ0 is the intrinsic Hamiltonian of the molecule, which
we expand as

Ĥ0ψ = − h̄2

2μ

∂2ψ

∂r2
+ U (r)ψ + Ĥelψ, (3)

with the reduced mass of the molecule μ, the potential energy
of the interaction between atoms in the molecule U (r) with
the spacing between atoms or nuclei r, and the term Ĥel

describing the electronic levels. The second term in Eq. (2) is
the interaction potential V̂ (t ) of the molecule with the external
electric field of the excitation pulse and can be represented
within the dipole approximation as

V̂ (t ) = − �E (t ) ·
∑

i

qi�ri, (4)

with the summation performed over all charges qi in the
molecule and their radius vectors �ri.

In the consideration below we make use of the assumption
that the excitation pulse duration τp is much smaller than the
typical period of molecular vibrations

ωV τp � 1, (5)

where ωV is the characteristic vibration frequency. The as-
sumption (5) dates back to the originals papers on the sudden
perturbations of quantum systems [44]. Such an approxi-
mation was previously used in Refs. [15,16,45], and it was
shown that the inequality (5) makes it possible to disregard
the intrinsic Hamiltonian Ĥ0 when solving Eq. (2) for the
molecule excitation by a driving pulse. If this driving pulse of
the duration τp arrives at the time point t0, the formal solution
of Eq. (2) for the wave function after the pulse passage can be
written as [15,45]

ψ (t0 + τp) = ψ (t0) exp

(
− i

h̄

∫ t0+τp

t0

[Ĥ0 + V̂ (t )]dt

)

= ψ (t0) exp

(
− i

h̄

∫ t0+τp

t0

Ĥ0dt

)

× exp

(
− i

h̄

∫ t0+τp

t0

V̂ (t )dt

)
. (6)

The first exponential factor here can be estimated using the
condition (5) as

exp

(
− i

h̄

∫ t0+τp

t0

Ĥ0dt

)
∼ eiωV τp ≈ 1

so that the expression (6) reduces to

ψ (t0 + τp) ≈ ψ (t0) exp

(
i

h̄

∑
i

qi�ri ·
∫ t0+τp

t0

�E (t )dt

)

= ψ (t0) exp

(
i

h̄
�SE ·

∑
i

qi�ri

)
. (7)

Equation (7) yields that the final state of the system is fully
determined by the electric area of the excitation pulse SE

defined by Eq. (1) [15,16,40,45].
In order to calculate the populations of the molecular ex-

cited states caused by the driving pulse, one has to expand the
wave function of the system ψ (t0 + τp) from Eq. (7) into a
series of the respective eigenfunctions ψn(�r),

ψ (�r, t0 + τp) =
∑

n

anψn(�r),
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so that the expansion coefficients

an =
∫

ψ∗
n (�r)ψ (�r, t0 + τp)d�r (8)

provide the probability of transition to the excited states:

wn = |an|2. (9)

Let us now further simplify Eq. (7). We represent the radius
vector �ri of each charge as the sum of the radius vector with
respect to the center of the nearest atom �r o

i and the radius
vector of this atom’s center �Ro

i : �ri = �r o
i + �Ro

i . Since the radius
vector �Ro

i is the same for all charges coupled to each atom, for
the second summation term we can get.∑

i

qi �Ro
i = �R12

∑
j

q j = Q �R12, (10)

with the index j running now over all charges of each atom,
the radius vector �R12 pointing between the centers of atoms
in a diatomic molecule, and Q being the overall charge at-
tributed to each atom. The nonzero value of Q hence means
that the interatomic bonding in the molecule has to be at least
partially ionic so that the expression (10) equals the permanent
dipole moment of the molecule. Given that, the expression (7)
reduces to

ψ (t0 + τp) ≈ ψ (t0) exp

(
i

h̄
�SE ·

∑
i

qi�r o
i

)
exp

(
i

h̄
�SE · Q �R12

)
.

(11)

From Eq. (11) we can infer that in the first approximation
we can suitably separate excitation of the electronic levels
in the molecule on the one hand and the excitation of the
molecular vibrational and rotational levels on the other hand.
Indeed, the wave function ψ (t0 + τp) is connected to the wave
function ψ (t0) through two factors in Eq. (11), where the first
factor describes only the electron states inside the molecule
and the second factor only depends on the separation between
the atoms and the molecule’s orientation with respect to the
driving electric field. If we neglect in the first approximation
the influence of the excited electronic states on the parameters
of the potential of the interatomic interaction in the molecule
and on the permanent dipole moment of the molecule, we
can treat the electronic and the vibrational or rotational levels
separately.

In practice, such an assumption means that, when calcu-
lating the expansion coefficients using Eq. (8), we separate
both exponential factors in Eq. (11) and use only the second
factor to consider the vibrational and rotational states of the
molecule. At the same time the first exponential factor in
Eq. (11) is solely attributed to the excitation of the electronic
states and should be coupled to the electronic part of the eigen-
functions ψn(�r) in Eq. (8). When considering only vibrational
levels, this part related to the electronic states can be skipped
within the approximation used. Thus, in what follows we will
deal only with the second exponential factor in Eq. (11).

Below we study in detail two specific types of potential
energy profile for the interatomic interaction, namely, the
complemented Coulomb potential and the Morse potential. In
the first step, we neglect the rotational motion of the molecule
and focus on the vibrational levels. Then we extend our results

FIG. 1. Profile of the finite potential well as provided by the
complemented Coulomb potential (13) and Morse potential (36) for
α = 2D−1 and 5D−1.

to the case when the rotational levels are also involved and
investigate the mutual action of the vibrational and rotational
excited states.

III. COMPLEMENTED COULOMB POTENTIAL

We start with a Coulomb-type potential describing the at-
traction of differently charged atoms in a molecule of a polar
dielectric. At the same time, in order to enable the formation
of a stable molecule, the Coulomb attraction has to be bal-
anced by the repulsive forces. For definiteness we take the
simplest possible r−2 dependence of this repelling potential
on the interatomic separation r in the molecule. Therefore, we
end up with the potential energy U (r),

U (r) = −C1

r
+ C2

r2
, (12)

with some positive constants C1 > 0 and C2 > 0. The first
term on the right-hand side of Eq. (12) stands for the standard
Coulomb attraction, while the second term corresponds to
the repulsive forces that confront the attraction as the atoms
get close enough to each other. For convenience, we rewrite
Eq. (12) in the more suitable form

U (r) = U0

(
−2D

r
+ D2

r2

)
, (13)

where U0 is the molecular binding energy and D is the equilib-
rium interatomic separation. Indeed, from Eq. (13) we easily
find that the minimum of the potential energy corresponding
to

dU (r)

dr
= 0

is reached for r = D, while the respective value of the poten-
tial energy equals −U0, as can be seen in Fig. 1.

The eigenstates of the potential (13) are given by the
Schrödinger equation Ĥ0ψ = Eψ , with the energy value E ,
which attains the form

d2ψ

dr2
+ 2μ

h̄2

(
E + 2DU0

r
− U0D2

r2

)
ψ = 0. (14)
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Equation (14) represents the so-called Whittaker equation. It
seems convenient to convert Whittaker’s equation to another
form using the ansatz ψ (r) = ρ pe−ρ/2u(ρ), where

ρ = 2εr, ε =
√

−2μ

h̄2 E , p = 1

2
+

√
1

4
+ 2μU0D2

h̄2 .

(15)

Now for the function u(ρ) we obtain the equation

ρ
d2u

dρ2
+ du

dρ
(2p − ρ) + u(γ − p) = 0, (16)

with

γ = 2μU0D

εh̄2 .

Equation (16) is the Kummer or confluent hypergeometric
equation, whose solutions are confluent hypergeometric func-
tions. In order to get a feasible solution for the wave function,
we need the wave function ψ (r) to be finite at r = 0 and go to
zero as r → +∞. This condition is only obeyed when

γ − p = n, (17)

with n a non-negative integer. In this case the solution of
Eq. (16) is the generalized Laguerre polynomial L(2p−1)

n (ρ).
The equality (17) allows us to find the energy values of the
eigenstates

En = − 2μU 2
0 D2

h̄2(p + n)2
, n = 0, 1, 2, . . . . (18)

It is important to emphasize that the potential (13) thus
possesses an infinite number of energy levels in its dis-
crete spectrum. The respective rescaled wave functions of the
eigenstates are given as

ψn(r) =
√

εnn!

(n + p)
(n + 2p)
(2εnr)pe−εnrL(2p−1)

n (2εnr),

(19)

with

εn = 2μU0D

h̄2(p + n)
.

The wave functions of the eigenstates (19) for r → 0
behave as ∼rp. It can be shown that such a power-law depen-
dence for r → 0 arises specifically for the repulsive potential
energy term ∼r−2 as in Eqs. (12) and (13). Indeed, let us as-
sume that the repulsive potential energy term for small r → 0
exhibits

U (r) = UK

rK
, K > 2.

Now the Schrödinger equation for small r → 0 instead of
Eq. (14) appears to be

rK d2ψ

dr2
+ 2μUK

h̄2 ψ = 0.

It can be easily checked that the respective solution for small
r is

ψ (r) = const e−(r/D)−s
, (20)

with s = K
2 − 1. When r → 0 the wave function (20) goes

to zero faster than the power-law dependence rn′
with an

arbitrary large positive integer n′, i.e., the slope of the wave
function (20) for r � D is smaller than for the power-law
dependence rn′

. Such an extremely small amplitude of the
wave function in the vicinity of r = 0 means that the area
r � D of the interatomic spacing is completely inaccessible
for the molecule.

Next we move on to the calculation of the probability of
transition to the excited vibrational states. Suppose that the
molecular vibrations were not excited before the arrival of
the excitation pulse, meaning that the molecule was in the
eigenstate with n = 0. Since L(2p−1)

0 (ρ) = 1, the respective
wave function ψ0 from Eq. (19) is given as

ψ0(r) =
√

ε0

p
(2p)
(2ε0r)pe−ε0r, (21)

with

ε0 = 2μU0D

h̄2 p

and the respective energy value

E0 = −2μU 2
0 D2

h̄2 p2
.

Then, according to Eqs. (8) and (9), the probability of the
excitation of the nth vibrational level is given as

wn = |an|2 =
∣∣∣∣
∫ +∞

0
ψ∗

n (r)ψ0(r) exp

(
i

h̄
SE Qr cos θ

)
dr

∣∣∣∣
2

,

(22)
where θ is the angle between the permanent dipole moment of
the molecule and the electric field.

Using Eqs. (19) and (21), Eq. (22) yields [46]

wn = [4p(n + p)]2p 
(n + 2p)


(2p)n!

× 4p4b2(n + p)2[n2 + b2 p2(n + p)2]n−1

[(n + 2p)2 + b2 p2(n + p)2]n+2p+1
, (23)

where we introduce the parameter

b = h̄QSE cos θ

2μU0D
. (24)

Using Eq. (19) for the wave functions of the eigenstates, we
can introduce the following spatial scale dn corresponding to
the spatial extension of the wave function in the nth eigenstate:

dn = p

εn
= h̄2 p(p + n)

2μU0D
. (25)

According to Eq. (23) for the probabilities of the excitation
of the vibrational states, the efficiency of the unipolar pulse
action on the molecule vibrational motion is determined by
the value

bp(n + p) = SE cos θ

S0
,

where we define

S0 = h̄

Qdn
. (26)
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Following the notation proposed in [16,47], we call the quan-
tity (26) the molecular scale of the electric pulse area. The
molecular scale (26) represents the characteristic measure for
the efficiency of the molecule’s excitation by unipolar pulses.
This means that only unipolar subcycle pulses with electric
pulse area comparable to Eq. (26) can noticeably influence
the populations of the vibrational levels of a polar molecule.

Let us estimate now the value of the parameter p for
an exemplary molecule. The dissociation energy in diatomic
molecules typically falls in the range U0 = 1–10 eV and the
equilibrium distance between atoms usually equals D = 1–2
Å. The reduced oscillator mass μ is mainly provided by the
nuclear masses, so we can assume μ ∼ 10Mp with the proton
mass Mp. Taking now, in Eq. (15), U0 = 3 eV, D = 1 Å, and
μ = 10Mp, we get p ≈ 120. So a large value of the power
degree indicates extremely slow growth of the wave function
in the vicinity of r = 0. It should also be concluded that the
introduced molecular scale of the electric pulse area (26) is
therefore almost constant for all vibrational levels as long as
n � p and represents the characteristic feature of the molec-
ular system.

It is now more convenient to rewrite Eq. (23) as

wn =
(

4

(2 + n/p)2 + b2(n + p)2

)2p+1(
1 + n

p

)2p+2

× 
(n + 2p)


(2p)n!

b2

b2(1 + n/p)2 + n2/p4

×
(

n2 + b2 p2(n + p)2

(n + 2p)2 + b2 p2(n + p)2

)n

. (27)

Since we are mainly interested in the lowest excited vibra-
tional levels, we can reliably make an assumption

n � p. (28)

In particular, the condition (28) allows us to reduce in Eq. (27)


(n + 2p) ≈ 
(2p)(2p)n,(
1 + n

p

)2p+2

≈
(

1 + n

p

)2p

≈ e2n. (29)

Now we can analyze the transition probabilities using Eq. (27)
in several limits depending on the value of the rescaled electric
pulse area described by the parameter b Eq. (24).

In the limit b � p−2 and n � p, we can set the first factor
in Eq. (27) equal to unity and use the expressions (29) to turn
Eq. (27) into

wn ≈ e2n (2p)n

n!

b2 p4

b2 p4 + n2

(
n

2p

)2n

=
(

n2e2

2p

)n 1

n!

b2 p4

b2 p4 + n2
. (30)

According to Eq. (30), the population of all levels with n � 1
is very small and turns to zero as b → 0, while for the ground
state w0 ≈ 1.

In the limit b ∼ p−1 and n � p, we can set the fourth factor
in Eq. (27) equal to unity and it transforms into

wn ≈
(

4

4 + b2 p2

)2p+1

e2n (2p)n

n!

(
b2 p2

4 + b2 p2

)n

. (31)

In this case the population of the ground state is very small and
high-energy levels primarily get populated. We can directly
find the level with the largest population by calculating

wn

wn−1
= 2p e2

n

b2 p2

4 + b2 p2
.

One can see that the most populated level is

nm =
[

2p e2 b2 p2

4 + b2 p2

]
,

where [· · · ] stands for the integer part of the value. This
value is by an order of magnitude larger than p, meaning that
for unipolar pulses with such a large electric pulse area our
complemented Coulomb model predicts the molecule transfer
to very high vibrational states. Such a prediction obviously
does not meet realistic processes, meaning that our model
fails to correctly describe the action of excitation pulses with
a large electric pulse area.

Finally, let us focus on the intermediate case, when

p−2 � b � p−1. (32)

In this case the molecule is expected to be transferred mainly
to the lowest excited states, so our model of the interatomic
potential can be expected to provide satisfactory results for
the molecule excitation. We investigate this intermediate case
by the direct numerical calculation of Eq. (27). We suppose
that the molecule is illuminated by a unipolar pulse of the
Gaussian electric-field profile

E (t ) = E0e−(t/τp)2
, (33)

with the pulse amplitude E0 and the pulse duration τp. The
electric pulse area (1) is found to be

SE = √
πE0τp. (34)

The parameter values E0 = 1010 V/m, μ = 10Mp, U0 = 3 eV,
D = 1 Å, Q = e, and θ = 0 are used in the calculations,
while the pulse duration τp is taken as a variable parameter.
Since frequencies of the vibrational transitions in diatomic
molecules are typically around several tens of terahertz, the
condition (5) requires a pulse duration up to several tens of
femtoseconds. Specifically, for the parameter values above
Eq. (18) yields, for the main transition frequency, ω01 =
7.4×1013 Hz, which gives an oscillation period of 85 fs.
Therefore, the unipolar pulse duration τp in our calculations
has to satisfy the condition τp � 85 fs.

The numerical results for the populations of the ground
and four lowest excited vibrational levels are plotted in Fig. 2.
Within the considered range of the pulse duration the product
bp changes from zero to around 0.45, so we mostly stay in
between the two limiting cases considered above. One can
see that as the pulse duration increases the levels’ popula-
tions shift towards higher states. Already for a pulse duration
around 6 fs, the ground state ceases to be the most populated
and thus the population inversion can be created. The respec-
tive range of values of the electric pulse area in Fig. 2 is

0 � SE � 54.3S0, (35)
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FIG. 2. Probabilities of the vibrational levels excitation for a
polar molecule with the potential energy profile provided by the com-
plemented Coulomb potential (13). The parameters are E0 = 1010

V/m, μ = 10Mp, U0 = 3 eV, D = 1 Å, Q = e, and θ = 0.

with the characteristic molecular scale S0 from Eq. (26), so the
introduced parameter S0 acts as a measure of the efficiency of
the vibrational levels’ excitation by unipolar subcycle pulses.

The complemented Coulomb potential considered in this
section allows us to derive a suitable analytical expression for
the excitation probabilities of the vibrational levels. However,
this model possesses certain restrictions, which limit its ap-
plicability. Specifically, the complemented Coulomb potential
exhibits an infinite number of eigenstates and thus cannot
predict the molecule dissociation under the action of an in-
tense pulse. Instead, we obtain an unrealistic molecule transfer
to the vibrational states with very large level indices. These
results imply that the complemented Coulomb potential can
only be used to describe the excitation of the lowest vibra-
tional states by the subcycle unipolar pulses of a small enough
electric pulse area, namely, of the order of the characteristic
molecular scale (26). At the same time this potential becomes
invalid when it comes to the excitation of higher vibrational
levels and the molecule dissociation, so more advanced mod-
els are needed. In the next section we examine the Morse
potential, which is expected to serve as such a model.

IV. MORSE POTENTIAL

We proceed with an alternative profile of the interaction be-
tween atoms in the molecule. For this reason we make use of
the Morse potential, which is widely used for the description
of real diatomic molecules,

U (r) = U0(e−2α(r−D) − 2e−α(r−D) ), (36)

where again U0 is the molecular binding energy, D is the
equilibrium distance between the atoms or nuclei, and an
additional parameter α controls the slope of the potential-well
borders. Two profiles of the potential well given by the Morse
potential are plotted in Fig. 1 for two different values of the
parameter α.

The Schrödinger equation for the eigenstates yields

d2ψ

dr2
+ 2μ

h̄2 (E − U0e−2α(r−D) + 2U0e−α(r−D) )ψ = 0. (37)

As shown in [43], this equation can be put into a convenient
form through the change of variables

ξ = 2
√

2μU0

αh̄
e−α(r−D), s =

√−2μE

αh̄
,

n =
√

2μU0

αh̄
−

(
s + 1

2

)
, (38)

ψ (ξ ) = e−ξ/2ξ su(ξ ), (39)

which turns Eq. (37) into the following equation for u(ξ ):

ξ
d2u

dξ 2
+ (2s + 1 − ξ )

du

dξ
+ nu = 0. (40)

For the sake of simplicity, we can assume that the potential
energy as r → 0,

U (r)|r→0 = U0(e2αD − 2eαD),

is large enough, although finite, so we get that the new variable
ξ changes from almost +∞ to 0 as r runs from 0 to +∞.
Equation (40) is basically identical to Eq. (16), so we can
conclude that the eigenstates correspond to positive integer
values of n. The respective energy levels are

En = −U0

[
1 − αh̄√

2μU0

(
n + 1

2

)]2

, n = 0, 1, 2, . . . (41)

and the rescaled wave functions of the eigenstates

ψn(r) =
√

2α snn!


(n + 2sn + 1)
e−ξ/2ξ sn L2sn

n (ξ ), (42)

with

sn =
√

2μU0

αh̄
−

(
n + 1

2

)
. (43)

In contrast to the complemented Coulomb potential con-
sidered in the preceding section, the Morse potential exhibits
only a finite number of energy levels in the discrete spectrum.
The total number of levels N is provided by the condition
En < 0, which gives, according to Eq. (41),

N =
[√

2μU0

αh̄
− 1

2

]
+ 1, (44)

where the square brackets denote again the integer part and
we add 1 to take the ground state with n = 0 into account.
For example, using the same parameters as in Fig. 2 and α =
4D−1, we get N = 30.

As in the preceding section, we assume the molecule to
be in the ground state with n = 0 before the arrival of the
excitation pulse and calculate the probability of transition to
the excited vibrational levels. The wave function ψ0 of the
ground state from Eq. (42) is given as

ψ0(r) =
√

2α s0


(2s0 + 1)
e−ξ/2ξ s0 , (45)

with

s0 =
√

2μU0

αh̄
− 1

2
.

043103-6



ULTRAFAST CONTROL OF VIBRATIONAL STATES OF … PHYSICAL REVIEW A 105, 043103 (2022)

Now Eq. (22) for the excitation probabilities using the
tabulated integral from [46] yields

wn = 2sn

n!

|
(2s0 − n − iγ )|2

(2s0)
(2s0 − n + 1)

∣∣∣∣ 
(1 + iγ )


(1 − n + iγ )

∣∣∣∣
2

,

with the new parameter

γ = SE Q cos θ

αh̄
. (46)

Since

|
(1 + iγ )|2 = πγ

sinh πγ
,

we end up with

wn = 2(s0 − n)

n!

|
(2s0 − n − iγ )|2

(2s0)
(2s0 − n + 1)

× πγ

sinh πγ |
(1 − n + iγ )|2 . (47)

In particular, for the population of the ground state with n = 0
we get

w0 = |
(2s0 − iγ )|2
[
(2s0)]2

, (48)

while for the first excited state with n = 1,

w1 = 2γ 2(s0 − 1)
|
(2s0 − 1 − iγ )|2

[
(2s0)]2
, (49)

Finally, for the excited states with n � 2, we can simplify
Eq. (47) using the relations

|
(−n + iγ )|2 = π

γ sinh πγ

n∏
k=1

(k2 + γ 2)−1

for positive integer n and

|
(a + ib)|2 = |
(a)|2
+∞∏
k=0

1

1 + b2

(a+k)2

for the complex-valued argument. Thus Eq. (47) for n � 2
finally reduces to

wn = 2(s0 − n)

2s0 − n


(2s0 − n)


(2s0)n!
γ 2

∏n−1
k=1(k2 + γ 2)∏+∞

k=0

(
1 + γ 2

(2s0−n+k)2

) . (50)

Equation (50) yields that if γ � √
2s0 − n, we get

wn ∼ γ 2(1 + γ 2)(4 + γ 2) · · · [(n − 1)2 + γ 2].

Specifically, in the limit γ � 1, we obtain, for all excited
levels, wn ∼ γ 2. It is of certain interest to find the condition
for the creation of the population inversion in the lowest
vibrational transition from the ground state n = 0 to the first
excited state n = 1. Using Eqs. (48) and (49) and the basic
property of the Gamma function 
(z + 1) = z
(z), we find

w1

w0
= 2γ 2(s0 − 1)

γ 2 + (2s0 − 1)2
.

The population inversion therefore arises, as long as the fol-
lowing inequality is obeyed:

γ � 2s0 − 1√
2s0 − 3

. (51)

FIG. 3. Probabilities of the vibrational levels excitation for a po-
lar molecule with the potential energy profile provided by the Morse
potential (36). The parameters are E0 = 5×1010 V/m, μ = 10Mp,
U0 = 3 eV, D = 1 Å, α = 4D−1, Q = e, and θ = 0.

Similar to Eq. (26), we can introduce the characteristic
molecular scale of the electric pulse area as

S0 = h̄

Qd
, (52)

with the characteristic spatial size of the Morse potential well
d = 1

α
, so that the parameter (49) describing the efficiency of

the unipolar pulse action on the oscillating molecule within
the Morse potential is given as

γ = SE cos θ

S0
. (53)

Figure 3 shows an example of the vibrational level pop-
ulation calculated using Eq. (47) for the driving unipolar
pulse (33) and (34) with the amplitude E0 = 5×1010 V/m and
the same molecule parameters as in Fig. 2 and α = 4D−1. The
frequency of the lowest transition in this case according to
Eq. (41) is ω01 = 2.9×1014 Hz, so the oscillation period is
21.4 fs, which limits the unipolar pulse duration τp. For these
parameters the condition (51) for the creation of the popu-
lation inversion in the lowest vibrational transition from the
ground state n = 0 to the first excited state n = 1 yields γ �
7.76, corresponding to the unipolar pulse duration τp � 2.3 fs,
which indeed can be seen in Fig. 3. In general, the parameter
γ from Eqs. (49) and (53) runs in Fig. 3 from zero until 37.
The population of the ground state correspondingly decreases
from one to zero, while the populations of the excited levels
first increase from zero with the pulse duration, then reach
a maximum, and eventually decrease again towards zero in
favor of higher excited levels.

From a comparison of Figs. 2 and 3, one can see that a
longer pulse duration and larger electric pulse area are needed
for the excitation of vibrational levels in a polar molecule with
the Morse potential profile. This finding seems to be related
to the larger value of the energy-level separation within the
Morse potential. With decreasing the value of the parame-
ter α and therefore the energy-level separation according to
Eq. (41), the maxima of the excited level population in Fig. 3
shift towards smaller pulse durations, thus approaching the
curves in Fig. 2 for the complemented Coulomb potential in
terms of the electric pulse area.
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FIG. 4. Dissociation probability of a polar molecule with the
potential energy profile provided by the Morse potential (36) vs the
pulse duration for several values of the unipolar pulse amplitude E0.
The other parameters are the same as in Fig. 3.

An important advantage of the Morse potential as com-
pared to the complemented Coulomb potential is its ability
to describe the molecule dissociation. This property results
from the finite number of energy levels in the discrete spec-
trum. The dissociation probability of a polar molecule can be
obtained as

wdiss = 1 −
N−1∑
n=0

wn, (54)

with the levels’ population given by Eq. (47). Figure 4 illus-
trates the dissociation probability (54) as a function of the
unipolar pulse duration for several values of the pulse ampli-
tude E0, while all other parameters are the same as in Fig. 3.
For the pulse amplitude E0 = 1010 V/m the dissociation prob-
ability turns out to be negligibly small within the considered
range of the electric pulse area, while for E0 = 1011 V/m the
dissociation probability approaches 1 already for the pulse
duration τp ≈ 6 fs. These results therefore demonstrate that
the molecule’s excitation by subcycle unipolar pulses not only
can transfer the molecule to higher vibrational levels, but also
leads to the molecule dissociation provided the electric pulse
area is large enough, namely, with respect to the molecular
scale (52).

V. COUPLING OF ROTATIONAL
AND VIBRATIONAL MODES

The treatment in the previous sections was solely focused
on the vibrational dynamics of a polar molecule while com-
pletely neglecting the molecule’s rotational motion. However,
as Eq. (11) yields, the molecule’s wave function after the
action of a driving unipolar pulse depends not only on the
distance between atoms or nuclei in the molecule, but also
on the angle between the molecule’s axis and the electric-field
direction of the driving pulse, i.e., on the orientation of the
molecule. Hence, the interaction of a polar molecule with a
unipolar pulse will also result in the excitation of rotational
levels. Such excitation was recently studied for a rigid polar
molecule in [40] for the case of a fully symmetric rotator. In
this section we aim to generalize the findings of the previous

sections and take into account the rotational dynamics as well.
Besides that, in contrast to the treatment of a fully symmetric
rotator in Ref. [40], we consider a diatomic molecule, which
possesses an asymmetry in the parameters of its rotational
motion.

The intrinsic Hamiltonian describing the rotation of an
arbitrary molecule can be written as

ĤR = h̄2

2

(
L̂2

x

IA
+ L̂2

y

IB
+ L̂2

z

IC

)
, (55)

where IA, IB, and IC are the principal moments of inertia
of the molecule and L̂x, L̂y, and L̂z are the operators of the
angular momentum about axes in the principal coordinate
system. In the general case, when IA �= IB �= IC , there is no
analytical solution for the eigenfunctions of such a three-
dimensional rotator. However, for the case of a diatomic
molecule it seems natural to assume two principal moments
of inertia corresponding to two rotational axes orthogonal to
the molecule’s intrinsic axis to be equal IA = IB = I0 �= IC ,
where IC is attributed to the rotation about the molecule’s axis.
Moreover, we can expect IC � I0 due to relatively small trans-
verse spatial extension of diatomic molecules. The rotational
Hamiltonian (55) then reduces to the form

ĤR = h̄2

2I0
L̂2 + h̄2

2

(
1

IC
− 1

I0

)
L̂2

z , (56)

where we introduce the operator of the full angular momen-
tum L̂. Both operators L̂2 and L̂2

z possess the same eigen wave
functions, which have the form, in spherical coordinates,

ψlm(θ, ϕ) = (−1)m

√
2l + 1

4π

(l − |m|)!
(l + |m|)!Pm

l (cos θ )eimϕ, (57)

where Pm
l are the associated Legendre polynomials. The re-

spective energy eigenvalues Elm are given as

Elm = h̄2l (l + 1)

2I0
+ h̄2

2

(
1

IC
− 1

I0

)
m2,

l = 0, 1, 2, . . . , |m| � l. (58)

Equations (56) and (58) are only valid for a rigid rotator.
Since we are dealing with molecular vibrations, we have to
extend the principal moment of inertia I0 as

I0 = μr2, (59)

with the interatomic or internuclei distance r. Since IC �
I0, much higher energy is required to excite the diatomic
molecule’s rotation around its axis as compared with two
orthogonal directions. Therefore, we can reliably skip the
second term in Eq. (56) so that it reduces to

ĤR = h̄2l (l + 1)

2μr2
. (60)

The obtained term (60) has to be summed with the potential
energy of the interatomic interaction in a molecule. Since
the term (60) has a power dependence ∼r−2, it is especially
suitable to examine the coupling of vibrational and rotational
modes using the complemented Coulomb potential proposed
in Sec. III. According to the definition (13), in this case we
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only need to replace the parameters U0 and D with their
modified values Ũ0 and D̃ as

D̃ = D

(
1 + h̄2l (l + 1)

2μU0D2

)
,

Ũ0 = U0

(
1 + h̄2l (l + 1)

2μU0D2

)−1

. (61)

In fact, for the parameters from Fig. 2 and l = 1 the second
term in large parentheses in Eq. (61) equals 1.39×10−4, so
the difference between U0 and D and between Ũ0 and D̃ is
negligible.

According to Eq. (11), the wave function after the pulse
passage when skipping the electronic factor can be written as

ψ (r, θ, ϕ, t0 + τp) = ψ (r, θ, ϕ, t0) exp

(
i

h̄
QSE r cos θ

)
,

(62)

where the polar angle θ is measured from the direction of
the electric field. Since the obtained term (60) is identical
to the rotational Hamiltonian of a symmetric rotator, we can
make use of the eigenfunctions (57), but assuming the fixed-
in-space coordinate system instead of the molecule’s principal
coordinate system. Specifically, we fix the polar axis of our
spherical coordinate system along the direction of the driving
electric field, so the polar angle θ is measured from this
direction. Now for the expansion coefficients anlm with index
n denoting the vibrational levels and indices l and m standing
for the rotational states, we find from Eq. (8)

anlm =
∫ +∞

0
dr

∫ π

−π

dϕ

∫ π

0
[ψV

n (r)]∗[ψR
lm(θ, ϕ)]∗

×ψ (r, θ, ϕ, t0) exp

(
i

h̄
QSE r cos θ

)
sin θ dθ. (63)

It seems appropriate to calculate first the angular part of
the expression (63). Let us for definiteness suppose that the
molecule was in a certain rotational state before the exci-
tation with the indices m0 and l0. It could be easily seen
from Eq. (63) that only rotational modes with �m = 0 can be
excited. Now the angular integration part of Eq. (63) reduces
to

Clm =
∫ π

−π

dϕ

∫ π

0
[ψR

lm(θ, ϕ)]∗ψ (r, θ, ϕ, t0)

× exp

(
i

h̄
QSE r cos θ

)
sin θ dθ =

√
(2l0 + 1)(2l + 1)

2

× δm0m

∫ 1

−1
Pm

l (x) exp

(
i

h̄
QSE rx

)
Pm0

l0
(x)dx, (64)

with the variable x = cos θ . The coefficients Clm from Eq. (64)
provide the probabilities of the excitation of the respective
rotational states: wlm = |Clm|2. The integral in Eq. (64) cannot
be calculated analytically for the general case of an arbitrary
l; thus we explicitly solve it for several lowest values of l .
Specifically, if the molecule was initially in the ground state,
i.e., m0 = 0 and l0 = 0, for the lowest rotational levels we

obtain [40]

C00 = sin

(
QSE r

h̄

)(
QSE r

h̄

)−1

,

C10 = i sin

(
QSE r

h̄

)(
QSE r

h̄

)−2

− i cos

(
QSE r

h̄

)(
QSE r

h̄

)−1

.

(65)

As the electric pulse area increases, the populations of
the rotational states shift towards higher levels [40]. It seems
interesting to consider the rotational motion of a rigid rota-
tor with the permanent dipole moment p0 = Qr in the limit
h̄ � SE p0, which would correspond to the transition of the
quantum-mechanical treatment in classical mechanics for our
problem [43]. Based on the findings in Ref. [40], we can
estimate that the levels with the orbital quantum numbers l ∼
SE p0

h̄ will be mainly excited and have the largest populations
wlm. Therefore, the overall energy of the rotational motion is
estimated as

E =
l=+∞∑

l=0

h̄2l (l + 1)

2I0
wlm ∼ (SE p0)2

I0
,

i.e., closely matches the continuous spectrum of the rotational
energy values of a classical rotator, since the classical rotator
would gain the angular momentum SE p0 under a subcycle
pulse action.

Using Eqs. (65), we can now find the probability of
transition to the vibrational levels from Eq. (63). In order to
get the results in a convenient analytical form, we proceed
here with the complemented Coulomb potential for the
description of the vibrational motion. Therefore, the required
transition probabilities are calculated by substituting the
wave functions of the eigenstates (19) into Eq. (63), with the
angular integration part given by Eqs. (65) and keeping in
mind the relations (61). Specifically, for the ground rotational
state with m = 0 and l = 0 using the first expression in
Eq. (65) we get [46]

wn00 = |an00|2 = ε0εn

p(n + p)


(n + 2p)


(2p)n!

(
ε0

εn

)2p

×
(

1

2βnεn

)2

Im2

[
(−1/2 + ε0/2εn − iβn)n

(1/2 + ε0/2εn − iβn)n+2p

]
, (66)

with

βn = QSE

2h̄εn
(67)

and the imaginary part of the value Im. For the ground
vibrational state n = 0 we get the simple expression

w000 =
(

1

2pβ0

)2

Im2[(1 − iβ0)−2p]. (68)

We can easily check that the molecular scale (26) stays
valid in the case of coupling with the rotational modes. Indeed,
it can be inferred from Eqs. (66)–(68) that the outcome of the
unipolar pulse action on the molecule is mainly determined by
the product

pβn = h̄QSE p(p + n)

4μU0D
= SE

2S0
,

so the molecular scale (26) appears again.
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FIG. 5. Probabilities of the transition of a polar molecule to dif-
ferent vibrational levels n while staying in the ground rotational state
with m = 0 and l = 0 upon a unipolar pulse action. The potential en-
ergy profile of the molecule is given by the complemented Coulomb
potential (13). The other parameters are the same as in Fig. 2.

The transition probabilities obtained with Eq. (66) are plot-
ted in Fig. 5 for the same parameters of the complemented
Coulomb potential as used in Fig. 2. A few significant differ-
ences are worth addressing in Fig. 5 in comparison to Fig. 2.
First, the dependence of the probability of transition to the
vibrational states on the electric pulse area in Fig. 5 becomes
oscillating, instead of the smooth curves in Fig. 2. At the same
time the location of the maximum of the population for each
specific vibrational level shifts towards a smaller electric area
from Fig. 2 to Fig. 5. Second, in the considered range of the
electric pulse areas the populations of the vibrational levels
in Fig. 5 are at least for an order of magnitude smaller. This
follows from the low population of the ground rotational state
m = 0 and l = 0. Indeed, as it was shown in Ref. [40], the
population inversion between the ground rotational state and
the first excited one arises for the electric pulse area SE

SR
∼ 1–2,

where we define the characteristic scale of the electric pulse
area for the rotational motion

SR = h̄

p0
, (69)

with the permanent dipole moment of the polar molecule p0.
In our case we have p0 = QD. We can easily check that in
Eq. (14) dn ≈ D for n � p, so the characteristic molecular
scales of the electric pulse area for the vibrational motion (26)
and for the rotational motion (69) are very close to each other.
At the same time, as Fig. 2 yields, the population inversion
between the ground vibrational state and the first excited one
arises for the electric pulse area:

SE

S0
∼ 15–16. (70)

Therefore, the molecular rotational states get populated much
faster with the electric pulse area, and for the electric pulse
areas (70) needed to excite the lowest vibrational states, we
already get the high rotational levels excited.

In a similar way we can find the probability of transition
to the lowest excited rotational states. So, for the first ex-
cited rotational state with m = 0 and l = 1, using the second

FIG. 6. Probabilities of the transition of a polar molecule to dif-
ferent vibrational levels n for the fixed excited rotational state with
m = 0 and l = 1 upon a unipolar pulse action. The potential energy
profile of the molecule is given by the complemented Coulomb
potential (13). The other parameters are the same as in Fig. 2.

expression in (65) we obtain

an10 =
√

ε0εn

p(n + p)


(n + 2p)


(2p)n!

(ε0

εn

)p i

2βnεn

×
{
−Re

[
(−1/2 + ε0/2εn − iβn)n

(1/2 + ε0/2εn − iβn)n+2p

]
+ n!

βn(2p − 1)

× 
(2p)


(2p + n)
Im

[
1

(1/2 + ε0/2εn − iβn)2p−1

× P(2p−1,−1−n)
n

(
1 − 2

1/2 + ε0/2εn − iβn

)]}
, (71)

where P(α,β )
n (x) are Jacobi polynomials and Re stands for the

real part of the value. In particular, for the ground vibrational
state n = 0, Eq. (71) simplifies to

a010 = i

2pβ0

(
− Re[(1 − iβ0)−2p]

+ 1

β0(2p − 1)
Im[(1 − iβ0)−2p+1]

)
.

Figure 6 shows the transition probabilities obtained with
Eq. (71) for the same parameters of the complemented
Coulomb potential as in Figs. 2 and 5. The observed behavior
of the levels’ populations vs the electric pulse area in Fig. 6
appears to be very similar to Fig. 5. The excitation probabil-
ities for all considered vibrational levels stay well below 1%,
which indicates again that high rotational states are mainly
excited. At the same time the excited vibrational levels get
sequentially populated as the electric pulse area increases,
which confirms the main findings of the previous sections.

VI. CONCLUSION

The possibility of the efficient nonresonant excitation of
the vibrational levels in polar molecules was demonstrated
upon their interaction with subcycle unipolar pulses. Our

043103-10



ULTRAFAST CONTROL OF VIBRATIONAL STATES OF … PHYSICAL REVIEW A 105, 043103 (2022)

treatment was performed using an approximate analytical so-
lution of the time-dependent Schrödinger equation in the limit
when the duration of the excitation pulse is much smaller than
the characteristic transition periods in a molecule. Despite the
ultrabroad spectrum of unipolar subcycle pulses, it was shown
that they enable an ultrafast transfer of polar molecules to the
higher vibrational levels. Of crucial importance in this process
is the nonzero value of the electric pulse area, which was
shown to fully determine the efficiency of the excitation for
all vibrational states.

These findings stand in marked contrast to other ap-
proaches for the optical control of the rovibrational states
in molecules. Indeed, known control strategies make use
of long multicycle bipolar pulses, e.g., chirped pulses or π

pulses [48]. However, as we have demonstrated, in the limit of
subcycle excitation pulses, bipolar pulses are no more efficient
due to their zero electric pulse area. Therefore, unipolar pulses
should be used when it comes to the control of the molecules’
dynamics by pulses of the duration of tens of femtoseconds
or shorter. Another important advantage of unipolar pulses
for the molecules’ excitation, which directly follows from our
treatment, is their universal applicability. This means that one
generally does not need to adjust unipolar pulse parameters
when exciting different polar molecules with different transi-
tion frequencies. Indeed, the pulse action on each molecule
is fully determined by the electric pulse area. At the same
time, other control strategies using bipolar pulses require, for
example, adjusting the pulse carrier frequency to the resonant
frequency of each specific molecule.

Our results were obtained for several models of the
interatomic interaction in a diatomic molecule. First, we con-
sidered the simplest model of the Coulomb attractive potential
complemented with an extra power term ∼r−2 for the repul-
sive potential. Such a model allows for a particularly suitable

analytical treatment and yields convenient analytical expres-
sions for the excitation probabilities of the vibrational levels
but fails to describe the dissociation of molecules. Second, we
studied a more advanced Morse potential, which can also be
treated analytically, though in a less convenient form, but is
able to predict the molecule dissociation for a large enough
electric pulse area of the driving pulse. These results were
shown to persist when the rotational states are taken into
account as well, even though rotational levels get rapidly
excited for smaller values of the electric pulse area. Hence,
our findings clearly show that subcycle unipolar pulses can
provide ultrafast all-optical control of the molecular systems.

For both considered models we have managed to introduce
the characteristic measure of the electric pulse area, which
we call the molecular scale of the electric pulse area. This
quantity was shown to depend solely on the spatial size of the
range of the interatomic separation values in the molecule’s
vibrational states. The introduced quantity determines the effi-
ciency of the unipolar subcycle pulse action on the vibrational
motion of a polar molecule. To excite the vibrational states
one therefore needs a driving pulse with the electric pulse area
comparable to or larger than this molecular scale.

We have also demonstrated the possibility of selective exci-
tation of vibrational states through controlling the value of the
electric pulse area of the excitation pulse. The most interesting
consequence of this finding worth mentioning is the possibil-
ity of creating the population inversion and thus lasing on the
vibrational transitions in polar molecules pumped by unipolar
pulses.
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