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General model and toolkit for the ionization of three or more electrons in strongly driven atoms
using an effective Coulomb potential for the interaction between bound electrons
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We formulate a three-dimensional semiclassical model to address triple and double ionization in three-electron
atoms driven by intense infrared laser pulses. During time propagation, our model fully accounts for the Coulomb
singularities, the magnetic field of the laser pulse, and the motion of the nucleus at the same time as for the

motion of the three electrons. The framework we develop is general and can account for multielectron ionization
in strongly driven atoms with more than three electrons. To avoid unphysical autoionization arising in classical
models of three or more electrons, we replace the Coulomb potential between pairs of bound electrons with
effective Coulomb potentials. The Coulomb forces between electrons that are not both bound are fully accounted

for. We develop a set of criteria to determine when electrons become bound during time propagation. We compare
ionization spectra obtained with the model developed here and with the Heisenberg model that includes a
potential term restricting an electron from closely approaching the core. Such spectra include the sum of the
electron momenta along the direction of the laser field as well as the correlated electron momenta. We also

compare these results with experimental ones.
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I. INTRODUCTION

Multielectron ionization in atoms and molecules driven
by intense infrared laser fields is of fundamental interest
since it is mediated by electronic correlation. The theoret-
ical study of correlated multielectron dynamics in strongly
driven atoms and molecules poses a significant challenge.
Indeed, three-dimensional (3D) ab initio quantum-mechanical
methods are mostly limited to double ionization in two-
electron atoms [1,2]. Various quantum-mechanical [3,4] and
semiclassical techniques [5—7] that include the Coulomb sin-
gularity have been developed to address double ionization.
However, for three-electron escape, due to the larger de-
gree of complexity involved, only few theoretical studies
exist that have a number of approximations. These stud-
ies include classical models with reduced dimensionality
[8] and with soft core Coulomb potentials [9-13], reduced-
dimensionality quantum-mechanical treatments [14-16], and
semiclassical models with Heisenberg potentials [17]. On the
experimental front, several studies have addressed multielec-
tron ionization in strongly driven Ar and Ne [18-24]. For
weak fields, striking angular patterns of three-electron escape
and the underlying collision mechanisms were identified with
3D semiclassical models and ab initio quantum-mechanical
techniques [25-28].

The main challenge facing quantum-mechanical studies
of triple ionization in strongly driven systems is the signif-
icant amount of computational resources. This explains the
development of reduced-dimensionality quantum-mechanical
models [14-16]. On the other hand, the main difficulty
encountered by 3D semiclassical studies of multielectron ion-
ization that include the Coulomb singularity is unphysical
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autoionization. Namely, one of the bound electrons can un-
dergo a close encounter with the core and acquire a very
negative energy leading to the escape of another bound elec-
tron. This is avoided in quantum-mechanical treatments of
multielectron systems due to the lower energy bound of
an electron. Adding a Heisenberg potential is an approach
adopted to exclude unphysical autoionization in 3D semi-
classical treatments [29]. This potential amounts to adding
a potential barrier that mimics the Heisenberg uncertainty
principle and prevents each electron from a close encounter
with the core. The addition to the Hamiltonian of an extra
momentum- and position-dependent term results in the mo-
mentum of a particle being no longer directly related to the
rate of change of its position, p # mr [30,31]. In what follows,
we refer to this model as the H model. An advantage of this
model is that electronic interactions are accounted for with
Coulomb forces at all times during propagation. However, due
to the Heisenberg potential, each electron accesses a reduced
phase space resulting in a less accurate description of the inter-
action of each electron with the core. Indeed, in what follows
we show that the H model gives rise to “softer” recollisions
upon the return of an electron to the core.

Here, we take another approach to addressing unphysi-
cal autoionization in 3D semiclassical models that include
the Coulomb singularity. We develop a 3D semiclassical
model that describes the interaction between a pair of bound
electrons via an effective Coulomb potential [32]. The inter-
actions between all other pairs of electrons are described with
Coulomb forces. This model advances our previous work of
triple ionization in strongly driven HyHe™, where we switched
off the Coulomb force between bound electrons [33]. In
the current work, we develop an efficient set of criteria to
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determine on the fly, i.e., during time propagation, whether
an electron is bound or “quasifree.” Hence, we determine
on the fly whether the interaction between two electrons is
described by the Coulomb or the effective Coulomb potential.
We refer to this model as ECBB—effective Coulomb potential
for bound-bound electrons. We show that the ECBB model ac-
curately describes three- and two-electron ionization spectra
in strongly driven three-electron atoms.

We compare the ECBB model with the H model motivated
by a recent study on the performance of different classi-
cal models concerning double ionization of strongly driven
two-electron Ar in Ref. [34]. This study has shown that the
two-electron classical model that includes the full Coulomb
force between the two electrons [35] and the H model
results in observables that agree much better with experi-
mental results compared to the soft core Coulomb potential
models.

Our motivation for developing the ECBB model is the
accurate description at all times of the Coulomb interac-
tion of each electron with the core, unlike the H model.
The importance of this interaction has been demonstrated in
the fingerlike structure in the correlated electron momenta
in double ionization of strongly driven helium. This struc-
ture was predicted theoretically [2], observed experimentally
[36,37], and explained theoretically within a classical frame-
work [7,38]. On the other hand, the H model accurately
accounts for the interaction between all pairs of electrons
with Coulomb forces. The ECBB model does so for pairs
of electrons where at least one electron is “quasifree.” In the
ECBB model the interaction between two bound electrons is
described by effective Coulomb potentials and is thus less ac-
curate. However, bound electrons have a restricted dynamics
compared to “quasifree” electrons. Hence, one can argue that
it is more important to accurately describe the interaction of
each electron with the core rather than the interaction between
bound electrons.

Here, we formulate the ECBB model and employ the H
model fully accounting for both the motion of the core and
all three electrons and for the magnetic field component of
the Lorentz force. That is, we formulate both models in the
nondipole approximation [39—41]. Thus, we can account for
nondipole effects in multielectron ionization. This is unlike
previous theoretical studies of strongly driven atoms which
address nondipole effects mostly in single ionization. Our
formalism is general and can be applied to treat multielectron
ionization in more than three-electron strongly driven atoms.
Here, we employ both models in the context of strongly
driven Ar. We note that our 3D semiclassical model for
two-electron atoms has previously yielded very good agree-
ment with experimental observables for double ionization in
strongly driven Ar driven by few-cycle laser pulses [35]. In
this latter model of double ionization, we did not need to
address unphysical autoionization. Moreover, we discuss in
detail the differences of the ECBB and H models concern-
ing triple- and double-ionization observables. Such spectra
include the probability distribution of the sum of the electron
momenta components along the direction of the laser field
and the correlated electron momenta. Also, we compare our
results for the sum of the momenta with experimental ones
[21,22]. Finally, we obtain the probability distributions of

the angle of escape between two electrons and between an
electron and the core.

II. METHOD

In what follows, we describe in detail the formulation of
the ECBB model and the H model that addresses multielectron
escape in strongly driven atoms. The two methods resolve in
a different way unphysical autoionization in 3D semiclassical
models that fully account for the Coulomb singularity. In both
methods, we propagate in time all three electrons and the
core. Moreover, we formulate both methods in the nondipole
approximation fully accounting for the magnetic field compo-
nent of the laser field. The Hamiltonian of a four-body system
in the nondipole approximation is given by
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where Q; is the charge, m; is the mass, r; is the position vector,
and P; is the canonical momentum vector of particle i. The
mechanical momentum p; is given by

QiA(riv t)v (2)
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Pi=Pi —
where A(r;, t) is the vector potential and E(r;, ) = —
is the electric field. Modifying Eq. (1), in the following sec-
tions, we formulate the Hamiltonian for the ECBB and the
H models. For three-electron Ar, the charge of the core is

equal to @; = 3 a.u. while the mass of the core is equal to
m; = 72820.8 a.u.

A. Global regularization

In both methods, we perform a global regularization to
avoid any numerical issues arising from the Coulomb sin-
gularities. For strongly driven H,, we previously used this
regularization scheme to study double and “frustrated” dou-
ble ionization within the dipole approximation [42] as well
as nondipole effects in nonsequential double ionization [43].
In this scheme, we define the relative position between two
particles i and j as

qij =T — T, 3)

and
1 o o m; — m;
pij = N(pi T T(P)) “4)
where

<p) = Zf), and M = Zmi. (5)

The inverse transformation is given by

N i—
1 1
= Z midij — 3 ijqji +(q), (6)
j=it1 j=1
and
N i—1 m
Bi= D pij= D kit 3, 00) (7
Jj=i+1 j=1
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where

1 N
= M Zm,-r,-. (8)
i=1

Next, we define a fictitious particle k for each pair of
particles i, j as follows:

K, = - v - D

+Js )
with j > i and the total number of fictitious particles being
equal to K = N(N — 1)/2. In addition, we define the parame-
ters ox and B as i = 1, By = m;/M and ajp = —1, Bjx =
—m; /M when k = k(i, j), otherwise ojx = B = 0. Given the
above, Egs. (6) and (7) take the following simplified form:

K
Bi= Y cup+ 1 (p) (10)
k=1
and
K
r= i+ (q). (1)

B. Heisenberg potential method
1. Description of the model

The Heisenberg potential, originally proposed by
Kirschbaum and Wilets [29], is given by

Vo= 5 e laf1 = (F22r)’ (12)
H,i — 405/»’«”,'2,1 p s B

J

N

H = Z T PPy + 2M +ZU"+Z i A2( ,,t)—Z%pl A(r,,t)+Z

k,k'=1 i=1

where r; | = r| — r; is the relative position of each one of the
three electrons i = 2, 3, 4 with respect to the core i = 1, p; |
is the corresponding relative momentum,

pi1 = —, (13)

and u = mym;/(m; + my) is the reduced mass of the electron-
core system. This potential restricts the relative position and
momentum of electron i according to

riipil = §. (14)

Hence, the Heisenberg potential acts as a repulsive potential
when the electron is close to the core.

2. Hamilton’s equations of motion

Including the Heisenberg potential for each one of the
electron-core pairs, the Hamiltonian is given by

N-1

Y B — QA D Y
Z—p - Z Z
i=1 =1 j=i+1

+ ZVHz
Li rj i=2
(15)

Substituting Egs. (3) and (10) in Eq. (15), we obtain the
Hamiltonian in regularized coordinates as follows:

(16)

where P, r are expressed in terms of p and q via Eqgs. (10) and (11). In Eq. (16), Uy is equal to Q;Q;. Using Eq. (16), we obtain

Hamilton’s equations of motion:

2
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3. Propagation technique

To integrate the equations of motion in Egs. (17), we use
a leapfrog technique [44,45] jointly with the Bulirsch-Stoer
method [46,47]. We have previously developed this leapfrog
technique to study nondipole effects in nonsequential double
ionization in strongly driven H; [43]. This leapfrog technique
allows to solve Hamilton’s equations when the derivative of
the position and the momentum depends on the quantities
themselves. It is an extension of the leapfrog technique we
employed for strongly driven two-electron molecules in the
dipole approximation [42]. In the latter case the derivative of
the position and the momenta do not depend on themselves.

C. Effective Coulomb potential method
1. Derivation of the effective Coulomb potential

In what follows, we formulate a method that avoids un-
physical autoionization between two bound electrons. To do
so, we describe the interaction between two bound electrons
with an effective Coulomb potential. However, we describe
the interaction between a “quasifree” and a bound electron as
well as between two quasifree electrons with the full Coulomb
potential. In the next section, we define the time when an elec-
tron transitions from bound to quasifree and from quasifree to
bound.

The effective Coulomb potential that electron i expe-
riences due to the charge ¢; of electron j, denoted by
Vere(¢j, 11 — 13]), is derived as follows [32]. We approximate
the wavefunction of a bound electron j with a 1s hydrogenic
wavefunction

o3
Y (g, ry —rj]) = <;]>

where the parameter ¢ is later defined in Eq. (21). The electric
charge contained within a sphere of radius r from the core is
given by

12
e~ Silr—r; , (18)

Q. r) = —// W (&, NIV, 19)

where dV is the volume element in spherical coordinates.

Using Gauss’s law, we find that the effective Coulomb
potential that an electron i experiences at a distance |r; — r;|
from the core due to the charge distribution of electron j is
equal to (see Appendix A)

1 — (1 +¢lry — e %l
[r; — 1y .

Verr (g, 11 — 1)) = (20)
Vetr (¢, Iry — 14]) is a repulsive potential which has limiting
values of ¢{; when |r; —r;] =0 and zero when |r; —r;| —
oo. If the effective charge ¢;(t) is zero then the effective
potential Ver(¢;, [rp — 1;]) is zero. The effective charge ¢;(z),
at any time during the propagation of the four-body system,
is proportional to the energy £;(t) of electron j, assuming
electron j is bound with an energy greater than a lower limit.
We set this lower limit to be equal to the ground-state energy
&y of a hydrogemc atom with core charge equal to O, i.e.,

&is = 5+. Moreover, when the energy of electron j, £;(t),
is greater than zero, we set £;(t) equal to zero, while 1f the
energy is less than the lower limit £, we set £;(¢) equal to Q.

Hence, we define ¢;(¢) as follows:

le gj(t) g gls
—(Q1/&)E(1),  Eis < Ei(t) <0 2D

L) =

where the energy £;(¢) of electron j is given by

B — QAx,L D | Q0
Eit) = —Qjr;-E(r;, 1)
J zml |I,1 _ 1',| JuJ J
N
+ Y i j(OVerr (i, Ity — 1)), (22)
7
The functions ¢;;(t) determine whether the full

Coulomb interaction or the effective Ve(¢;, |1y —r;|) and
Vetr (¢, Irp — 1;|) potential interactions are on or off for
any pair of electrons i and j during the time propagation.
Specifically, the limiting values of ¢; ;(¢) are zero and 1. The
value zero corresponds to the full Coulomb potential being
turned on while the effective Coulomb potentials are off. This
occurs for a pair of electrons i and j where either i or j is
quasifree. The value 1 corresponds to the effective Coulomb
potentials Vegr(¢;, [ry — r;|) and Vegr(¢;, |11 — r;]) being turned
on while the full Coulomb potential is off. This occurs for
bound electrons i and j. For simplicity, we choose c¢; ;(t) to
change linearly with time between the limiting values zero
and 1. Hence, ¢; ;(t) is defined as follows:

0, c®) <0
cijt)y=qc@), 0<c() <]l (23)
L =1,

where ¢(t) = B(t — 1) + co, and co is the value of ¢; ;(r)
just before a switch at time ;. A switch at time ts I occurs
if the interaction between electrons i and j changes from
full Coulomb to effective Coulomb potential or vice versa.
That is, in Sec. II C 5, we discuss in detail the times an
electron switches from bound to quasifree and from quasifree
to bound. Every time during propagation that such a switch
takes place, we check whether for each pair of electrons the
full Coulomb force should be switched on and hence the ef-
fective potential switched off or the full Coulomb force should
be switched off and the effective potential switched on. The
former occurs if at time ¢,/ one of the two electrons in a pair
of bound electrons changes to being quasifree while the latter
occurs if in a pair of a quasifree electron and a bound electron
the quasifree electron becomes bound. We clearly illustrate
this in Sec. I C 5. At the start of the propagation at time £y, #;"’/
is equal to ¢y and ¢ is 1 for pairs of electrons that are bound
and zero otherwise. To allow for a smooth switch on or switch
off of the effective Coulomb potential we choose 8 equal to
£0.1; plus corresponds to a switch on and minus to a switch
off of the effective Coulomb potential.
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2. Derivation of the time derivative of the effective charges

Including the effective Coulomb potentials, the Hamilto-
nian of the four-body system is given by

The dipole term —Q;r; - E(r;,7) of Eq. (22) involving
the electric field does not appear in Hamiltonian (24). There
is no contradiction. Indeed, the gauge-invariant energy of a
particle does not always coincide with the gauge-dependent
Hamiltonian, as discussed in Refs. [48,49]. We note that

B — QA D N O
H = Z w + Z & the Hamiltonian in Eq. (24) depends not only on positions,
i=1 2m; i=2 I — il momenta, and time but also on the effective charges. More-
N—1 N over, the Hamiltonian depends on time through the vector
+ Z Z [ —ci ()] ——— 0iQ; potential as well as through the effective charges that are
i3 joit] Ir; — ;] time dependent. Since the effective charge ¢; is proportional
: to the energy &;(t) [see Eq. (21)], it follows that we must
Rl obtain the derivative with time of £;(¢). This is necessary
+ Z Z ¢ij (OVetr (&), |1 — rif) at any time during propagation if at least two electrons are
i=2 j=itl bound. To do so, we apply the chain rule in Eq. (22) and
+ Verr(5i (1), [r1 — r;]]. (24)  obtain
|
. IE@) . 0E(t) . EW) . NAEM) - A&t
g =280 L IEO G 5O L §RIED 10
or; op; or; — 9 ot
I
[E;(t) — H] IE() . NIE ) . AE()
=", YT LR 3, o
J /=2
I#j
QiOnm
[-Qjr; - E(rj, 1) — PIAPED M| Ci,m(t)]m] . 010;(r; —r;) Y WVerr (8, 11 — 1)
= Y ——3+Zci,j(t)
or; [r; — 1) = or;
i#j
N Ve (Ci, 11 — 1) N JE(r;, 1)
i (L, [T1 — . ) . :
+ Y et — 5 P2+ > i (Ve (G Iy = 1)+ Qs B, 1) = Qjrj - —
i= ! i=
iz iz
N-1 N N
QiQn(ri — 1) . 010,y —rj) OVeir(&i, Irp — 15
lmt—gl_gm . ==/ @ J7 i‘t—
Zz Z i) |I'i—l'm|3 ¢ "/ ’J) rj+ |l'1—l'j|3 +;C,1( ) ary
B i#]
. OVerr(Gis It — 1))
i (Cis (T — X)) . . :
+ Z[cu(t) — C L2G o G (0OVerr(Gi, ey — r,|)] — Qjr; - E(r;, 1), (25)
7
where we use r; = af;.)(t) and p; = — 3% The above expression can be finally written as
VG, T — 1)
; i (Si, X1 — X))
i) =fi+) e 0—— a 28 (26)
7
where f;(r, p, t, £) are all the terms in Eq. (25) that do not depend on éi(t). The time derivative of ¢; is given by
. 0, . &) < s
Gi=1—(Q1/EER), & < &) <0 (27)
0, E@) > 0.

We obtain an equation similar to Eq. (26) for each electron. Hence, at any time during propagation, we solve a system of
equations to obtain the derivative in time of the energies of each electron. As a result, we express each £ as a function of

(r, p, t, £) with no dependence on the derivatives of the energies.
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3. Hamilton’s equations of motion

Substituting Eqgs. (3) and (10) in Eq. (24), we find the Hamiltonian in regularized coordinates to be given by

K K
H=>" Tuwppp + +Z [1— k(r>]—+Z—A2< ,,r)—ng, A )+ Y Vi, (28)
k,k'=1 k=1

where

Via.jy = Vere(§j, Iv1 — 1i]) + Verr(&i, 11 — 1)), (29)

and P, r are expressed in terms of p and q via Egs. (10) and (11). Moreover, for k = 1, 2, 3, q; corresponds to the relative
distance between each one of the three electrons and the core. Since the Coulomb force between each of the three electrons and
the core is always on, we set ¢ (1) = 0, for k = 1, 2, 3. Using Eq. (28), we find that Hamilton’s equations of motion are given by

44 =2 Z T prr — Z gazkA(l‘z, 1),

dt k'=1 i=1
dlg) 1 Yo
— = - _IA is ]
o= ;M (x;.1)
d 8A(rl,t)
P~ (1= o) Ukt —Z k/<r)—+Z—[p,—Q,A(r,,z)]
k
d(p) 0 dA(r;, 1)
- = - 1A t’t = s 30
yr ;m[ — QA(r;, 1)] - @ (30)
where
Wiy Ve Ve
Tk] = Wfsk k(i) + W(Sk k(1,j)> (31)

where P, r are expressed in terms of p and q via Egs. (10) and (11). From Egs. (30) and (31) it follows that the term

oV
Z,’j;l Cr (t)a—k is nonzero for k = 1, 2, 3 and has the following form:
qr

Vi WV (G3, |11 — Wor(za. |1y —
ch (l‘) K =C4(I) ﬁ(§3 |l'1 l'2|) +est) ﬁ(§4 |l'1 l'2|)

o dq; aq;
—1 4+ [1 +28q1(1 + L3g1)]e 25 —1 4 [1 4+ 284g1 (1 + Lagy)]e™ 25
= c4(t) 3 qi +cs5() 3 qi,
q1 q;
K
BV 8V N - 8‘/ ) -
ch/(t)_k — i) eft(£2, |11 — 13]) + o) eft (L4, |T1 — 13])
qz qz
—1 4+ [1+20¢:(1 + Lrg2)]e 22 —1+[1 4 28g2(1 + Lag2)]e >0
= 4(t) 3 q + c6(t) 3 q2,
95 9
K
Vi V. s — V. ) -
ch/(t)_k — es() ett($2, |11 — 1)) +eo(t) eff(L3, [r1 —1r4])
aqs 0q3
—1 4 [1 4 25g3(1 4 Lag3)le™ >0 —1 4 [1 4 283g3(1 4 £3g3)]e ™26
= CS(t) q3 q3 + C6(t) q3 qs3.
3 3

(

In addition to Eq. (30), we have three more equations for the nucleus during time propagation. To ensure the accurate
E(q, p,t,8). numerical treatment of the N-body problem in the laser field,
we perform a global regularization. This regularization was
introduced in the context of the gravitational N-body prob-
lem [50]. Here, we integrate the equations of motion using

In our formulation, we fully account for the Coulomb sin- a leapfrog technique [44,45] jointly with the Bulirsch-Stoer
gularities. Hence, an electron can approach infinitely close to ~ method [46,47]. This leapfrog technique allows integration of

4. Propagation technique

043102-6



GENERAL MODEL AND TOOLKIT FOR THE IONIZATION ...

PHYSICAL REVIEW A 105, 043102 (2022)

Hamilton’s equation when the derivatives of the positions and
the momenta depend on the quantities themselves. We pre-
viously employed this technique in our studies of nondipole
effects in nonsequential double ionization of strongly driven
H; [43]. The difference between the leapfrog technique em-
ployed in this work and the one previously employed in
Ref. [43] is that the former is more involved. Indeed, in the
current leapfrog technique we also need to propagate in time
the energies £(¢) [see Eq. (25)]. The steps involved in this
leapfrog technique are as follows.
First, we perform a time transformation t — s, where

ds = Q(q)dt, (32)

with ©(q) an arbitrary positive function of q. We select the
function

K

1
Qe =) o (33)

k=1

which forces the time step to decrease when two particles
undergo a close encounter and to increase when all particles
are far away from each other. The equations of motion now
take the following form:

q = q(q, p,1)/q),

o = p(q, p,1,E)/Q2Aq),
' =1/Q(q),

£ =&, p.t,6)/q),

with prime denoting the derivative with respect to the new
variable s. The integration is based on the leapfrog technique
described in Ref. [43] that introduces four auxiliary variables,
two vectors W9, W” and two scalars W/, W&. As a result,
an extended system is obtained where the derivatives of the
position, the momenta, and the energies no longer depend on
the quantities themselves. The extended equations are given
by

(34)

q = qW9, p, W)/QWY),
WP = p(W9, p, W', £)/QWY),
' =1/QWY),
WE = EWY, p, W', E)/QUWY),
and
WY = q(q, W°, 1)/9(q),
o = p(q, W21, W¥)/Q(q),
W' =1/Qq),
£ =E(q, WP, t,WE)/Q(q).

We propagate for a time step by propagating for half
a step each quadruplet of variables (q, W?, t, W) and
(W9, p, W' £) in an alternating way; see the leapfrog al-
gorithm described in Appendix B. Moreover, to achieve
better accuracy, we incorporate the leapfrog method in the
Bulirsch-Stoer extrapolation scheme [46,47]. In this scheme,
a propagation over a step H is split into n substeps of size
h = H/n. We use the leapfrog method to propagate over each

m—3/2 (q, WP, t, W¢) m—1/2
m—1 (W9, p, Wt E) m

FIG. 1. Schematic illustration of the propagation of the two
quadruplets (q, W*, t, W¢€) and (W9, p, W' &) over a substep of
size h, m—3/2 —- m—1/2 and m — 1 — m, respectively, with
m=2,...,n—1.

substep. In Fig. 1, we offer a schematic illustration of the
propagation during a time substep of size 4. The detailed
algorithm is described in Appendix B. This process is repeated
with increasing number of substeps, i.e., n — 0o, until an
extrapolation with a satisfactory error is achieved.

5. Definition of quasifree and bound electron

In the ECBB model the interaction between a pair of
electrons where at least one is quasifree is described with
Coulomb forces. The interaction between bound electrons is
described with effective Coulomb potentials. Hence, we need
to define during time propagation, i.e., on the fly, if an electron
is quasifree or bound. At the start of propagation, the electron
that tunnel ionizes (electron 2) is considered quasifree and the
other two (electrons 3 and 4) are bound. We denote the core
as particle 1.

At times ¢ > fy, a quasifree electron i transitions to bound
if the following conditions are satisfied: (i) the magnitude of
the potential of electron i with the core, V; ., is larger than a
threshold value, i.e., V; . > Vi, at 1, and V; . is continuously
increasing, i.e., % > % for five times ¢, which are
five time steps apart with the first one being at time #; [see
Fig. 2(a)]; (ii) the position of electron i along the electric field,
i.e., z axis here, has at least two extrema of the same kind,
1.e., tWo maxima or two minima, in a time interval less than
half a period of the laser field. At the time when the second
extremum is identified in the position of electron i along the
electric field, electron i becomes bound. This time is a switch
time #;/ if there is an electron j which is also bound (see
black solid line in the plot of c;; as a function of time in
Fig. 2). That is, the full Coulomb force between electrons
i and j starts to be switched off and the effective potentials
start to be switched on. We start checking if condition (ii) is
satisfied at time 7, when electron i has the closest approach
to the core, i.e., V; . is maximum. We stop checking whether
condition (ii) is satisfied at time #3 when V; . is smaller than
the threshold value Vi, and V; . is continuously decreasing,
i.e., % % for five times #, which are five time
steps apart with the last one being at time #3 [see Fig. 2(a)].
In the current study, we set Vi, equal to 3/15 which is equal
to 0.2 a.u. We find that our results remain almost the same for
a range of values of Vj,i,. Also, at the end of the laser pulse,
we check whether a quasifree electron has positive or negative
compensated energy [51]. If the latter occurs, we consider the
electron to be bound. Accounting for the effective Coulomb
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FIG. 2. Schematic illustration of the criteria to determine when

a quasifree electron becomes bound (left column) and when a bound
electron becomes quasifree (right column).

potential, the compensated energy of electron i is given by

p; 0,0 al
comp i 1%
; t)= — —_— E i (Ve i) —r;)).
&; ) 2m; + Ir — 1| + jZZC,J( ) eff({] Iry —r;])
JF#
(35)

A bound electron transitions to quasifree at time ¢ > fg if
either one of the following two conditions is satisfied: (i) at
time ¢ the compensated energy of electron i converges to a
positive value or (ii) at times ¢ = f3, V; . is smaller than the
threshold value Vi,in and V; . is continuously decreasing, i.e.,
% < ’W for five ¢, which are five time steps apart,
the last one being at #3. The time ¢ when either condition (i)
or (ii) is satisfied is a switch time #;” if there is an electron
J which is bound (see black solid line in the plot of c; ; as
a function of time in Fig. 2). That is, the full Coulomb force

between electrons i and j starts to be switched on and the
effective potentials start to be switched off.

We illustrate the above criteria in Fig. 2(b). We denote the
times 7, f,, and 73 with red, grey, and blue vertical dashed
lines, respectively. In the left column, we plot the position 7,
and the potential V; . of a quasifree electron as it transitions to
bound. The time when electron i transitions from quasifree to
bound because a second extremum is found in the position of
electron i along the electric field past the time #, is indicated
by a vertical black solid line. In the right column, we plot
the position r,, the potential V; ., and the compensated energy
of a bound electron as it transitions to quasifree. The time
when electron j transitions from bound to quasifree due to
the convergence of the compensated energy is indicated by a
vertical black dashed line. Moreover, in the left column we
plot the coefficient ¢; ; as a function of time, with the switch

times 71"/ denoted by the vertical black solid and dashed lines.
For this specific trajectory, the compensated energy converges
prior to 3 and hence electron i transitions from bound to
quasifree at ¢t < 13.

We note that the criteria for the convergence of the com-
pensated energy and the number of extrema in the position of
the electron along the laser field have been used to determine
whether an electron is quasifree or bound in our previous
work on strongly driven three-electron triatomic molecules
[33]. However, the criteria presented above are considerably
refined compared to the ones in Ref. [33], allowing for the
full Coulomb forces to be turned on for a longer time interval.
Moreover, in the ECBB model we account for the interaction
between bound electrons with effective Coulomb potentials,
while in Ref. [33] this interaction was set equal to zero.

D. Initial conditions
1. Tunnel-ionizing electron

In both methods, electron 2 tunnel ionizes at time ¢,
through the field-lowered Coulomb barrier with a rate that
is described by the quantum-mechanical Ammosov-Delone-
Krainov (ADK) formula [52,53]. To obtain the ADK rate, we
use the value of the energy needed to ionize one electron from
Ar; ie., we use Ip; = 0.579 a.u. We find #y, using impor-
tance sampling [54] in the time interval [—27, 27] where the
electric field is nonzero; t is the full width at half maximum
of the pulse duration in intensity. The importance sampling
distribution is given by the ADK ionization rate. The exit
point of electron 2 is along the direction of the laser field
and is computed using parabolic coordinates [55]. The mo-
mentum of electron 2 is taken to be equal to zero along the
laser field. The transverse momentum is given by a Gaussian
distribution which represents the Gaussian-shaped filter with
an intensity-dependent width arising from standard tunneling
theory [53,56,57].

2. Position and momentum distributions of the bound
electrons in the H model

In the Heisenberg potential, see Eq. (12), for a given «,
we find the value of & that ensures that the minimum of the
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one-electron Hamiltonian,

p_;z 010; g2

H; =
2m;  |rp -1y

oot

dapr;
(36)

corresponds to the third ionization potential of Ar (Ip; =
1.497 au.) [58-60]. To minimize Eq. (36) with respect to
the relative distance r; ;, we start from the lower limit of the
constraint

riipi1 =§ = pin =§/ri1. 37

Since the mass of the core m; >> m; it follows that p; | =~ p;.
Hence, Eq. (37) can be written as p; = & /r; | and substituting
in Eq. (36) we obtain
£ 00 &
H; = . 38
2miri%1 + Ti1 + 4aur§1 (38)

The minimum of Eq. (38) with respect to r; ; occurs at

. 2 ;
pmin SR A (39)
’ 20pum; 01 Q;
and the energy is given by
HM — aum(Q10;)* . 40)
(my + 200)§*

Setting this energy equal to Ip;, we find § = 1.55 a.u for o =
2 and £ = 1.63 a.u. for « = 4. Hence, for @ = 2 the electrons
access a larger phase space during the time propagation.

To find the initial position and momentum vectors of the
two initially bound electrons at time #y, we apply a trial and
error method similar to the one proposed by Cohen [31].
First, we randomly sample the magnitude of the position
and the momentum vector for each electron in the intervals
[0, 7max], [0, pmax]. We find that it is sufficient to consider
Fmax = 3 a.U. and pmax = 3 a.u. The 6, ¢ polar and azimuthal
angles of the position and the momentum of electrons 3 and
4 are obtained as uniform random numbers of cos6 in the
interval [—1, 1] and ¢ in the interval [0, 27r]. Using the po-
sition and momenta of electrons 3 and 4, we determine the
total energy of the two electrons in the absence of the electric

field:
Heu— L 010 v 0304 41
3’4_27 Z|r —r|+Z Hit _4|'( )
i=3 1 3

If the energy Hs 4 is within 1% of the binding energy Ip, +
Ip;, we accept the initial conditions of electrons 3 and 4;
otherwise we reject them. For Ar, the energy to ionize a sec-
ond electron is Ip, = 1.015 a.u. Using the above procedure,
we plot in Fig. 3 the probability distribution of the initial
position and momentum of electrons 3 and 4 as well as of
the Heisenberg potential.

3. Position and momentum distributions of the bound
electrons in the ECBB model

In the ECBB model, we obtain the initial position and
momentum of electron 4 at time #; using a microcanonical

B R AR R (A WA 0
;J. 1.5 {11} 2
o
2
[a W)
0 . 1 0 0 L
0 1 2 0 1 2 0 0.4 0.8
r(tp) (a.u.) p(to) (a.u.) Vi (to) (a.u.)

FIG. 3. Probability distribution of (a) r and (b) p for each of
electrons 3 and 4 as well as (c) the Heisenberg potential Vy at time
ty, fora = 2.

distribution with an energy

Ealto) = P +— 0104

+ Verr (83, 11 — 14)), (42)
2my  |rp — 14|

and similarly for electron 3. We take the energy &;(fy) =
E4(tp) = —Ip, and using Eq. (21) we find that &3(5) =
Ca(ty) = —(Q1/E15)E3(ty). The reason we set the initial energy
of each electron equal to —Ip, is that £4(#p) and &3(ty) include
the interaction with the other electron via V.. Hence, &;(f)
and &4(fo) correspond to the energy needed to remove an
electron from Ar™. Using the above-defined microcanonical
distribution, we obtain the initial position and momentum of
each bound electron [61]. In Fig. 4, we plot the probability
distribution for the initial position and momentum of electrons
3 and 4 as well as of the V.

III. RESULTS

In what follows, we compare observables for triple ioniza-
tion (TT) and double ionization (DI) obtained with the ECBB
model and the H model. If available, we also compare these
observables with experimental results [21,22]. In our formu-
lation both the ECBB model and the H model fully account
for nondipole effects and treat the motion of the electrons and
the core on an equal footing.

Here, we employ a vector potential of the form

EO [ <Ct . y>2} | 2
Ay, t) = — —exp|—2InQ2)| — sin(wt — ky)Z,
w

(43)

where k = w/c is the wave number of the laser field and 7 is
the full width at half maximum of the pulse duration in inten-
sity. The direction of both the vector potential and the electric
field is along the z axis. We take the propagation direction of

1 T T 1 T T o
. (a) (b) ()
be]
R
o
. 05F 10.5F 1 3f
Q
o
-
¥
0 : Al : 0 : :
0 1 20 2 4 04 05 06

r(to) (a.u.)

FIG. 4. Probability distribution of (a) » and (b) p for each of
electrons 3 and 4 as well as (c) the effective Coulomb potential Vg
at time 7.

p(to) (a.u.) Ve (to) (a.u.)
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the laser field to be along the y axis and hence the magnetic
field points along the x axis. We study Ar driven by a laser
pulse with intensities ranging from 2x 10'* to 5x 10'* W /cm?
and durations of T = 20, 25, and 30 fs at 800 nm.

The time propagation of strongly driven Ar starts at time £,
and stops at an asymptotically large time ;. For each trajec-
tory, if the energies of three (two) electrons are positive, we
label the trajectory as a triple (double) ionization event. The
DI and TI probabilities are

Ppy = %, P = %, (44
where Npj, N1, and N are the numbers of doubly ionized,
triply ionized, and all events, respectively. Here, we mainly
focus on nonsequential double ionization (NSDI) and on non-
sequential triple ionization (NSTI) events. NSDI and NSTI
involve an electron accelerating in the laser field and coming
back to the core to transfer energy to bound electrons via a
recollision. This energy transfer can lead to the escape of two
electrons (NSDI) or three electrons (NSTI). Electronic corre-
lation, a fundamental interaction, underlies this field-assisted
recollision [62].

To identify a recollision in either one of the two models, we
monitor the Coulomb potential between all pairs of a quasifree
and a bound electron. We identify the maxima in the interelec-
tronic Coulomb potential energy as function of time. We label
the times when the interelectronic distance is a minimum as
recollision times #... Also, we define the ionization time of
electron i, #._, to be the time when the compensated energy
becomes positive and remains positive thereafter [51]. We
used the same definition for t{on in all our previous studies (see
for instance Refs. [7,63]). The compensated energy is given by

P00
-compt:_i L A i, |1 — Iil),
{0 = 5 +;c,,<) (&), ey —1il)
J#i
~2 )
g™ (1) = P + 20 + Vi,
2m;  |rp =

for the ECBB and the H model, respectively. Moreover, a
TI or DI event is labeled as direct if the energy transferred
from a recolliding electron to bound electrons suffices for the
simultaneous ionization, shortly after recollision, of three or
two electrons. In Appendix C, we outline the algorithm used
to label an event as direct. Here, we label the remaining events
as delayed TI and DI events.

A. DI and TI probabilities

We find that the DI and TI probabilities are consistently
larger for the H model for both o = 2,4 compared to the
ECBB model. This is consistent with the different initial
conditions the bound electrons have in the two models. The
initial momenta of the bound electrons are higher in the
H model versus the ECBB model [compare Fig. 3(b) with
Fig. 4(b)]. Also, the repulsive Heisenberg potential reduces
the attraction of each electron from the core resulting in higher
ionization probabilities. Regarding the DI probability, for the
H model, we find that at intensities 2x 10, 4x 10, and
5x10'* W /cm? and 20 fs pulse duration the DI probability is

Triple ionization Double ionization
—2 % 10 W /cm?, 20 fs
e 4 % 101 W /cm?, 20 fs

5 x 10" W /gm?, 25 fs
2 . 3 . -
(a1) (a2) =\ A
) g
= 1f N 1 IF
2 =
+ o
2 &
£ O = L - O ‘I—I—I—I—l—l—l—l—l* F—
—~ ——=2x 10" W/em?, 20 fs, o =2 seana 2 x 10 W/em?, 20 fs, 0 = 4
*; —==d x 104 W/em?, 20 fs, @ = 2 seeer 4 x 101 W/em?, 20 fs, a =4
,'_5 2 5 x 101 W/em?, 25 fs, a = 2 5 x 101 W/em?, 25 fs, o = 4
> 3
£ =
3 S
< 1.5 2
= @
@] —
—
oW Ok
P =
o
S 3 =3
o
1.5 %
e
©
oL -1 L4 7
-8 0 8 -8 0 8¢

Z?zl p,i (units of /U,) Z;Z:l Pzi (units of /Up)

FIG. 5. Probability distributions of the sum of the electron mo-
mentum components parallel to the polarization of the laser field for
TI (left column) and DI (right column) at intensities 2x 10'* W /cm?
(20 fs), 4x 10" W/cm? (20 fs), and 5x10'* W/cm? (25 fs). The
ECBB model results are presented in the top row, the H model results
in the middle row, and a comparison of the two models in the third
row. All probability distributions are normalized to one.

consistently higher for « = 4 compared to « = 2. However,
while at the two smallest intensities the difference in the DI
probability is small for the two values of a, at 5x 10'* W /cm?
the DI probability is almost 71% higher for « = 4 compared
to o = 2. Hence, the DI probability depends significantly
on the value of «, a disadvantage of the H model. In what
follows, we consider a = 2 for the H model, unless otherwise
stated, since this value allows the electrons to access a larger
phase space. As we increase the intensity from 2x10'* to
5x 10 W /cmz, we find that the ratio of the DI probabilities
between the two models, PECBB /Pl decreases from 1.1 to
0.4. However, the ratio of the TI probabilities P5-5B /PH in-
creases from 0.03 to 0.2. Hence, for the intensities considered
here, the DI and TI probabilities are smaller for the ECBB
model.

B. Distribution of the sum of the electron momenta

In Fig. 5, we plot the TI and DI probability distribution of
the sum of the p, momenta of the ionizing electrons at intensi-
ties 2x 10'* and 4x 10'* W /cm? and 20 fs pulse duration and
5x10'* W /cm? and 25 fs pulse duration. The highest intensity
pulse allows for a direct comparison with experimental results
[19]. In Figs. 5(al) and 5(a2), for the ECBB model, we plot
the TI and DI probability distributions of the sum of the p,
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—2 % 10" W /cm?, 20 fs, ECBB model mmm=2 x 10'* W/cm?, 20 fs, H model
s 4, % 10M W /em?, 20 fs, ECBB model ====4 x 10" W/cm?, 20 fs, H model
5 x 10 W/cm?, 25 fs, ECBB model 5 % 10" W /cm?, 25 fs, H model
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FIG. 6. Probability distributions of the sum of electron momenta
components parallel to the polarization of the laser field for TI (left
column) and DI (right column) at intensities 2x10'* W/cm? (20
fs), 4x10'* W/cm? (20 fs), and 5x10'* W/cm? (25 fs). The direct
pathway distributions are plotted on the top row and the delayed
pathway distributions are plotted on the bottom row. All probability
distributions are normalized to one.

momenta of the ionizing electrons. For DI [Fig. 5(a2)], we find
that the probability distribution is centered around zero and
the width decreases with increasing intensity. This is in accord
with our previous findings for two-electron Ar driven by a 4 fs
pulse for intensities from 2x10' to 5x 10'* W /cm? [35]. For
TI [Fig. 5(al)], we find similar doubly peaked distributions for
4%10" and 5x10'* W/cm?. The TI probability at 2x10'
W /cm? is very low and we do not consider this intensity in
Fig. 5(al).

In Figs. 5(b1) and 5(b2), for the H model for o = 2, 4, we
plot the TT and DI probability distributions of the sum of the
p. momenta of the ionizing electrons. For DI [Fig. 5(b2)],
we find that the probability distribution is centered around
zero and the width decreases with increasing intensity for
both «. For TI [Fig. 5(b1)], we find that at 2x10'* W /cm?
the distribution is doubly peaked, while at higher intensities
the distribution is centered around zero. Finally, we find
that the TI distributions are similar for the two values of «,
while the DI distributions are more centered around zero
for « = 4. This is consistent with each electron being less
attracted from the core for larger values of o resulting in
smaller final momenta. Hence, the probability distributions
depend on the value of «.

Comparing the TI [Fig. 5(c1)] and DI [Fig. 5(c2)] proba-
bility distributions of the ECBB and H models for o = 2, we
find that all distributions are more centered around zero for the
H model. Moreover, the TI distributions at higher intensities
are doubly peaked for the ECBB model and centered around
zero for the H model.

In Fig. 6, we plot the TI and DI distributions of the sum of
the p, electron momenta for the direct (top row) and delayed
pathway (bottom row). In the delayed pathway, we account

Triple ionization Double ionization
5 x 104 W/em?, 25 fs 5 x 10 W/em?, 25 fs 4 x 101 W/cm?, 30 fs

ECBB model Expt.1

5 2F o E'(‘Q)l 3 H model (b [rr-Hmot g (c)
~ I
) o
£l L5
-8 0 8 -8 0 8 -8 0 8

S0 pui (units of \/Ty) S0 sy (units of \/Tp)

FIG. 7. Probability distributions of the sum of electron momenta
components parallel to the polarization of the laser field for (a) TI
and (b, ¢) DI at intensities 5x10'* W/cm? (25 fs) in (a) and (b) and
4x10' W/cm? (30 fs) in (c). We compare the distributions obtained
with the ECBB and H models with experimental ones [21,22]. All
probability distributions are normalized to one.

for all nondirect events. Hence, here, the delayed events also
include TI and DI no-recollision events. The latter account for
roughly 7% of DI and 4% of TI events for the H model and
zero for the ECBB model.

For the direct pathway, we find that the TI [Fig. 6(al)] and
DI [Fig. 6(a2)] distributions are double peaked for both the
ECBB and the H model. For TI events the distributions have
peaks at larger values of momenta compared to DI events,
with the peaks for TI being around :|:4\/U»,, and for DI around

+2.5,/U,. The ponderomotive energy U, = E§ /(4w?) is the
average energy an electron gains from the laser field. Also, for
DI events, the distributions have more events centered around
zero for the ECBB compared to the H model. This contribu-
tion increases with increasing intensity, which is consistent
with our previous results of double ionization of two-electron
Ar driven by short pulses [35]. We find the percentage of
direct events to be significantly larger for the ECBB compared
to the H model. The contribution of direct events to DI is
roughly 50% for the ECBB model, while it decreases from
16% to 5% with increasing intensity for the H model. The
contribution of direct events to TI is roughly 20% for the
ECBB model while it is roughly 5% for the H model at
the two highest intensities. For the delayed pathway, for DI,
the distributions are centered around zero for both models
[Fig. 6(b2)], while for TI the distributions are less centered
around zero for the ECBB model [Fig. 6(b1)].

Next, we compare with experimental results the findings
of the ECBB and H models for the DI distribution of the
sum of the p. electron momenta of Ar at 4x10'* W/cm?
(30 fs) [Fig. 7(c)] and 5x10" W/cm? (25 fs) [Fig. 7(b)]
[21,22] as well as the TI distribution at 5x10'* W /cm? (25
fs) [22] [Fig. 7(a)]. The experimental DI distributions have
a slight double-peaked structure and agree more with the
results of the ECBB model. Indeed, the H model produces
DI distributions that are highly centered around zero, which
is significantly less the case for the ECBB model. The exper-
imental TI distributions have a slight doubly peaked structure
which is only reproduced by the ECBB model. However, the
TI distribution obtained with the ECBB model is wider than
the one obtained experimentally. Hence, for DI the ECBB
model better reproduces the experimental results while for TI
it is not clear whether the ECBB or the H model agrees best
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FIG. 8. Probability distributions of the largest value of the
Coulomb interelectronic potential energy for (a) TI and (b) DI at
intensities 2x10'* W/cm? (20 fs), 4x10'* W/cm? (20 fs), and
5x10™ W /cm? (25 fs). All probability distributions are normalized
to one.

with experiment. To answer this question a future study needs
to compare distributions where intensity averaging has been
accounted for in the theoretical results [35,64].

C. Strength of the recollision in DI and TI events

For each DI and TI event we register all the maxima of
the Coulomb interelectronic potential energy as a function
of time and identify the largest maximum Vj,,x. That is, we
identify the most important recollision for each event. We plot
the distribution of Vi« for TI [Fig. 8(a)] and DI [Fig. 8(b)]
events. We find that recollisions are significantly stronger for
the ECBB model, with the most probable value of V;,,x being
roughly 1 a.u. for DI and TI at all intensities. In contrast,
for the H model, at the higher intensities, the most probable
value of V. is close to O a.u. both for DI and TI. For the
H model, weaker recollisions are consistent with the DI and
TI distributions of the sum of the p, electron momenta being
more centered around zero (see Fig. 5).

D. Correlated momenta

In Fig. 9, for DI, we plot the correlated electron momenta
at intensities 2x 10'* W/cm? (20 fs), 4x 10'* W/cm? (20 fs),
and 5x10'* W/cm? (25 fs) obtained with the ECBB model
[Figs. 9(al)-9(a3)] and the H model [Figs. 9(b1)-9(b3)]. At
the three intensities, we find that correlated electron escape
prevails mostly for the ECBB model which produces roughly
10% more correlated events than the H model. Also, at inten-
sities 4x 10'* and 5x10'* W /cm?, the electrons escape with
considerably higher momenta in the ECBB model [compare
Fig. 9(a2) with Fig. 9(b2) and Fig. 9(a3) with Fig. 9(b3)]. The
above are consistent with the ECBB model resulting in more
direct events (Sec. III B) and stronger recollisions (Fig. 8) than
the H model.

In Fig. 10, for TI, we plot the correlated electron momenta
at intensities 4x 10'* W /cm? (20 fs) and 5x10'* W /cm? (25
fs) obtained with the ECBB model [Figs. 10(al) and 10(a2)]
and the H model [Figs. 10(bl) and 10(b2)]. We find that
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FIG. 9. Symmetrized correlated momenta of all pairs of escaping
electrons for DI for (al-a3) the ECBB model and (b1-b3) the H
model at intensities 2x 10'* W/cm? (20 fs), 4x 10" W/cm? (20 fs),
and 5x 10 W /cm? (25 fs). The doubly differential distributions are
divided by the peak value.

correlated three-electron escape is clearly prevalent at both
intensities for the ECBB model, while this is barely the case
for the H model. Moreover, the three electrons escape with
significantly smaller momenta for the H model compared to
the ECBB model [compare Fig. 10(al) with Fig. 10(b1) and
Fig. 10(a2) with Fig. 10(b2). As for DI, this is consistent with
the ECBB model yielding more direct events and stronger
recollisions versus the H model.

Triple ionization
3 4 x 10" W/cm? 5 x 101 W /cm?
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FIG. 10. Symmetrized correlated momenta of all pairs of escap-
ing electrons for TI for (al, a2) the ECBB model and (b1, b2) the
H model at intensities 4x10'* W/cm? (20 fs) and 5x10'* W/cm?
(25 fs). The doubly differential distributions are divided by the peak
value.
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FIG. 11. Probability distributions of the angles of the ionizing
electrons and the core for TI (left column) and DI (right column)
at 4x 10" W/cm? (20 fs). Plots for the ECBB model are denoted
with solid lines versus broken lines for the H model. All probability
distributions are normalized to one.

E. Angular distributions

In Fig. 11, we plot the TI (left column) and DI (right
column) probability distributions of the angles of the ion-
izing electrons and the core at intensity 4x10'* W/cm?
at 20 fs. We obtain similar results for the other intensi-
ties considered in this work (not shown). We find that the
angle between any pair of escaping electrons 6,_, (black
color) is mostly peaked at small angles, indicating a cor-
related electron escape. For both the ECBB model and
the H model, we find that the angle of interelectronic
escape is smaller for TI versus DI. This is consistent
with the electron momenta being more correlated for TI versus
DI (compare Fig. 9 with Fig. 10). We also find that a small
angle of interelectronic escape is significantly more favored
by the ECBB model, which results in more direct events and
stronger recollisions.

We also find that the angle of any escaping electron with
the z axis, 0,_, (dark gray color), peaks at small and large
values for TI and DI for both models. That is, the ionizing
electrons escape mostly along (0°) or opposite (180°) the
direction of the electric field. However, the peaks of the distri-
butions of 6,_, are sharper, i.e., the distributions are less wide,
for the H model. This is in accord with our finding that the
H model gives rise to a significantly higher number of TT and
DI events where no recollision takes place compared to the
ECBB model. As a result, in the H model, the electrons ionize
mostly due to the field for a larger number of events, with
the electrons escaping more along or opposite the direction
of the field. Moreover, we find that the distributions of the
angle of the core with the z axis, 6,._, (blue color), are wide
for both TI and DI for both models. However, the distribution
is wider for DI versus TI. This is consistent with the core
having a higher charge equal to 3 for TI versus 2 for DI. As a

result, the electric field exerts a larger force on the core in TI
leading the core to escape more along or opposite the direction
of the electric field. Finally, we find that the distribution of
the angle 6,._, (light grey color) between an ionizing electron
and the core peaks mostly at large angles; that is, the electron
and the core escape in opposite directions. This is consistent
with the electric field exerting opposite forces to particles of
opposite charges. We find that the angle of escape between an
electron and the core is larger for TI compared to DI for both
models. This is consistent with the larger core charge for TI
resulting in the core escaping more along or opposite the field
direction.

IV. CONCLUSIONS

We formulate a 3D semiclassical model to address three-
electron dynamics in a strongly driven atom where the
electron and core dynamics are treated at the same time.
Our formulation includes the magnetic field of the laser field
as well as the Coulomb singularities. We address unphysi-
cal autoionization present in semiclassical models where the
Coulomb singularities are accounted for and more than one
electron is bound. We do so by substituting the Coulomb
repulsion between bound electrons with effective potentials
where an effective charge is associated with every bound
electron. The interaction between pairs of electrons that are
not both bound is accounted for with the full Coulomb poten-
tial and all other forces are fully accounted for. This model,
developed in this work and referred to as the ECBB model,
identifies on the fly during time propagation if an electron
is bound or not. We compare the ionization spectra obtained
with the ECBB model with the ones obtained with a model
previously developed—referred to here as the H model. In
the latter model, a potential is added for each electron that
mimics the Heisenberg uncertainty principle and restricts the
accessible phase space of each electron preventing autoioniza-
tion. The advantage of the ECBB model is that it accurately
treats the interaction of each electron with the core and all
other interactions while it treats less accurately the interaction
between bound electrons. The advantage of the H model is
that it accurately treats the interaction between all electrons
while it treats less accurately the interaction of each electron
with the core.

Using these 3D semiclassical models, we address triple and
double ionization in a strongly driven atom, namely, Ar. We
compare the ionization spectra obtained with the two models
as well as with experiment for various pulse durations and
intensities. We find that both double- and triple-ionization
probabilities are greater for the H model compared to the
ECBB model. We conjecture that this difference in the prob-
abilities is due to the Heisenberg potential resulting in larger
initial momenta of the bound electrons as well as in significant
less attraction of each electron from the core. We find that in
the H model for a significant number of events the electrons
ionize without a recollision, i.e., ionize due to the laser field,
and the recollisions are significantly weaker compared to the
ECBB model. These findings are consistent with our results
for the distribution of the sum of the momenta of the ionizing
electrons along the direction of the laser field. For all the
intensities and pulse durations considered here, we find that
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these distributions are broader for the ECBB model. For triple
ionization, we find that the distributions of the sum of the
electron momenta have a double peak for the ECBB model
while they are centered around zero for the H model. We find
this to be due to the ECBB model producing more direct-
ionization events than the H model. This is also evident in the
correlated electron momenta where the distributions obtained
with the ECBB model are consistently more correlated com-
pared to the ones obtained with the H model. Moreover, we
identify another disadvantage of the H model; namely, the dis-
tributions of the momenta and ionization probabilities depend
on the parameter « in the Heisenberg potential. Comparing
with experimental distributions of the sum of the momenta
we find that the distributions obtained with the ECBB model
have a better agreement with experiment mainly for double
ionization. Finally, our formulation of the ECBB model and
of the H model that accounts for electron and core motion
and for nondipole effects is general and can be generalized to
strongly driven atoms with more than three electrons.
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APPENDIX A: DERIVATION OF
THE EFFECTIVE POTENTIAL

The electric field produced by a charge Q(¢;, r) that is
contained within a spherical shell of radius r from the core
is obtained by Gauss’s law as follows:

B, =245

(AD)
The work W done on a particle i due to the electric field
E(¢;, r) is equal to minus the change in potential energy AVeg:
W = — AV
= —[Verr(§j, ) — Verr (¢, 00)]
= —Vere (g5, 1), (A2)

where we have used that Vei(¢;, 00) = 0. The work W is also
given by

W:/ F-dr’:—/ E.dr
o0 o0

= —/ E(¢gj, r)# - #)dr

o0
r —2¢;r' L
:‘/ [45__5___9ét2912__2§ﬁ;%w}df
o LT r .
1 e NG
= <——,+ - +§je_2{fr)‘
r r [oe]

_ o286
:_1 (1+§jr)e ’ (A3)

r

where we have used that particle i is an electron and
hence F = —E as well as that particle j is an electron and
Q(¢;, ) is given by Eq. (19). Using Egs. (A2) and (A3), we
find

1= (1 4+ ¢r)e %
Ve (¢, r) =~ f’r)e , (A4)

which is the potential energy that an electron i has at a distance
r from the core due to a bound electron j.

APPENDIX B: LEAPFROG ALGORITHM

In what follows, we describe the leapfrog algorithm. First,
we initialize the auxiliary variables W3 = qo, W§ = py,
Wy = to, and W(,g = &y. Then, we propagate for a time step
equal to A, by propagating for half a step each quadruplet of
variables (q, W*, t, Wg) and (W9, p, W', £) in an alternating
way as follows:

h (W3, po, Ws)

=q+ > ,
qi1/2 = 9o 5 Q(Wg)
h p(W3, pg, Wi, &
Wi, = wg 4 4 POV o G &)
2 (W)
tiyp =ty + !
12 =1 2Q(Wg)’
Wg _Wg_i_ég(wg’po’wot’go)
PR ey
a(qio, Wi, 11)2)
W= W o 2
Q(q1,2)

_ +hi’((I1/2,Wf/2,t1/2,W§2)
Pr=">o Qi) ’
W =W! +h !

P TQ(qi)
E@ija, Wy 110, WEy)
£ =E+h / 12241/ 1/2
Q(q1,2)
hq(WY, o, W!
qi =Q1/2+—(1—]q]),
2 (W)
hp(W p, W E
Wf:sz—‘r—p( 1 pl 1 l)’
22 W)
Hh=t +h !

1 ="t ZQ(W?)’

e e, 3 PEOVE 02
272 Q(Wi)

The subscripts 0, 1/2, and 1 denote the value of each vari-
able at the start, the middle, and the end of the time step
h.

Next, we describe the algorithm that incorporates the
leapfrog method in the Bulirsch-Stoer extrapolation scheme
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over a step H, which is split into n substeps of

size h = H/n:
h a(Wg. po, W)
qi2 =qo + = —,
2 (W)
0 p h p(w(()lv Po> W(]l9 EO)
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wherem =2,...,n— 1.

APPENDIX C: IDENTIFYING THE DIRECT PATHWAY
OF TI AND DI EVENTS

We obtain the TI and DI events with a code that incor-
porates the formulation of the ECBB model described in
Sec. II C and a code that incorporates the formulation of the
H model described in Sec. II B. Once we obtain these events,
we perform a detailed analysis with a different set of codes.
In both analysis codes, i.e., one for each model, we use the
framework we developed in Sec. II C 5 to determine on the fly
during propagation if an electron is quasifree or bound. We
register a T or DI event as direct if a recollision is associated
with the simultaneous ionization of three or two electrons. We
take the following steps to identify direct events:

(1) We find the ionization time of each electron, tmn,
i=1,2,3forTlandi = 1, 2 for DI.

(2) We register the maxima in the interelectronic potential
energies as a function of time between electron pairs i, j and
i, k and j, k during the time intervals when in these pairs one
electron is quasifree and the other is bound. Next, for each
electron i, we identify the maximum for each one of the i, j
and i, k potential energies that is closest to the time tii()n. We

with

denote these times as ;3] and ti:k. We obtain at most six such
times for TI events and four for DI events.

(3) For each time #;! we identify the time 7, (see
Sec. IT C 5) of closest approach to the core of the quasifree
electron (either electron i or j) that is closest to treC and denote
it as 1, ©J_We obtain at most six such times for TI events and
four for DI events. N

We label a TI event as direct if four of the times 7,”
are the same, accounting for one electron being quasifree
and the other two bound. That is, if electron i is quasifree
during the recollision closest to the ionization time #/  then

the times t2 , tz , t2 , and 75" should be the same. The

times t2’ and 75" are associated with the recollision times

thi and 5! for the bound electrons j and k, respectively.

For the quasifree electron we obtain two recollision times #,]
and t* associated with the ionization time # . We choose
the one that has the largest difference from tm, guarantee-

ing a stricter criterion for direct TI events. Next, we check

whether |treC — 10n| < tdlﬁ or (tlon < trec and tfon < tr’ec) and
|trec ZI{) | < taier and |2 £k . — 10nl < tgifr. If the latter conditions
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are satisfied then we label the event as direct T1. The condition
(ti, <t and fi < ti¥) has also been used in our previous
studies [35,65] to account for a quasifree electron ionizing
significantly earlier before recollision. This happens mostly
at high intensities. A similar process is followed to identify a
DI event.

The interval #4; is defined as the time duration where the

interelectronic potential energy undergoes a sharp change due

to recollision. For the laser field intensities considered in this
work, we find #4i¢ to be roughly equal to 1/8 laser cycle (T) for
the ECBB model and 1/6 T for the H model. The difference
in t4ifr between the two models is due to the stronger electron-
core interaction for the ECBB model resulting in sharper
changes to the electron-electron interaction. The choice of #4i¢
does not significantly change the percentage contribution of
direct TT and DI events [35].
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