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Ground-state hyperfine structure of light muon-electron ions
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The ground-state hyperfine splitting of light muon-electron ions of lithium, beryllium, boron, and helium
is calculated on the basis of analytical perturbation theory in terms of small parameters of the fine-structure
constant and electron-muon mass ratio. The corrections of vacuum polarization, nuclear structure, and recoil
effects and electron vertex corrections are taken into account. The dependence of the corrections on the nucleus
charge Z is studied. The obtained total values of hyperfine splitting intervals can be used for comparison with
future experimental data.
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I. INTRODUCTION

The precision investigation of fine and hyperfine structures
of the simplest atoms, gyromagnetic factors of bound leptons,
as well as the particle bound states production and decay
processes makes it possible to test quantum electrodynamics
(QED) and the relativistic theory of bound states. The preci-
sion of muonic physics has become especially actualized since
2010, when the first experimental results of low-lying energy
level measurements in muonic hydrogen were obtained by the
CREMA (charge radius experiments with muonic atoms) col-
laboration. A decade of active work of this collaboration has
brought interesting and unexpected results, related primarily
to determining more accurate values of the charge radii of
light nuclei (proton, deuteron, helion, alpha particle) [1–5]:

rp = 0.84 087(26)exp(29)theor fm,

rd = 2.12 718(13)exp(89)theor fm,

rα = 1.67 824(13)exp(82)theor fm. (1)

As a result of the first experiments of the CREMA col-
laboration in 2010, the value of proton charge radius rp =
0.84 184(67) fm was obtained. It was 10 times more accurate
than all previous values from experiments based on elec-
tronic systems. Moreover, it was essentially smaller than the
CODATA recommended value rp = 0.8768(69) fm [6]. The
difference between these values was named the “proton ra-
dius puzzle.” The measurements of energy levels with muonic
hydrogen have shown that there is significant discrepancy
in the values of proton and deuteron charge radii, emerging
from experiments with electronic and muonic atoms. New
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problems of studying the fine and hyperfine structures of
the energy spectrum are related to muonic ions of lithium,
beryllium, etc. [7].

The CREMA experiments caused a series of new ex-
perimental studies of that problem. During 2017–2019,
different experimental results were obtained, both with elec-
tron and muon systems, which made it possible to refine
the value of the proton charge radius. The transition fre-
quency (2S − 4P) in electronic hydrogen was measured in
Ref. [8]: �ν2S−4P = 616 520 931 626.8(2.3) kHz, and the ex-
tracted value of the proton charge radius rp = 0.8335(95) fm
was found to be in agreement with the CREMA result. An-
other experimental investigation of the proton radius puzzle,
PRad (E12-11-1062), was planned in 2011 and successfully
carried out in 2016 at the Thomas Jefferson National Ac-
celerator Facility. The PRad experiment was based on the
study of electron beams with energy 1.1 and 2.2 GeV. In
that experiment, the cross section of the electron-photon (e-
p) elastic scattering at unprecedentedly low values of the
square of the transferred momentum was measured up to
a percentage. The obtained value of the proton charge ra-
dius was rp = 0.831 ± 0.007(stat) ± 0.012(syst) fm [9]. It
is less than the average of rp from previous elastic e-p
scattering experiments, but agrees with the spectroscopic
results for the muonic hydrogen atom within experimental
uncertainties. A new measurement of the electronic hydro-
gen Lamb shift (n = 2) was made in Ref. [10]. The result
is �ELs = 909.8717(32) MHz. The value of the proton
charge radius from this experiment, rp = 0.833(10), agrees
with the spectroscopic data for muonic atoms. It should
be noted that in another experiment [11], a new measure-
ment of the two-photon transition frequency (1S − 3S) was
measured with relative uncertainty 9 × 10−13: �ν1S−3S =
2 922 743 278 671.0(4.9) kHz. The value of the proton charge
radius from this experiment, rp = 0.877(13) fm, is in good
agreement with the recommended CODATA value. To solve
the proton charge radius problem, the PSI MUSE collabo-
ration is planning an experiment to simultaneously measure
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the cross sections for electron and muon scattering by
protons [12]. This experiment will make it possible to de-
termine the charge radii of the proton independently in
the two reactions and test the lepton universality with an
accuracy of an order of magnitude better than previous
scattering experiments. At the J-PARC [Muon Science Fa-
cility (MUSE)] research center, the MuSEUM collaboration
(Japan) plans an order of magnitude more accurate mea-
surement of the hyperfine structure of the muonium ground
state [13]. Another experiment of the MU-MASS at PSI
(Switzerland) aims to measure the (1S − 2S) transition fre-
quency in muonium with an accuracy of 10 kHz (4 ppt)
[14]. New plans for precision microwave spectroscopy of
the J-PARC MUSE collaboration [15] involve measuring the
hyperfine structure (HFS) of the ground state of muonic
helium with an accuracy that is two orders of magnitude
better than the previous experiments of the 1980s. The FAMU
(Fisica degli Atomi Muonici) collaboration plans to mea-
sure the hyperfine structure of the ground state of muonic
hydrogen with an accuracy of several ppm [16], and the
CREMA [17] collaboration with an accuracy of 1 ppm,
using pulsed laser spectroscopy methods. A fundamental ex-
periment related to muon physics is the Fermilab (USA)
experiment to measure the muon anomalous magnetic mo-
ment [18], which recently confirmed that there is a difference
of 4.2 standard deviations between the experimental and the-
oretical values of the muon anomalous magnetic moment,
which can be an indication of the New Physics beyond the
Standard Model. Another project with the same goal, but
delivered according to a completely different methodology, is
planned to be carried out at J-PARC (Japan) [19]. All these
experiments, already carried out and planned for the near
future, convincingly show that muonic physics, the physics
of two-particle and three-particle muonic systems, is cur-
rently an urgent problem that requires appropriate theoretical
studies and calculations of observable quantities with high
accuracy.

In the theoretical study of the energy levels of three-particle
electron-muon-nucleus systems, two methods are usually
used. One of them is the variational method, which allows
one to find wave functions and energies with very high accu-
racy [20–28] (see other references in the review paper [27]).
Basically, theoretical studies were focused on muon-electron
helium since measurements of the hyperfine structure of the
ground state were performed for it [29,30],

�νhfs
exp

(
μe3

2He
) = 4166.3(2) MHz,

�νhfs
exp

(
μe4

2He
) = 4465.004(29) MHz. (2)

An analytical approach for calculating the energy levels of
such three-particle systems was formulated in Refs. [31,32]
and applied to calculate the hyperfine structure of the spec-
trum and the electronic Lamb shift in Refs. [33–38]. It is
based on the use of the perturbation theory (PT) method with
respect to two small parameters: the fine-structure constant α

and the electron-muon mass ratio. This approach has certain
advantages like any other analytical method. They consist in
the fact that the contributions to a certain energy interval are
obtained in the form of analytical expressions, which allows
better control over the accuracy of the calculations and use

of them for different bound states. In order to achieve high
calculation accuracy, it is necessary to calculate numerous
corrections in higher orders of perturbation theory.

In our previous paper [38], we calculated the electron
Lamb shift (2P − 2S) and the energy interval (2S − 1S) us-
ing the analytical method in muon-electron ions of lithium,
beryllium, and boron. We showed that the total value of the
electronic Lamb shift strongly depends on the charge of the
nucleus, so that in the transition from the lithium nucleus to
the boron nucleus the magnitude of the shift undergoes a sharp
decrease in the case of the beryllium nucleus. In this paper, we
continue to study [38] the energy levels of muon-electron ions
of lithium, beryllium, and boron in the hyperfine part of the
energy spectrum.

II. METHOD FOR CALCULATING BASIC
CONTRIBUTIONS TO HFS

The Coulomb interaction in three-particle muon-electronic
ions of lithium, beryllium, and boron leads to the formation of
bound states The main features of such three-particle systems
are as follows:

(1) The lifetime of such systems is determined by the muon
lifetime τμ = 2.19 698 11(22) × 10−6 s. From the classical
point of view, during this time, the muon manages to make
about 1013 rotations around the nucleus.

(2) The particle masses satisfy the inequality me � mμ �
M, where me is the electron mass, mμ is the muon mass, and
M is the nucleus mass. This leads to the fact that the muon
is about 200 times closer to the nucleus than an electron.
We can assume that the electron moves in the field of the
quasinucleus, which is formed by the muon and the nucleus.

(3) The hyperfine structure of the energy spectrum in the
ground state arises from the interaction of particle spins: se is
the electron spin, sμ is the muon spin, and I is the nucleus spin.
We consider the following as nuclei of lithium, beryllium,
and boron isotopes with nuclear spin I = 3/2: 7

3Li, 9
4Be, and

11
5 B. Based on the obtained analytical expressions for various
corrections in the hyperfine structure, we also obtained a new
splitting estimate for (μe3

2He), (μe4
2He).

To calculate the energy levels by the analytical perturbation
theory method, we divide the Hamiltonian of the system into
several parts, separating the main contribution of the Coulomb
interaction H0 in the form

H = H0 + �H + �Hrec + �Hvp + �Hstr + �Hvert,

H0 = − 1

2Mμ

∇2
μ − 1

2Me
∇2

e − Zα

xμ

− (Z − 1)α

xe
, (3)

�H = α

|xμ − xe| − α

xe
, �Hrec = − 1

M
∇μ · ∇e, (4)

where xμ and xe are the radius vectors of the muon and
electron relative to the nucleus, and Ze is the nucleus charge.
The terms �Hvp, �Hstr , and �Hvert denote contributions of
vacuum polarization effects, effects of nucleus structure, and
vertex corrections. The reduced masses in the muon-nucleus
and electron-nucleus subsystems are equal to

Me = meM

(me + M )
, Mμ = mμM

(mμ + M )
. (5)
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In the initial approximation, which is determined by the
Hamiltonian H0, the wave function of the system has a simple
analytical form,

�0(xe, xμ) = ψe0(xe)ψμ0(xμ) = 1

π
(WeWμ)3/2e−Wμxμe−Wexe ,

Wμ = ZαMμ, We = (Z − 1)αMe, (6)

which allows one to accurately calculate the corrections using
the perturbation theory. The Hamiltonian of the hyperfine
interaction in the case of the ground state can be presented
in the form

�Hhfs = ã(Sμ · I) − b̃(Se · Sμ) + c̃(Se · I), (7)

where the coefficient functions ã, b̃, and c̃ are presented in the
form of the expansion by the perturbation theory. In leading
order, these functions have the form

ã0 = 2πα

3

gN gμ

mpmμ

δ(xμ), b̃0 = 2πα

3

gμge

mμme
δ(xμ − xe),

c̃0 = 2πα

3

gegN

memp
δ(xe), (8)

where ge = 2(1 + ae), gμ = 2(1 + aμ), and gN = μN

I are gy-
romagnetic factors of the electron, muon, and nucleus, μN is a
nucleus magnetic moment, and ae,μ are anomalous magnetic
moments of the electron and muon.

Averaging the Hamiltonian (7) over the wave functions of
the ground state, we obtain

ν = 〈
�Hhfs

0

〉 = a 〈I · Sμ〉 − b 〈Sμ · Se〉 + c 〈Se · I〉, (9)

where the coefficients

a =
∞∑

i=0

ai, b =
∞∑

i=0

bi, c =
∞∑

i=0

ci (10)

are determined by different matrix elements by the pertur-
bation theory. Using (6), in leading order, we obtain the
following contributions to a, b, c (below, the values for
lithium, beryllium, and boron nuclei are given line by line,
and for helium nuclei, see Table I):

a0 = gN gμ

4

me

mp

(Wμ

We

)3

νF =

⎧⎪⎪⎨
⎪⎪⎩

6.08 349 × 108 MHz,

−5.26 948 × 108 MHz,

23.66 123 × 108 MHz.

νF = 8αW 3
e

3memμ

, (11)

b0 = νF
gegμ

4

1(
1 + We

Wμ

)3 =

⎧⎪⎪⎨
⎪⎪⎩

35 830.5299 MHz

120 791.0324 MHz

286 127.0374 MHz,

(12)

c0 = νF
mμ

mp

gegN

4
=

⎧⎪⎪⎨
⎪⎪⎩

4422.8997 MHz

−5397.5666 MHz

29 216.4109 MHz.

(13)

For the calculation of matrix elements from the product of
spin operators, we use the following transformation of basis

H0

SNµ = 2

SNµ = 1

S = 3
2

S = 5
2

S = 3
2

S = 1
2

Δν1(b, c)

Δν2(b, c)

Δν(a)

FIG. 1. Hyperfine splitting of the ground state of muon-electron
ions of lithium, beryllium, and boron.

wave functions [39]:

�SNμSSz =
∑
SNe

(−1)Sμ+I+Se+S
√

(2SNμ + 1)(2SNe + 1)

×
{

Se SN SNe

Sμ S SNμ

}
�SNeSSz , (14)

where SNμ is the spin of the muon-nucleus subsystem, SNe is
the spin of the electron-nucleus subsystem, and S is the total
spin of the three-particle system. The properties of 6 j symbols
are discussed in [39].

The given numerical values of the main contributions to
the coefficients a, b, and c show that the system has small
intervals of the hyperfine structure, which are determined
by the quantities b and c. An approximate scheme of
energy level splitting due to the hyperfine interaction
of the ground state is shown in Fig. 1. The coefficient
b0 was calculated using the g factor of the electron,
ge ≈ 2. The correction connected with the anomalous
magnetic moment of an electron in this interaction is
considered in Sec. V. When calculating other coefficients, the
following values of the gyromagnetic factors are used:
ge = 2(1 + κe) = 2[1 + 1.15 965 218 111(74) × 10−3],
gμ = 2(1 + κμ) = 2[1 + 1.16 592 069(60) × 10−3],
gN (7

3Li) = 2.17 095 1, gN (9
4Be) = −0.78 495 5, gN (11

5 B) =
1.79 243 3 [40].

The average value of the Hamiltonian of hyperfine interac-
tion �Hhfs

0 calculated in the ψSNμSSz basis has the form
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TABLE I. Contributions to the coefficients b and c in the hyperfine splitting of the ground state in lithium, beryllium, and boron ions, and
helium atoms. Table rows in order correspond to (μe7

3Li)+, (μe9
4Be)2+, (μe11

5 B)3+, (μe3
2He), (μe4

2He).

Contribution
to the coefficients b and c b (MHz) c (MHz) Formula

Leading-order contribution 35830.53 4422.90 (12),(13)
of the order of α4 120791.04 −5397.57

286127.05 29216.41
4487.7131 -1083.3208
4488.6167 0

Recoil correction −155.58 22.27 (32), (35), (A7)

of the order of α4 We
Wμ

, α4 W 2
e

W 2
μ

−390.95 −20.36

−738.06 88.11
−29.9789 −8.3125
−29.7371 0

One-loop VP correction 0.70 0.17 (42),(43)
in 1γ interaction 3.99 −0.32

13.59 2.29
0.0357 0.0272
0.0359 0

One-loop VP correction 0.69 0 (49)
in μN interaction 3.15 0
in second order of PT 9.01 0

0.0485 0
0.0484 0

One-loop VP correction −0.86 −0.05 (52),(56),
in μe interaction −3.07 0.07 (59),(61)
in second order of PT −7.73 −0.39

−0.1010 0.0090
−0.1012 0

One-loop VP correction 1.14 0.27 (48),(60)
in eN interaction 5.85 −0.45
in second order of PT 19.00 3.09

0.0752 −0.0440
0.0756 0

One-loop VP correction −0.50 0.04 (65), (69), (71)
with �H potential −1.52 −0.05
in second order of PT −3.28 0.23

−0.0704 −0.0129
−0.0732 0

Nuclear structure correction 0 −0.71 (73)
in 1γ interaction 0 1.33

0 −9.19
0 0.0696
0 0

Nuclear structure correction 0 −0.49 (74)
in 2γ interaction 0 0.82

0 −5.27
0 0.0638
0 0

Nuclear structure correction −0.47 −0.35 (76), (77), (78), (79)
in second order of PT −3.30 0.44

−11.77 −2.30
−0.0132 0.0690
−0.0097 0

Nuclear recoil correction 0.53 0 (87), (88), (89)
from �Hrec 1.38 0

2.68 0
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TABLE I. Continued

Contribution
to the coefficients b and c b (MHz) c (MHz) Formula

0.1078 0
0.0809 0

Electron vertex correction 40.96 0 (91)
of the order of α5 136.73 0
in 1γ interaction 320.59 0

5.1765 0
5.1774 0

Electron vertex correction −0.06 0 (96),(97),(94)
of the order of α5 −0.06 0
in second order of PT 0.02 0

−0.0209 0
−0.0206 0

Recoil correction 6.43 −0.09 (81),(82)
in 2γ interaction 21.68 0.12

51.35 −0.67
0.8055 0.0315
0.8056 0

Relativistic correction 5.77 1.41 (98)
of the order of α6 53.05 −3.88

241.24 37.30
0.0401 −0.0864
0.0401 0

Radiative correction −3.48 −0.64 (99)
of the order of α6 −11.74 1.04

−27.82 −7.02
−0.4345 0.1041
−0.4346 0

Summary values 35725.80 4444.73
120606.23 −5418.81
285995.87 29322.59

4463.3835 −1091.4024
4464.5042 0

ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1, 1
2 ,Sz

�1, 3
2 ,Sz

�2, 3
2 ,Sz

�2, 5
2 ,Sz

�1, 1
2 ,Sz

− 5
4 a − 1

4 b − 5
4 c 0 0 0

�1, 3
2 ,Sz

0 − 5
4 a + 1

8 b + 5
8 c −

√
15
8 b +

√
15
8 c 0

�2, 3
2 ,Sz

0 −
√

15
8 b +

√
15
8 c 3

4 a + 3
8 b − 9

8 c 0

�2, 5
2 ,Sz

0 0 0 3
4 a − 1

4 b + 3
4 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

After diagonalizing this matrix, we get four eigenvalues that define the hyperfine structure,

ν1
(
SNμ = 1

2 , S = 1
) = − 5

4 a − 1
4 b − 5

4 c,
ν2
(
SNμ = 3

2 , S = 1
) = 1

4

(−a + b − c − √
16a2 + 4b2 + 16c2 + 4ab − 28ac − 11bc

)
,

ν3
(
SNμ = 3

2 , S = 2
) = 1

4

(−a + b − c + √
16a2 + 4b2 + 16c2 + 4ab − 28ac − 11bc

)
,

ν4
(
SNμ = 5

2 , S = 2
) = 3

4 a − 1
4 b + 3

4 c.

(16)

As long as a 	 b and a 	 c, we can use expansions in b/a, c/a and represent small intervals of the hyperfine structure in the
form

�νhfs
1 = ν3 − ν4 = 5(b − 3c)

8
+ O

(
b

a
,

c

a

)
, �νhfs

2 = ν2 − ν1 = 3(b + 5c)

8
+ O

(
b

a
,

c

a

)
. (17)

As it follows from (12), b0 contains the recoil effects over We/Wμ in the leading order in α. The same recoil effects also occur
in the second-order perturbation theory in �H .
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III. RECOIL CORRECTIONS IN SECOND ORDER OF PERTURBATION THEORY

Recoil corrections of the order of α4 We
Wμ

, α4 W 2
e

W 2
μ

ln We
Wμ

, and α4 W 2
e

W 2
μ

occur in the second order of perturbation theory. The

contribution to the b coefficient is determined by the following expression:

b1 = 2
∫

�∗(xe, xμ)b̃0(xe − xμ)G̃(xe, xμ; x′
e, x′

μ)�H (x′
e, x′

μ)�(x′
e, x′

μ)dxedxμdx′
edx′

μ, (18)

where the reduced Coulomb Green’s function has the form

G̃(xe, xμ; x′
e, x′

μ) =
∑

n,n′ �=0

ψμn(xμ)ψen′ (xe)ψ∗
μn(x′

μ)ψ∗
en′ (x′

e)

Eμ0 + Ee0 − Eμn − Een′
. (19)

It is convenient to divide the sum over muon states in (19) into two parts with n = 0 and n �= 0. For the first part, we get

b1(n = 0) = 4πα

3

gegμ

memμ

∫
|ψμ0(x3)|2ψ∗

e0(x3)
∞∑

n′ �=0

ψen′ (x3)ψ∗
en′ (x1)

Ee0 − Een′
Vμ(x1)ψe0(x1)dx1dx3, (20)

Vμ(x1) =
∫

ψ∗
μ0(x2)

[
α

|x2 − x1| − α

x1

]
ψμ0(x2)dx2 = − α

x1
(1 + Wμx1)e−2Wμx1 . (21)

The reduced Coulomb Green’s function of an electron in (20) is determined by [41]

Ge(x1, x3) =
∞∑

n �=0

ψen(x3)ψ∗
en(x1)

Ee0 − Een
= −WeMe

π
e−We(x1+x3 )

[
1

2Wex>

− ln(2Wex>) − ln(2Wex<) + Ei(2Wex<)

+ 7

2
− 2C − We(x1 + x3) + 1 − e2Wex<

2Wex<

]
, (22)

where x< = min(x1, x3), x> = max(x1, x3), C = 0.577216 . . . is the Euler constant and Ei(x) is the integral exponential function.
Then the coordinate integration in (20) can be performed analytically, and the obtained result can be represented as an expansion
in We/Wμ,

b1(n = 0) = νF
(1 + κμ)

(Z − 1)

[
11

8

We

Wμ

− 1

16

W 2
e

W 2
μ

(
64 ln

We

Wμ

+ 64 ln 2 + 7

)]
. (23)

Excited states of the muon (n �= 0) give the second part of the contribution to the b coefficient,

b1(n �= 0) = 4πα

3

gegμ

memμ

∫
ψ∗

μ0(x3)ψ∗
e0(x3)

∑
n �=0

ψμn(x3)ψ∗
μn(x2)Ge(x3, x1, z) ×

[
α

|x2 − x1| − α

x1

]
ψμ0(x2)ψe0(x1)dx1dx2dx3,

(24)

where we introduce the electron Green’s function,

Ge(x3, x1, z) =
∞∑

n′=0

ψen′ (x3)ψ∗
en′ (x1)

z − Een′
=

∞∑
n′=0

ψen′ (x3)ψ∗
en′ (x1)

Eμ0 + Ee0 − Eμn − Een′
. (25)

The term (−α/x1) in (24) does not contribute due to the orthogonality of the muon wave functions. To perform further analytic
integration in (22), we replace Ge approximately with the free Green’s function [31,32],

Ge(x3, x1, Eμ0 + Ee0 − Eμn) → Ge0(x3 − x1, Eμ0 + Ee0 − Eμn) = −Me

2π

e−β|x3−x1|

|x3 − x1| , (26)

where β = √
2Me(Eμn − Ee0 − Eμ0). In addition, we approximately replace wave functions of an electron in (22) by their values

at zero, ψe0(0). The terms omitted in this approximation can give a second-order contribution with respect to We
Wμ

in b. The results
of numerical integration in [31] with the exact Green’s function of the electron in the case of muonic helium show that the terms
used in the (26) approximation are numerically small.

After these approximations, the integration over the x1 coordinate gives the following result:∫
e−β|x3−x1|

|x3 − x1|
dx1

|x2 − x1| = 4π

[
1

β
− 1

2
|x3 − x2| + 1

6
β|x3 − x2|2 − β2

24
|x3 − x2|3 + · · ·

]
, (27)

where an expansion of e−β|x2−x3| in β|x2 − x3| is done. This expansion is equivalent to the expansion in powers of
√

We/Wμ.
The first expansion term β−1 in (27) does not contribute to (24). The second expansion term in (27) gives the leading-order
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contribution in
√

We/Wμ: −νF
35We

8(Z−1)Wμ
. To increase the accuracy of the result, we also consider the third term on the right side

(27), which leads to the following integral:∫
ψ∗

μ0(x3)
∑

n

√
2Me(Eμn − Eμ0)ψμn(x3)ψ∗

μn(x2)(x2 · x3)ψμ0(x2)dx2dx3 =
√

WeZ

W 3
μ (Z − 1)

S 1
2
, (28)

where we introduce the quantity

S1/2 =
∑

n

(
Eμn − Eμ0

Rμ

)1/2

|〈μ0| x
aμ

|μn〉|2, Rμ = 1

2
Mμ(Zα)2. (29)

A contribution to (29) comes from matrix elements for discrete and continuous states, which are presented in [42]. The
numerical contributions of discrete and continuous states to (29) have the form

Sd
1
2

=
∑

n

28n6(n − 1)2n− 9
2

(n + 1)2n+ 9
2

= 1.90 695 . . . , (30)

Sc
1
2

=
∫ ∞

0

28kdk

(k2 + 1)9/2(1 − e− 2π
k )

∣∣∣∣
(

1 + ik

1 − ik

)i/k∣∣∣∣ = 1.03 111 . . . . (31)

Adding the recoil corrections (23) and (24) in the second order of perturbation theory, we get the total recoil correction to b
of the order of α4 as follows:

b1 = νF
(1 + κμ)

(Z − 1)

[
− 3

We

Wμ

+ 231W 2
e

32W 2
μ

− 4W 2
e

W 2
μ

ln
2We

Wμ

+ 4We

3Wμ

√
WeZ

Wμ(Z − 1)
S1/2

]
. (32)

In the second order of perturbation theory, we have a similar contribution to the coefficient c. To calculate it, it is necessary to
choose the hyperfine part of the perturbation operator in the form �Hhfs

0 (xe) = 2πα
3

gegN

memp
δ(xe) in a general expression like (24).

Using then the obvious simplifications connected with the δ function, one can transform the recoil correction to c as follows:

c1 = 4πα

3

gegN

memp

∫
ψ∗

e0(0)G̃e(0, x1)Vμ(x1)ψe0(x1)dx1. (33)

The reduced Coulomb Green’s function of an electron with one zero argument in this equation is equal to

G̃e(0, x) =
∞∑

n �=0

ψen(0)ψ∗
en(x)

Ee0 − Een
= −WeMe

π
e−Wex

[
1

2Wex
− ln 2Wex + 5

2
− C − Wex

]
. (34)

As a result of the analytical calculation of matrix elements over coordinate variables, we get a contribution to the coefficient c.
It can be presented in the form of an expansion in We/Wμ,

c1 = c0
2

(Z − 1)

[
3We

2Wμ

+ 2
W 2

e

W 2
μ

(
1

4
− ln

We

Wμ

)]
. (35)

Numerical values of contribution (35) for various muon-electron ions are presented in Table I.

IV. EFFECTS OF VACUUM POLARIZATION

Among other corrections in the energy spectrum of muonic atoms and ions, corrections of vacuum polarization [43,44] stand
out. The one-loop vacuum polarization, which is taken into account in this paper, gives a fifth-order contribution in α to the HFS.
The corresponding interaction amplitudes in the first and second orders of the perturbation theory are shown schematically in
Figs. 2 and 3.

The correction for vacuum polarization in the first-order perturbation theory is related to the modification of the hyperfine
part of the Hamiltonian (7) [see Fig. 2(a)], which has the following form in the case of muon-electron and electron-nuclear
interactions:

�V hfs
vp,eμ(xeμ) = −2αgegμ

3memμ

(Se · Sμ)
α

3π

∫ ∞

1
ρ(ξ )dξ

[
πδ(xeμ) − m2

eξ
2

xeμ
e−2meξxeμ

]
, (36)

�V hfs
vp,eN (xe) = 2αgegN

3memp
(Se · I)

α

3π

∫ ∞

1
ρ(ξ )dξ

[
πδ(xe) − m2

eξ
2

xe
e−2meξxe

]
, (37)

ρ(ξ ) =
√

ξ 2 − 1(2ξ 2 + 1)

ξ 4
. (38)
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G̃

(a) (b)

FIG. 2. Correction of vacuum polarization. Dashed line denotes the contribution of the Coulomb photon. The wavy line denotes the
hyperfine part of the Breit potential. G̃ denotes the reduced Coulomb Green’s function.

The matrix element of the potential (36) with wave functions (6) gives the contribution to coefficient b,

bvp = 8α2

9memμ

W 3
e W 3

μ

π3

∫ ∞

1
ρ(ξ )dξ

∫
dxe

∫
dxμe−2Wμxμe−2Wexe ×

[
πδ(xμ − xe) − m2

eξ
2

|xμ − xe|e−2meξ |xμ−xe|
]
. (39)

Both integrals over coordinates of the muon and electron in (39) can be calculated analytically,

I1 =
∫

dxe

∫
dxμe−2Wμxμe−2Wexeπδ(xμ − xe) = π2

W 3
μ

(
1 + We

Wμ

)3 , (40)

I2 =
∫

dxe

∫
dxμe−2Wμxμe−2Wexe

m2
eξ

2

|xμ − xe|e−2meξ |xμ−xe|

= π2m2
eξ

2

W 5
μ

[
W 2

e
W 2

μ
+ (

1 + meξ

Wμ

)2 + We
Wμ

(
3 + 2meξ

Wμ

)]
(
1 + We

Wμ

)3(
1 + meξ

Wμ

)2(We
Wμ

+ meξ

Wμ

)2 . (41)

Separately integrals over the spectral parameter ξ in (40) and (41) are divergent. But their sum is finite and can be presented as
follows:

bvp = νF
αWe

3πWμ

(
1 + We

Wμ

)3

∫ ∞

1
ρ(ξ )dξ

[We
Wμ

+ 2 meξ

Wμ

We
Wμ

+ meξ

Wμ

(
2 + meξ

Wμ

)]
(
1 + meξ

Wμ

)2(We
Wμ

+ meξ

Wμ

)2 . (42)

The order of contribution (42) is determined by two small parameters α and We/Wμ. The correction bvp has the fifth order in
α and the first order in We/Wμ. The integration over ξ in (42) is done numerically. The result is presented in Table I.

The contribution of the muon vacuum polarization is much smaller than (42) and is not taken into account when obtaining
the total numerical value of the hyperfine splitting. We also neglect the contribution of two-loop vacuum polarization, which is
suppressed by an additional factor α/π .

The contribution of the correction of one-loop vacuum polarization to the coefficient c has the order α6. It can be calculated
in the same way using potential (37) (α1 = We/me). After integration over all variables, including ξ , we obtain

cvp = νF
αgN mμ

6πmp

√
1 − α2

1 (6α1 + α3
1 − 3π ) + (6 − 3α2

1 + 6α4
1 ) arccos α1

3α3
1

√
1 − α2

1

. (43)

G̃

FIG. 3. Effects of vacuum polarization in second order of perturbation theory. Dashed line denotes the potential �H (3). The wavy line
denotes the hyperfine part of the Breit potential.
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When calculating corrections in the second-order perturbation theory, it is necessary to use the following expressions for the
Coulomb potentials as one of the perturbation operators, taking into account the vacuum polarization effect [45–47]:

�V eN
vp (xe) = α

3π

∫ ∞

1
ρ(ξ )

(
−Zα

xe

)
e−2meξxe dξ, (44)

�V μN
vp (xμ) = α

3π

∫ ∞

1
ρ(ξ )

(
−Zα

xμ

)
e−2meξxμdξ, (45)

�V eμ
vp (|xe − xμ|) = α

3π

∫ ∞

1
ρ(ξ )

α

xeμ
e−2meξxeμdξ, (46)

where xeμ = |xe − xμ|.
The original integral expression for the contribution to b from the electron-nuclear potential (44) in second-order perturbation

theory has the form

beN
vp, sopt = 4παgegμ

3memμ

∫
dx1

∫
dx2

∫
dx3

α

3π

∫ ∞

1
ρ(ξ )dξψ∗

μ0(x3)ψ∗
e0(x3)

×
∞∑

n,n′ �=0

ψμn(x3)ψen′ (x3)ψ∗
μn(x2)ψ∗

en′ (x1)

Eμ0 + Ee0 − Eμn − Een′

(
−Zα

x1

)
e−2meξx1ψμ0(x2)ψe0(x1), (47)

where the subscript “sopt” is used to denote the second-order perturbation theory contribution. The summation in (47) is
performed over the entire set of electron and muon states, excluding the state with n, n′ = 0. Using the orthogonality of muon
wave functions, the correction (47) can be represented in integral form,

beN
vp, sopt = νF

Zαa2
2

3(Z − 1)π

∫ ∞

1
ρ(ξ )dξ

∫ ∞

0
x2

3dx3

∫ ∞

0
x1dx1e−γ1(1+γ3 )x1 e−x3(1+γ1 )

×
[ 1

γ1x>

− ln (γ1x<) − ln (γ1x>) + Ei(γ1x<) + 7

2
− 2C − γ1

2
(x1 + x3)

+ 1 − eγ1x<

γ1x<

]
= νF

Zα

3(Z − 1)π (1 + γ1)4

∫ ∞

1

ρ(ξ )dξ

(1 + γ3)3(1 + γ3γ1 + γ1)2

×
{

3 + γ3(7 + 2γ3) + γ1{6 + γ3[20 + γ3(13 + γ3)]} + (1 + γ3)[3 + 2γ3(5 + 2γ3)]γ 2
1

+ 2(1 + γ3)(1 + γ1)(1 + γ1 + γ3γ1) ln

[
1 − γ3

(1 + γ3)(1 + γ1)

]}
, γ3 = meξ

We
, γ1 = We

Wμ

. (48)

The integration over particle coordinates is carried out analytically. The integration over ξ is done numerically. Numerical
results are presented in Table I.

A similar calculation can be performed in the case of a potential with muon-nuclear vacuum polarization (45). The electron
remains in the 1S state, and the reduced Coulomb Green’s function of the system is transformed into the muon Green’s function.
In this case, the correction to the coefficient b can be represented as an integral,

bμN
vp,sopt = νF

α

3π

∫ ∞

1

ρ(ξ )dξ

(γ3 + 1)3(γ1 + 1)4(γ3 + γ1 + 1)2

[
γ1
{
γ 3

3 (γ1 + 4) + γ 2
3 [γ1(2γ1 + 13) + 14]

+ γ3(γ1 + 1)(7γ1 + 13) + 3(γ1 + 1)2
} + 2(γ3 + 1)(γ1 + 1)(γ3 + γ1 + 1)2 ln

(γ3 + 1)(γ1 + 1)

(γ3 + γ1 + 1)

]
. (49)

The second-order perturbation theory correction to b, which is determined by the potential (36), turns out to be the most
difficult to calculate. In this case, it is necessary to take into account intermediate excited states for both the electron and the
muon. We break this contribution into two parts. The first part, in which the muon is in the 1S intermediate state, has the form

bμe
vp,sopt (n = 0) = 256α2W 3

e W 3
μ

9πmemμ

∫ ∞

0
x2

3dx3e−(We+2Wμ )x3 ×
∫ ∞

0
x2

1dx1e−Wex1

∫ ∞

1
ρ(ξ )dξ�Vvp,μ(x1)Ge(x1, x3), (50)

where function Vvp,μ(x1) is

�Vvp,μ(x1) = W 3
μ

π

∫
dx2e−2Wμx2

α

|x1 − x2|e−2meξ |x1−x2|

= αW 3
μ

x1(W 2
μ − m2

eξ
2)2

[
Wμ

(
e−2meξx1 − e−2Wμx1

) + x1
(
m2

eξ
2 − W 2

μ

)
e−2Wμx1

]
. (51)
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Substituting (51) into (50) and integrating over particle coordinates, we get

bμe
vp,sopt (n = 0) = −νF

αγ1

3π (Z − 1)(1 + γ1)4

∫ ∞

1

ρ(ξ )dξ(
1 − γ 2

3

)2

{
−6

( − 1 + γ 2
3

)
(1 + γ1)3

+
( − 6 + 11γ 2

3

)
(1 + γ1)2

−
(
1 + 7γ 2

3

)
(1 + γ1)

+
( − 1 + γ 2

3

)
(2 + γ1)3

+
(
3 − 4γ 2

3

)
(2 + γ1)2

+
( − 2 + 7γ 2

3

)
(2 + γ1)

+ 2(−1 + γ3)γ 2
3

(γ3 + γ1)3
− γ3[−1 + γ3(5 + γ3)]

(γ3 + γ1)2

+ 3 + 5γ 2
3

(γ3 + γ1)
+ γ 3

3

(1 + γ3 + γ1)2
− 5γ 2

3

1 + γ3 + γ1
+ 2γ1

( − 2 + γ 2
3 − γ1

)
(1 + γ1)2

ln
1 + γ1

2 + γ1
+ 2γ1

(γ3 + γ1)2
ln

γ3 + γ1

1 + γ3 + γ1

+ 2γ1

(1 + γ1)2(γ3 + γ1)2

[
−(−1 + γ3)2(1 + γ 2

3 + 2γ3(1 + γ1) + γ1(3 + γ1)) ln
γ1

1 + γ1

]}
. (52)

The integration over the parameter ξ is performed numerically. The second part of the correction under consideration to b can
initially be represented as

bμe
vp,sopt (n �= 0) = −4α2

9π

gegμ

memμ

∫
dx3

∫
dx2

∫ ∞

1
ρ(ξ )dξψ∗

μ0(x3)ψ∗
e0(x3)

×
∑
n �=0

ψμn(x3)ψ∗
μn(x2)

Me

2π

e−β|x3−x1|

|x3 − x1|
α

|x2 − x1|e−2meξ |x2−x1|ψμ0(x2)ψe0(x1), (53)

where, as before, the exact electron Coulomb Green’s function is replaced by the free one. Replacing also the electronic wave
functions with their values at zero, we thus neglect the same recoil corrections and can perform analytical integration over x1,

J =
∫

dx1
e−β|x3−x1|

|x3 − x1|
e−2meξ |x2−x1|

|x2 − x1| = − 4π

|x3 − x2|
1

β2 − 4m2
eξ

2

[
e−β|x3−x2| − e−2meξ |x3−x2|]

= 2π

[
(1 − e−2meξ |x3−x2|)

2m2
eξ

2|x3 − x2| − β

2m2
eξ

2
+ (1 − e−2meξ |x3−x2|)β2

8m4
eξ

4|x3 − x2| + β2|x3 − x2|
4m2

eξ
2

− β3

8m4
eξ

4
− β3(x3 − x1)2

12m2
eξ

2
+ · · ·

]
, (54)

where, after an integration, the expansion in β|x3 − x2| is
used. For further transformations, it is convenient to use the
completeness condition,∑

n �=0

ψμn(x3)ψ∗
μn(x2) = δ(x3 − x2) − ψμ0(x3)ψ∗

μ0(x2). (55)

The second and fifth terms in this expansion do not con-
tribute due to the orthogonality of the muon wave functions.
The first term in square brackets gives the main contribution
with respect to α and We/Wμ (γ = meξ/Wμ), which can be
split into two parts according to (55),

bμe
vp,sopt (n �= 0) = bvp,1 + bvp,2, bvp,1 = −3α2Me

8me
νF , (56)

bvp,2 = νF
α2Me

24πme

∫ ∞

1

ρ(ξ )dξ

ξ

{16 + γ [5γ (γ + 4) + 29]}
(1 + γ )4

.

(57)

The total numerical value bvp,1 + bvp,2 is included in Table I.
Other terms in (53) are calculated as well. With the fourth

term in (53), which is proportional to β2 = 2Me(Eμn − Eμ0),
we can do a number of transformations:

∞∑
n=0

Eμn

∫
dx2

∫
dx3ψ

∗
μ0(x2)ψμn(x3)ψ∗

μn(x2)|x3−x2|ψμ0(x2)

=
∫

dx2

∫
dx3δ(x3 − x2)

[
− ∇2

3

2Mμ

|x3 − x2|ψ∗
μ0(x3)

]
ψμ0(x2).

(58)

The expression (58) is divergent due to the δ function. The
same divergence take place in another term with β2 in square
brackets in (53). But their sum gives a finite result,

bβ2 = νF
9αW 2

e

32meWμ

(
1 + 5

72

W 2
μ

m2
e

)
. (59)

Numerically, this correction is significantly smaller than the
leading-order term in (53). Other terms in (53) can be ne-
glected.

The interaction potential (44) does not contain the muon
coordinate. The corresponding contribution to the coefficient
c in the second-order perturbation theory can be obtained
by setting n = 0 for the muon state in the Coulomb Green’s
function. Moreover, the presence of δ(xe) in the perturbation
operator gives the electron Green’s function with one zero
argument. As a result, the contribution to c can be represented
in integral form,

ceN
vp, sopt = νF

αmμgegN

4πmp

∫ ∞

1
ρ(ξ )dξ

× 2γ 2
3 + 3γ3 + 2γ3 ln γ3 − 2

2γ 3
3

. (60)

The vacuum polarization potential in the Coulomb muon-
nuclear (μ − N ) interaction does not contribute to c in the
second-order perturbation theory due to the orthogonality of
the muon wave functions.
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Let us consider the calculation of the correction to c
from the potential (46) in the second-order perturbation
theory. The necessary contribution is determined only by

the intermediate muon state with n = 0 in the Green’s
function. Using (56), this correction can be represented
as

ceμ
vp, sopt = −νF

αmμgNW 2
e

6πmpW 2
μ

∫ ∞

1

ρ(ξ )dξ

(1 − γ 2)2

[
3γ 2γ 2

1

(γ1 + 1)4
− γ 2

(γ1 + 1)2
− 2γ 2γ1

(γ1 + 1)3
+ 2γ 2

1

(γ + γ1)3

− 2

(γ + γ1)
− 3γ1

(γ + γ1)2
− 2γ 2

1

(γ1 + 1)3
− 3γ 2

1

(γ1 + 1)4
+ 2

(γ1 + 1)
+ 3γ1

(γ1 + 1)2
+ 2γ1

(γ1 + 1)3

− 2γ1 ln(γ + γ1)

(γ + γ1)2
+ 2γ1(γ1 + 2 − γ 2) ln(γ1 + 1)

(γ1 + 1)3
+ 2(γ − 1)2γ1[γ 2 + 2γ (γ1 + 1) + γ 2

1 + 3γ1 + 1] ln γ1

(γ1 + 1)3(γ + γ1)2

]
.

(61)

There is also a second-order contribution of perturbation theory to the HFS, in which one of the perturbation potentials is
determined by (36) and (37) (see Fig. 3), and the second is equal to �H . Dividing the correction in the hyperfine structure into
two parts, we first calculate the part with n = 0 for the muon ground state. The second part with n �= 0 contains excited muon
states. In turn, the term with n = 0 can also be divided into two parts, and the first part with the δ function in (36) gives the
following contribution to b:

b(1)
vp, sopt (n = 0) = νF

α

3π

∫ ∞

1
ρ(ξ )dξ

11We

16Wμ

. (62)

The integral over the spectral parameter ξ is divergent, so we must consider the second term in the potential (36), whose
contribution to b will be given by

b(2)
vp, sopt (n = 0) = 16α2m2

e

9πmemμ

∫ ∞

1
ρ(ξ )ξ 2dξ

∫
dx3ψe0(x3)�V1(x3) ×

∫ ∑
n′ �=0

ψen′ (x3)ψ∗
en′ (x1)

Ee0 − Een′
�V2(x1)ψe0(x1)dx1, (63)

where �V1(x3) is defined by (51) and �V2(x1) (21). Integrating into (63) over all coordinates, we get the following result in
leading order in (We/Wμ):

b(2)
vp, sopt (n = 0) = −νF

αme

We

W 2
e

48πW 2
μ

∫ ∞

1
ρ(ξ )ξdξ

32 + 63γ + 44γ 2 + 11γ 3

(1 + γ )4
. (64)

This integral also diverges for large values of ξ . But the sum of the integrals (62) and (64) is finite,

b(1)
vp, sopt (n = 0) + b(2)

vp, sopt (n = 0) = νF
αWe

48πWμ

∫ ∞

1
ρ(ξ )dξ

11 + 12γ + 3γ 2

(1 + γ )4
. (65)

Let us proceed to the calculation of terms to b with n �= 0. The δ term in the potential (36) gives the following contribution:

b(1)
vp, sopt (n �= 0) = νF

α

3π

∫ ∞

1
ρ(ξ )dξ

(
− 35We

16Wμ

)
. (66)

The second term in the potential (36) can be simplified by replacing the exact Green’s function of the electron with the free one,

b(2)
vp, sopt (n �= 0) = −16α3Mem2

e

9πmemμ

∫ ∞

1
ρ(ξ )ξ 2dξ

∫
dx2

∫
dx3

×
∫

dx4ψ
∗
μ0(x4)

e−2meξ |x3−x4|

|x3 − x4|
∞∑

n �=0

ψμn(x4)ψμn(x2)|x3 − x2|ψμ0(x2). (67)

As a result of analytical integration in (67), we get

b(2)
vp, sopt (n �= 0) = −νF

αWe

3πWμ

∫ ∞

1
ρ(ξ )dξ

[
1

γ
− 1

(1 + γ )4

(
4 + 1

γ
+ 10γ + 215γ 2

16
+ 35γ 3

4
+ 35γ 4

16

)]
. (68)

The sum of the contributions (66) and (68) is reduced to

b(1)
vp, sopt (n �= 0) + b(2)

vp, sopt (n �= 0) = −νF
αWe

3πWμ

∫ ∞

1
ρ(ξ )dξ

35 + 76γ + 59γ 2 + 16γ 3

16(1 + γ )4
. (69)

Although the absolute values of the calculated vacuum polarization corrections (42), (48), (49), (52), (56), (65), and (69) are
sufficient large, the total contribution is small since the signs of these corrections are different (see Table I).
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(a) (b) (c)

FIG. 4. Nuclear structure correction to the coefficient c in the 1γ interaction. The bold dot in the diagram represents the nucleus vertex
operator. The wavy line denotes the hyperfine part of the Breit potential.

The hyperfine interaction (36) contributes to the coefficient c in the second-order perturbation theory. Since the muon
coordinate is not included in (36), we immediately set n = 0 for muon intermediate states in the Green’s function. Then the
original formula for this correction is

cvp, sopt = 8α3gN

9πmemp

∫ ∞

1
ρ(ξ )dξ

∫
dx1

∫
dx3

∫
dx4|ψμ0(x3)|2ψ∗

e0(x4)ψe0(x1)

×
[

1

|x3 − x4| − 1

x4

]
Ge(x4, x1)

(
πδ(x1) − m2

eξ
2

x1
e−2meξx1

)
. (70)

After analytical integration over x3 as in (21), we split (70)
into two parts. The coordinate integration with the δ function
is done using (34). In the second term (70), we again use the
electronic Green’s function in the form (26). The sum of these
two terms can be expressed in leading order We/Wμ in integral
form,

cvp, sopt = νF
αgN mμWe

12πmpWμ

∫ ∞

1
ρ(ξ )dξ

3 + 2 meξ

Wμ(
1 + meξ

Wμ

)2 . (71)

V. NUCLEAR STRUCTURE AND RECOIL CORRECTION

Another class of corrections in the hyperfine structure of
muon-electron ions, which is calculated in this work to in-
crease the calculation accuracy, is determined by the effects
of the structure and recoil of the nucleus [48]. We describe
the distribution of the charge and magnetic moment of nuclei
using the form factors GE (k2) and GM (k2) in the framework
of a simple dipole model,

GE (k2) = 1(
1 + k2

�2

)2 , GM (k2) = G(0)(
1 + k2

�2

)2 ,

G(0) = gN
mN

Zmp
, (72)

where the parameter � is related to the nuclear charge radius
rN : � = √

12/rN . In the 1γ interaction, the correction for
the nuclear structure to the coefficient c is determined by
the interaction amplitude shown in Fig. 4. The point kernel
contribution in Fig. 4(b) leads to the hyperfine splitting (13).
Then the correction for the nuclear structure is determined by
the formula

cstr, 1γ = −νF
gegN mμ

4mp

( 2We
�

)3 + 3
( 2We

�

)2 + 3 2We
�(

1 + 2We
�

)3 . (73)

The two-photon amplitudes of the electron-nucleus
(e − N ) interaction (see Fig. 5) contribute to a hyperfine split-
ting of the order of α5. It can be represented in integral form
in terms of the GE and GM form factors, taking into account
the subtractive term [48],

cstr, 2γ = νF
3αMemμgegN

2π2mp

∫
dp
p4

GM (p)

GM (0)
[GE (p) − 1]

= −νF
11ZαMem1gegN

16mp�
, (74)

where the subtractive term contains the magnetic form fac-
tor GM (p). Integration in (74) is performed using the dipole
parametrization (72). Other parts of the iterative term 〈V1γ ×
G f × V1γ 〉hfs

str are used in the second-order perturbation theory
(see Fig. 6).

In the second-order perturbation theory, there are two more
types of nuclear structure corrections to the coefficient c,
shown in Fig. 6. The first contribution is determined by the
amplitudes shown schematically in Figs. 6(a) and 6(b), when
the hyperfine part of the perturbation operator is determined
by the form factor GM , and the second perturbation operator
is expressed in terms of the nucleus charge radius rN [45],

�V C
str,eN (r) = 2

3
πZαr2

Nδ(r). (75)

This correction is determined by the following integral expres-
sion and can be calculated analytically as follows:
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+ − Gf

(a) (b) (c)

FIG. 5. Nuclear structure correction to the coefficient c from 2γ interactions. The bold dot in the diagram represents the nucleus vertex
operator. The wavy line denotes the hyperfine part of the Breit potential. The dotted line corresponds to the Coulomb interaction.

ceN
1,str, sopt = −νF

Zr2
NW 2

e gegN mμ

12mp

∫ ∞

0
x2dxe−x(1+ 2We

� )
(

− ln γ1x + 5

2
− C − 1

2
γ1x

)

= −νF
Zr2

NW 2
e gegN mμ

12mp

[
2 − 2We

�
+ 4

(
1 + 2We

�

)
arccth

(
1 + 4We

�

)]
(
1 + 2We

�

)4 . (76)

Numerically, this contribution ceN
1,str, sopt is proportional to the square of the charge radius of the nuclei for which the following

values are used: r(7
3Li) = 2.4440 ± 0.0420 fm, r(9

4Be) = 2.5190 ± 0.0120 fm, r(11
5 B) = 2.4060 ± 0.0294 fm [49].

The correction for the nuclear structure of the second type from the interaction amplitudes in Figs. 6(c) and 6(d) is calculated
using the potential �H (2) and the nucleus magnetic form factor. In the case of the amplitude in Fig. 6(c), one can perform
integration over the muon coordinate in the muon state with n = 0 and over the electron coordinate. After subtracting the point
contribution c1, we obtain

ceN
2,str, sopt = c0

4We

(Z − 1)�

{
−3

2
+ 2Wμ

�
− 3

2

(
2Wμ

�

)3

+ We

Wμ

[
−9

2
+ 10Wμ

�
− 25

6

(
2Wμ

�

)2]}
. (77)

There is a nucleus structure contribution to b in the second-order perturbation theory, which is shown in Fig. 7. For the
Coulomb muon-nucleus interaction, this correction has the form

bμN
str,sopt = 32π2α2

3memμ

r2
N

1√
π

(Wμ)3/2
∫

dx3ψ
∗
μ0(x3)|ψe0(x3)|2Gμ(x3, 0, Eμ0)

= −νF
8

3
W 2

μ r2
N

(
3We

2Wμ

− 11

2

W 2
e

W 2
μ

+ · · ·
)

, (78)

where the integration result is represented as an expansion in We/Wμ.
A structurally similar contribution to b arises from the electron-nuclear interaction. It is defined by the following expression:

beN
str,sopt = 32π2α2

3memμ

r2
N

∫
dx1

∫
dx3|ψ∗

μ0(x3)|2ψe0(x3)Ge(x3, x1, Ee0)ψe0(x1)δ(x1)

= −νF
2WeWμr2

N

(Z − 1)

[
1 − 2We

Wμ

ln
We

Wμ

+ W 2
e

W 2
μ

(
6 ln

We

Wμ

− 4

)
+ · · ·

]
. (79)

The total nucleus structure correction to b, which is equal to
the sum of (78) and (79), is included in Table I.

Since the masses of particles in this three-particle system
differ greatly from each other, various corrections for recoil
appear in the calculation of the hyperfine structure, which are
determined by the ratio of the masses of the particles. Many
of the corrections have already been discussed above in the
previous sections. The interaction operator in a three-particle
system is constructed by us as the sum of pair interactions that
were studied earlier when calculating the fine and hyperfine
structures of hydrogenlike atoms [46,50–53]. The two-photon
electron-muon exchange interaction shown in Fig. 8 gives a

large recoil correction, which is studied in quantum electro-
dynamics in [46,54]. The electron-muon interaction operator
is defined as follows:

�V hfs
rec,μe(xμe) = −8

α2

m2
μ − m2

e

ln
mμ

me
(SμSe)δ(xμe). (80)

After averaging the potential (80) over the wave functions (3),
we obtain the contribution to the coefficient b,

bμe
rec,2γ = νF

3α

π

memμ

m2
μ − m2

e

ln
mμ

me

1(
1 + We

Wμ

)3 . (81)
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− −+G̃ Gf G̃ G̃

(a) (b) (d)(c)

FIG. 6. Nuclear structure correction to the coefficient c in the second order of perturbation theory. The bold dot in the diagram represents
the nucleus vertex operator. The wavy line denotes the hyperfine part of the Breit potential. The dotted line corresponds to the Coulomb
interaction. G̃ is the reduced Coulomb Green’s function.

A similar electron-nucleus 2γ interaction contributes to the
coefficient c. In the case of muonic lithium, beryllium, and
boron ions, it was studied in [55]. Using the results of [55] [see
Eq. (25)], we represent the contribution to c by the following
formula:

ceN
rec,2γ = −c0

4Zαme

πm2
ln

m2

me
. (82)

Compared to the main contribution c0, this correction contains
two small parameters α and me/mμ, but its numerical value
slightly increases the accuracy of the result (see Table I).

There are also other three-particle two-photon interactions
between particles in muon-electron ions. So, for example, one
photon can give a hyperfine interaction between an electron
and a muon, and the second can give the Coulomb interac-
tion between an electron and a nucleus (or between a muon
and a nucleus). Assuming that such three-particle amplitudes
contribute less to the HFS, we include them in the theoretical
calculation error.

Let us consider one more correction for nuclear recoil,
which is determined by the Hamiltonian �Hrec (4). The con-
tribution of �Hrec in the second-order perturbation theory
to c is equal to 0, and to the coefficient b it is nonzero
and is determined by the electron and muon intermediate
P-states,

�brec,sopt = −32πα3MeMμ

memμMLi

∫
dx3

∫
dx2

∫
dx1�

∗
μ0(x3)�∗

e0(x3)

×
∑

n,n′ �=0

�μn(x3)�en′ (x3)�∗
μn(x2)�∗

en′ (x1)

Eμ0 + Ee0 − Eμn − Een′
(n1 · n2)�μ0(x2)�e0(x1), (83)

where n1, n2 are unit vectors in coordinate space.
For the analytical calculation (82), we replace the electron Green’s function with the free one, as in Sec. II,

�brec,sopt = 16α3M2
e Mμ

memμMLi

∫
dx3

∫
dx2

∫
dx1�

∗
μ0(x3)�∗

e0(x3)

×
∑
n �=0

�μn(x3)�∗
μn(x2)

e−b|x3−x1|

|x3 − x1| (n1 · n2)�μ0(x2)�e0(x1). (84)

After that, we integrate over x1 and expand the result over b (or, which is the same, over
√

Me/Mμ),∫
dx1(n1 · n2)

e−b|x3−x1|

|x3 − x1| = 2π (n2 · n3)

[
4x3

3b
− x2

3

2
+ 2bx3

3

15
+ · · ·

]
. (85)

After that, we take the first term in square brackets (84), perform the integration over the angular variables, and introduce
dimensionless variables in the integrals with radial functions,

δbrec,sopt = νF
64Me

9MLi

√
Me

Mμ

∑
n>1

n√
n2 − 1

∫ ∞

0
x3

3R10(x3)Rn1(x3)dx3

∫ ∞

0
x2

2R10(x2)Rn1(x2)dx2. (86)

Two contributions from discrete and continuous spectra in
(85) have the form

δb(1)d
rec,sopt = νF

211Me

9MLi

√
Me

Mμ

∑
n>1

n6(n − 1)2n− 9
2

(n + 1)2n+ 9
2

, (87)

δb(1)c
rec,sopt = νF

211Me

9MLi

√
Me

Mμ

∫ ∞

0

ke− 4
k arctg(k)dk

(1 − e−2π/k )(k2 + 1)3/2
.

(88)
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G̃

FIG. 7. Correction to the nucleus structure to b in the second-
order perturbation theory. The wavy line denotes the hyperfine
(e − μ) interaction. G̃ is the reduced Coulomb Green’s function.

The calculation of the second expansion term in (84) gives the
following result:

δb(2)
rec,sopt = −νF

WeMe

WμMLi
, (89)

which is two orders of magnitude smaller than (86) and (87).

VI. ELECTRON VERTEX CORRECTION

The main contribution of the order of α4 to the hyperfine
structure (the coefficient b) is determined by the interaction
operator (7), as discussed in Sec. II. Among different correc-
tions to (7), there is a correction determined by the electron
vertex function, which is shown in Fig. 9(a). To calculate this

(a) (b)

FIG. 8. Two-photon exchange amplitudes of the electron-muon
hyperfine interaction.

contribution, it is first convenient to write it in the momentum
representation,

�V hfs
vert (k

2) = − 8α2

3memμ

[
G(e)

M (k2) − 1
]
(SeSμ), (90)

where G(e)
M (k2) is the magnetic form factor of the electron, and

the factor α/π is separated from the factor [G(e)
M (k2) − 1] for

convenience. The commonly used approximation, when the
magnetic form factor is approximately replaced by its value
at zero, G(e)

M (k2) ≈ G(e)
M (0) = 1 + κe, is not applicable in this

case. Since the typical momentum of an exchange photon is
k ∼ αMμ, we cannot neglect it in G(e)

M (k2) as compared to the
electron mass me. Therefore, it is necessary to use the exact
expression for the Pauli form factor g(k2) [G(e)

M (k2) − 1 ≈
g(k2)] [47].

Using the Fourier transform of the potential (90) and av-
eraging it over the wave functions (6), one can represent the
electron vertex correction in the HFS as an integral,

bvert, 1γ = νF
α(1 + κμ)m3

eWe

2π2W 4
μ

∫ ∞

0
g(k2)k2dk ×

{[
1 +

(
me

2Wμ

)2

k2

]2[(
We

Wμ

)2

+
(

me

2Wμ

)2

k2

]2}−1

. (91)

The contribution (91) is of the order of O(α5Me/Mμ). The numerical value (91) is obtained after integration over k with a
one-loop expression for the form factor g(k2) [47] (see the results in Table I). Using g(k2 = 0), we obtain the values of the
electron vertex corrections: 41.6139 MHz (μeLi), 140.2879 MHz (μeBe), 332.3111 MHz (μeB), which differ from (91) by
approximately 2.5%.

The contribution of the potential (90) to b in the second-order perturbation theory is shown in Fig. 9(b). In this case, the
second perturbation potential is determined by �H (3) (dotted line in the diagram). Let us divide the total contribution of the
amplitude in Fig. 9(b) into two parts, which correspond to the muon in the ground state (n = 0) and the muon in the excited

G̃

(a) (b)

FIG. 9. Electron vertex correction in the first and second orders of perturbation theory. The Coulomb photon is represented by a dotted
line. The wavy line represents the hyperfine part of the Breit potential. G̃ is the reduced Coulomb Green’s function.
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intermediate state (n �= 0). The first contribution with n = 0 becomes equal to

bvert, sopt (n = 0) = 8α2

3π2memμ

∫ ∞

0
k
[
G(e)

M (k2) − 1
]
dk

∫
dx1

∫
dx3ψe0(x3) × �Ṽ1(k, x3)Ge(x1, x3)Vμ(x1)ψe0(x1), (92)

where Vμ(x1) is determined by (21), and

�Ṽ1(k, x3) =
∫

dx4ψ
∗
μ0(x4)

sin(k|x3 − x4|)
|x3 − x4| ψμ0(x4) = sin(kx3)

x3

1[
1 + k2

(2Wμ )2

]2 . (93)

After substituting the electron Green’s function (30) into (92), we reduce this expression to an integral form,

bvert, sopt (n = 0) = νF
α

2π2

(
me

Wμ

)2(We

Wμ

)2 ∫ ∞

0

k
[
G(e)

M (k2) − 1
]
dk[

1 + m2
e k2

(2Wμ )2

]2

×
∫ ∞

0
x3e− We

Wμ
x3 sin

(
mek

2Wμ

x3

)
dx3

∫ ∞

0
x1

(
1 + x1

2

)
e−x1(1+ We

Wμ
)dx1

[
Wμ

Wex>

− ln

(
We

Wμ

x<

)

− ln

(
We

Wμ

x>

)
+ Ei

(
We

Wμ

x<

)
+ 7

2
− 2C − We

Wμ

(x1 + x3)

2
+ 1 − e

We
Wμ

x<

We
Wμ

x<

]
. (94)

All integrations over the coordinates x1, x3 are performed analytically, and over k numerically. The intermediate expression
before integration over k is omitted since it has a cumbersome form.

The second part of the vertex correction [Fig. 9(b)] with n �= 0 after a series of simplifications can be transformed into

bvert, sopt (n �= 0) = νF
WeW 3

μ

π3(Z − 1)

∫
e−Wμx2 dx2

∫
e−Wex3 dx3

∫
e−Wμx4 dx4

×
∫ ∞

0
k sin(k|x3 − x4|)

[
G(e)

M (k2) − 1
] |x3 − x2|
|x3 − x4| [δ(x4 − x2) − ψμ0(x4)ψμ0(x2)]. (95)

The contributions of the two terms in square brackets (95) will be presented separately after integration over the coordinates
x1 and x3 (γ2 = mek/2Wμ):

b(1)
vert, sopt (n �= 0) = νF

α

2π2

(
me

Wμ

)3 We

(Z − 1)Wμ

∫ ∞

0
k2
[
G(e)

M (k2) − 1
]
dk

1(
γ 2

1 − 1
)3

×
[

4γ1
(
γ 2

1 − 1
)

(
1 + γ 2

2

)3 − γ1
(
3 + γ 2

1

)
(
1 + γ 2

2

)2 + 4γ 2
1

(
γ 2

1 − 1
)

(
γ 2

1 + γ 2
2

)3 + 1 + 3γ 2
1(

γ 2
1 + γ 2

2

)2

]
, (96)

b(2)
vert, sopt (n �= 0) = −νF

α

2π2

(
me

Wμ

)3 We

(Z − 1)Wμ

∫ ∞

0
k2[G(e)

M (k2) − 1
]
dk

× 1(
1 + γ 2

2

)2

{
2(

γ 2
1 + γ 2

2

) − (γ1 + 1)

[(1 + γ1)2 + γ 2
2 ]2

− 2

(γ1 + 1)2 + γ 2
2

− γ 2
2 − 3γ 2

1(
γ 2

1 + γ 2
2

)3

}
. (97)

Note that the theoretical error in the sum of contributions
b(1)

vert, sopt (n �= 0) + b(2)
vert, sopt (n �= 0) is determined by the factor√

Me/Mμ connected with the omitted terms in the expansion
of the form (27). It can be about 10% of the total (96) and (97)
result, which is represented by a separate line in Table I.

The considered electron vertex corrections in hyperfine
splitting are of the order of α5. The total value of the re-
sulting vertex contribution (see Table I) differs from the
above values in the approximation when the form factor
g(k2) is replaced by the anomalous magnetic moment of
the electron.

VII. CONCLUSION

In this paper, we calculate the intervals of the hyper-
fine structure of the ground state for muon-electron ions of
lithium, beryllium, boron, and helium using the perturbation
theory method formulated earlier for muonic helium ions in
Refs. [31,32]. To increase the accuracy of the calculations,
we took into account corrections in the hyperfine structure
of orders α5 and α6, connected with the effects of vacuum
polarization, the nucleus structure and recoil, and electron
vertex corrections. All obtained numerical results are pre-
sented in Table I. It specifies the correction values for lithium,
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beryllium, and boron ions with an accuracy of two decimal
places, and for muonic helium with an accuracy of four dec-
imal places. This is due to the increase in the total value of
contributions due to the nuclear charge Z during the transition
from muon-electron helium to boron.

Let us note the main features of the performed calculations:
(1) Muon-electron ions of lithium, beryllium, and boron

have a complex hyperfine structure in the ground state, which
arises as a result of the interaction of the magnetic moments
of the nucleus, electron, and muon. We have explored small
intervals of the hyperfine structure that can be measured.

(2) When calculating the HFS, there are small parameters
of the fine-structure constant and the particle mass ratio which
can be used in constructing expansions in perturbation theory.
In this paper, corrections of the order of α4, α5, and α6 are
considered, taking into account the recoil effects of the first
and second orders.

(3) Vacuum polarization effects are of great importance
for achieving high accuracy in the calculation of hyperfine
splitting. They lead to a modification of the two-particle inter-
action potentials, which give corrections of the order of α5 Me

Mμ
.

We take into account the contribution of one-loop vacuum
polarization in the first and second orders of perturbation
theory.

(4) The electron vertex correction to the coefficient b is
obtained taking into account the one-loop expression for the
magnetic form factor of the electron since the characteristic
momentum entering the vertex operator is of the order of the
electron mass.

(5) Corrections for the structure of the nucleus are ex-
pressed both in terms of electromagnetic form factors and in
terms of the charge radius.

(6) Relativistic corrections to the coefficients b and c are
obtained using expressions from [20],

brel =
[

1 + 3

2
(Z − 1)2α)2 − 1

3
(Zα)2

]
νF ,

crel = 3

2
(Z − 1)2α2c0. (98)

(7) To estimate the radiative corrections without recoil of
the order of O(α6) in the HFS, we use the results of analytical
calculations in two-particle atoms [50–53], which give the
following expressions for b and c:

bα2 = α2νF

(
ln 2 − 5

2

)
, cα2 = 1

2
α(Zα)

(
ln 2 − 5

2

)
c0.

(99)
An analysis of individual contributions to the hyperfine-

structure coefficients b and c in Table I shows that relativistic
corrections, corrections for nucleus structure and recoil, vac-
uum polarization, and electron vertex corrections must be
taken into account to achieve good calculation accuracy. The
theoretical uncertainty can be estimated in terms of the Fermi
energy νF and the parameters We and Wμ. The main source
of the theoretical error is determined by recoil corrections
of orders (We/Wμ)2νF , (We/Wμ)5/2 ln(We/Wμ)νF , which are
not always taken into account exactly in the calculations. So,
for muonic helium-3,4, the error is about 0.029 MHz; for
lithium, it is 0.41 MHz; for beryllium, it is 1.74 MHz; and
for boron, it is 4.68 MHz. To obtain this estimate, we add the
two above-mentioned uncertainties in quadrature.

Using the total numerical values for the coef-
ficients b and c presented in Table I, we obtain
the following values for the hyperfine intervals for
lithium, beryllium, and boron (20): �ν1(μe7

3Li) =
13 994.76(41) MHz, �ν1(μe9

4Be) = 85 539.16(1.74) MHz,
�ν1(μe11

5 B) = 123 767.56(4.68) MHz, and �ν2(μe7
3Li) =

21 731.04(41) MHz, �ν2(μe9
4Be) = 35 067.07(1.74) MHz,

�ν2(μe11
5 B) = 162 228.31(4.68) MHz.

In the case of muonic helium, the hyperfine splitting
of the ground state has the form �ν(μe3

2He) = 3
4 (b − c) =

4166.089(29) MHz, �ν(μe4
2He) = 4464.504(29) MHz.

These numerical values agree with the experimental data
(2), taking into account the available theoretical and exper-
imental errors. Our results are also in good agreement with
recent calculations using the variational method in Ref. [56]:
4166.39(58) MHz (μe3

2He), 4464.55(60) MHz (μe4
2He).

Previously, the calculation of hyperfine intervals in the
muonic lithium-7 ion was performed in Refs. [23,24]
within the framework of the variational method. Our re-
sults generally agree with the results [24] on muon-electron
lithium-7: �ν1(μe7

3Li) = 13 989.19 MHz, �ν2(μe7
3Li) =

21 729.22 MHz. A slight difference is due to the inclusion
in our work of corrections for the vacuum polarization and
the structure of the nucleus. In the case of muon-electron
helium, the results [24] of the hyperfine splitting of the
ground state, �ν(μe3

2He) = 4166.383 MHz, �ν(μe4
2He) =

4464.554 MHz, differ from our values by approximately
0.29 MHz (μe3

2He) and 0.05 MHz (μe4
2He).

We performed an analytical calculation of recoil correc-

tions of orders W 2
e

W 2
μ

ln We
Wμ

, W 2
e

W 2
μ

from several sources. As already

noted, in Ref. [31] the recoil corrections (24) were calculated
numerically for muonic helium-4. The sum of (23) and (24)
contributions obtained in Ref. [31] is (−29.65) MHz. In our
work, a similar contribution is determined by the sum of
(−29.8306) MHz and 0.0935 MHz [(A7)] (see Table I) and
is equal to (−29.7371) MHz, which differs from the result
[31] by 0.087 MHz.
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APPENDIX: THE ESTIMATION OF OTHER RECOIL
CONTRIBUTIONS TO THE COEFFICIENT (24)

As noted in Sec. II, the contribution to (24) is calculated
using the approximation of the free Green’s function for the
electron G0

e . The following term G0
eV

CG0
e in the expansion of

the Green’s function contributes to the coefficient b1(n �= 0)
in (24) of the form

b(2)
1 (n �= 0) = − αW 2

e gegμ

3π (Z − 1)mem1
|ψe0(0)|2

∫
ψμ0(x3)dx3

×
∫

ψμ0(x2)dx2

∑
n �=0

ψμn(x3)ψμn(x2)

×
∫

dx
|x|

∫
dx1

|x2 − x1|
e−β|x−x3|

|x − x3|
e−β|x−x1|

|x − x1| . (A1)
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After calculating the integral over x1, we use the expansion
over β|x − x2|, as in (27). The first term 1/β of the expansion
does not contribute due to the orthogonality of the muon

wave functions, while the second term gives the following
correction:

b(2)
1 (n �= 0) = 2αW 2

e gegμ

3(Z − 1)mem1
|ψe0(0)|2

∫
ψμ0(x3)dx3

∫
ψμ0(x2)dx2

×
∑
n �=0

ψμn(x3)ψμn(x2)I (x2, x3), I (x2, x3) =
∫

dx
|x − x2|

|x|
e−β|x−x3|

|x − x3| . (A2)

Let us expand the integral I (x2, x3) into a series for small values of xi
2,

I (x2, x3) = I (0) + xi
2Ii(0) + 1

2
xi

2x j
2Ii j (0), Ii(0) = dI

dxi
2

|xi
2
= 0, Ii j (0) = d2I

dxi
2dx j

2

|xi
2
= 0. (A3)

Using the exact form of I (x2, x3), let us calculate Ii(0), Ii j (0) and obtain

I (x2, x3) = 8π

β2
− (x2x3)

4π

9

[
− 4 + 3C + 3

2
ln

Me

Mμ

+ 3 ln(Wμx3) + 3

2
ln

n2 − 1

n2

]

+ π

6

{
[x2

2 ln(Wμx3) − (x2x3)2

x2
3

[
11 − 9C − 9 ln(Wμx3) − 9

2
ln

Me

Mμ

]}
. (A4)

Separating the terms dependent and independent of n and calculating the corresponding matrix elements in the same way as
in Sec. II, we obtain the following additional correction to the coefficient b1(n �= 0):

b(2)
1 (n �= 0) = −νF

W 2
e

3(Z − 1)W 2
μ

ge

gμ

4

[
7

4
+ 3

2
ln

Me

4Mμ

+ Sd
ln + Sc

ln

]
, (A5)

Sd
ln = 211

∑
n>1

ln
n2 − 1

n2

n7(n − 1)2n−5

(n + 1)2n+5
, Sc

ln = 211
∫ ∞

0
ln(k2 + 1)

kdk

(k2 + 1)5(1 − e− 2π
k )

e− 4
k arctan k . (A6)

The numerical values of the correction (A5) for the considered ions are

b(2)
1 (n �= 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.65 MHz, μe7
3 Li

1.84 MHz, μe9
4 Be

3.71 MHz, μe11
5 B

0.0951 MHz, μe3
2 He

0.0935 MHz, μe4
2 He.

(A7)

They are taken into account when obtaining the total result in Table I.
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