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The relativistic plane-wave Born approximation is applied to the study of inelastic collisions of charged
particles with atoms, by considering atomic wave functions calculated from the independent-electron approx-
imation with the self-consistent Dirac-Hartree-Fock-Slater potential. A database of longitudinal and transverse
generalized oscillator strengths (GOSs) has been computed by using accurate numerical methods for all the
subshells of the ground-state configurations of the elements with atomic numbers from 1 (hydrogen) to 99
(einsteinium). The calculated GOS do not satisfy the Bethe sum rule; departures from the sum rule are in
accordance with previous theoretical estimates. Asymptotic high-energy formulas for the total cross section, the
stopping cross section, and the energy-straggling cross section are derived with proper account of the relativistic
departure from the Bethe sum rule. The shell correction is calculated as the energy-dependent term that, when
added to the asymptotic formula, reproduces the value of the atomic cross section calculated by integrating the
energy-loss differential cross section. Shell corrections to the stopping cross section obtained from the present
approach are presented and compared with previous estimates.
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I. INTRODUCTION

The slowing down of fast charged particles in matter is pri-
marily due to inelastic collisions, i.e., interactions that involve
electronic excitations of the material. The quantum theory of
inelastic collisions was formulated by Bethe [1,2] on the basis
of the relativistic plane-wave Born approximation (PWBA).
The main results of the Bethe theory were reviewed by Inokuti
[3] and collaborators [4]. Fano [5] reformulated the relativis-
tic theory by expressing the electromagnetic interaction in
the Coulomb gauge, which allows separating the contribu-
tions of longitudinal interactions (through the instantaneous
Coulomb potential) and transverse interactions (exchange of
virtual photons), and by introducing the recoil energy Q, de-
fined as the kinetic energy of a free electron with momentum
equal to the momentum transfer. Fano’s formulation leads
to a closed-form expression for the doubly differential cross
section (DDCS) for inelastic collisions, differential in the
energy transfer, W , and the recoil energy, Q. Integration of the
DDCS over recoil energies gives the energy-loss differential
cross section (DCS); the moments of order 0, 1, and 2 of
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the energy-loss DCS are, respectively, the atomic total cross
section, the stopping cross section, and the energy-straggling
cross section. Fundamental results from the Bethe theory are
the asymptotic (high-energy) formulas for these integrated
cross sections.

Bote and Salvat [6] wrote a computer program to calculate
ionization cross sections of inner subshells of neutral atoms
by impact of electrons and positrons using Fano’s formulation
of the PWBA. The states of the target atom are described as
single Slater determinants built with central-field orbitals that
are solutions of the Dirac equation with the self-consistent
Dirac-Hartree-Fock-Slater (DHFS) potential of the ground-
state configuration [7]. Since the interaction of the projectile
and the atomic electrons is considered as a perturbation to
first order, the transition matrix elements reduce to sums of
one-electron integrals, in accordance with the intuitive pic-
ture known as the one-active-electron approximation. The
resulting DDCS is expressed in terms of the longitudinal
generalized oscillator strength (GOS), which summarizes the
response of the target atom to the instantaneous Coulomb
interaction, and a transverse generalized oscillator strength
(TGOS), which accounts for transverse interactions.

Starting from the program of Bote and Salvat [6], we have
developed and assembled a set of computer programs that
perform the complete sequence of calculations leading to the
energy-loss DCS, the integrated cross sections and the shell
corrections. We have run these programs for the subshells
of the ground-state configurations of all the atoms in the
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periodic system, from hydrogen (atomic number Z = 1) to
einsteinium (Z = 99). The calculations involved the genera-
tion of a database of longitudinal and transverse GOSs for
all electron subshells. Since our calculations are based on
the Dirac equation, the calculated longitudinal GOSs do not
satisfy the Bethe sum rule [8,9], which states that the integral
of the longitudinal GOS over W equals the number Z of elec-
trons in the target atom. This sum rule plays a key role in the
derivation of the asymptotic formulas for the integrated cross
sections [5], notwithstanding the fact that it holds only in the
nonrelativistic domain, i.e., for atoms with low atomic num-
bers. Calculation results show that the relativistic departure
decreases with Q, and at Q = 0 it is negligible for hydrogen
and it increases in magnitude with Z to reach a value of about
−2.5% for Z = 99.

The goal of the present work is not to compute re-
alistic total cross sections and stopping powers, because
the independent-electron model and the DHFS potential are
too simplistic to reproduce the details of the actual exci-
tation spectrum of isolated atoms. Indeed, our framework
(PWBA with DHFS potential) provides reliable results only
for the ionization of inner-electron subshells by impact of
high-energy charged particles, mostly because the relevant
one-electron wave functions are practically unaffected by the
existence of neighbor atoms. Nevertheless, it allows the nu-
merical calculation of theoretical GOSs to very high accuracy
(including contributions from excitations to bound levels),
from which energy-loss DCSs can be obtained by numerical
integration of the DDCS.

We present a derivation of asymptotic formulas for the
total cross section, the stopping cross section, and the energy-
straggling cross section by using a method similar to the one
adopted by Fano [5] with due account of relativistic depar-
tures from the Bethe sum rule. We limit our considerations
to projectiles heavier than the electron, because the stopping
of high-energy electrons and positrons is dominated by the
radiative contribution [10]. The asymptotic formulas are valid
in the limit of high kinetic energies. Their departures from the
exact cross sections, obtained by integrating the energy-loss
DCS, are known as shell corrections [5]. Existing calcula-
tions of the shell correction to the stopping cross section are
based on nonrelativistic calculations with hydrogenic wave
functions or Hartree–Slater wave functions (see Ref. [11] and
references therein), or on the free-electron gas theory [12]. In
the present work, shell corrections are obtained as differences
between the numerical integrated cross sections and the cor-
responding asymptotic formulas.

Since both shell corrections and departures from the Bethe
sum rule get the largest contributions from inner-electron sub-
shells, they are expected to be accurately described within our
theoretical framework. Motivated by this expectation, we have
devised a consistent scheme to evaluate the impact of depar-
tures from the Bethe sum rule on the asymptotic formulas,
and to calculate a comprehensive database of shell corrections
to the integrated (total, stopping, and energy-straggling) cross
sections for neutral atoms with Z = 1–99.

The present paper is structured as follows. After summa-
rizing relevant formulas obtained from the relativistic PWBA,
which have been used to calculate the numerical database of
GOSs, we consider the deviation from the Bethe sum rule

caused by relativistic effects and the calculation of integrated
cross sections. Then we derive asymptotic formulas for the
total cross section, the stopping cross section, and the en-
ergy straggling cross section of closed electron subshells.
Asymptotic formulas for atoms are obtained by adding the
contributions from the various subshells. Finally, shell correc-
tions are introduced, and we present numerical estimates of
the correction to the formula of the stopping cross section for
projectile protons and selected elements.

In the following, all electromagnetic quantities are ex-
pressed in the Gaussian system of units (see, e.g., Ref. [13])
and the electromagnetic potentials are in the Coulomb gauge.
The symbols e, me, h̄, and c denote, respectively, the elemen-
tary charge (i.e., the absolute value of the electron charge),
the electron mass, the reduced Planck constant, and the speed
of light in vacuum. For the sake of brevity, we use the same
notation as in Ref. [6].

II. PLANE-WAVE BORN APPROXIMATION

In our PWBA calculations, atomic electron wave func-
tions are represented as positive-energy Dirac spherical waves
[7,14]

ψεκm(r) = 1

r

(
Pεκ (r) �κ,m(r̂)

iQεκ (r) �−κ,m(r̂)

)
, (1)

where ε is the electron energy, exclusive of its rest energy, κ =
(� − j)(2 j + 1) is the relativistic angular momentum quan-
tum number, m is the magnetic quantum number, �κ,m(r̂) are
spherical spinors, and the functions Pεκ (r) and Qεκ (r) satisfy
the Dirac radial equations with the DHFS self-consistent po-
tential, VDHFS(r) [7],

dPεκ

dr
= − κ

r
Pεκ + ε − VDHFS(r) + 2mec2

h̄c
Qεκ ,

dQεκ

dr
= − ε − VDHFS(r)

h̄c
Pεκ + κ

r
Qεκ . (2)

Bound-state wave functions, with discrete negative energies
and normalized to unity, are designated as ψnκm, with the prin-
cipal quantum number n instead of ε. Free states, with positive
energy ε are normalized so that the radial function P(r) at
large radii oscillates with unit amplitude. Notice that κ works
as a shorthand for both j = |κ| − 1/2 and � = j + κ/(2|κ|);
the symbol � designates the value of � corresponding to −κ .
States of the projectile are described as Dirac plane waves
with positive energy, i.e., the PWBA disregards the distor-
tion of the projectile wave caused by the Coulomb field of
the atom. As a consequence, the PWBA is reliable only for
projectiles with velocities much larger than the velocities of
the electrons in the target atom (see, e.g., Ref. [3]).

We consider inelastic collisions of a charged projectile
(charge Z0e and mass M) with a neutral target atom of the
element with atomic number Z . Let E , p denote, respectively,
the kinetic energy and the momentum of the projectile before
the collision,

cp =
√

E (E + 2Mc2), (3)
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and let E ′, p′ be the corresponding quantities after the interac-
tion,

E ′ = E − W, cp′ =
√

(E − W )(E − W + 2Mc2), (4)

where W is the energy loss. We recall that the kinetic energy
and momentum of the projectile can be expressed as

E = (γ − 1)Mc2, p = βγ Mc, (5)

where

β = v

c
=

√
γ 2 − 1

γ 2
=

√
E (E + 2Mc2)

(E + Mc2)2
(6)

is the speed v in units of c, and

γ =
√

1

1 − β2
= E + Mc2

Mc2
(7)

is the total energy of the projectile in units of its rest energy.
Assuming that the target atom is spherically symmetric or

randomly oriented, the DDCS is a function of only the energy
loss W and the polar scattering angle θ . Following Fano [5],
instead of θ , we express the DDCSs in terms of the recoil
energy Q defined by

Q(Q + 2mec2) = (ch̄q)2, (8)

where h̄q = p − p′ is the momentum transfer. Equivalently,

Q = [
(cp)2 + (cp′)2 − 2 cp cp′ cos θ + m2

ec4
]1/2 − mec2.

(9)

For a given energy loss, the kinematically allowed recoil en-
ergies lie in the interval Q− < Q < Q+, with endpoints,

Q± =
√

[cp ± cp′]2 + m2
ec4 − mec2. (10)

For projectiles with high energy and W � E ,

Q−(Q− + 2mec2) � W 2/β2. (11)

From Eq. (10), it is clear that the curves Q = Q−(W )
and Q = Q+(W ) intersect at W = E (p′ = 0). Thus, they de-
fine a single continuous function W = Wm(Q) in the interval
0 < Q < Q+(0), see Fig. 1. By solving the equations Q =
Q±(Wm ) we obtain

Wm(Q) = E + Mc2

−
√[

cp −
√

Q(Q + 2mec2)
]2 + M2c4, (12)

which, when W � E , reduces to

Wm(Q) � β
√

Q(Q + 2mec2). (13)

It follows that, for given values of E and Q [< Q+(0)], the
only kinematically allowed values of the energy loss are those
in the interval 0 < W < Wm(Q).

Because we are interested in accounting for departures
from the Bethe sum rule, we consider the DDCS for transi-
tions of atomic electrons to both bound levels εnbκb (excitation)
and free levels εb (ionization). The derivation of the final
formulas is parallel to the one given in Ref. [6] for ioniza-
tion, where details of the numerical techniques adopted in the
calculations can also be found.

The DDCS for excitations of electrons in the closed
subshell a = (naκa) with 2|κa| = 2 ja + 1 electrons and ion-
ization energy Ea = −εnaκa , splits into contributions from
longitudinal and transverse interactions,

d2σa

dW dQ
= d2σ L

a

dW dQ
+ d2σ T

a

dW dQ
, (14)

with (see Eq. (38) in Ref. [6])

d2σ L
a

dW dQ
= B 2mec2

W Q(Q + 2mec2)
AL

dfa(Q,W )

dW
(15)

and

d2σ T
a

dW dQ
= B 2mec2W

[Q(Q + 2mec2) − W 2]2

× AT
dga(Q,W )

dW
, (16)

where

B = 2πZ2
0 e4

mev2
, (17)

AL = 1 − 4(E + Mc2)W − W 2 + Q(Q + 2mec2)

4 (E + Mc2)2
(18)

and

AT = β2 − W 2

Q(Q + 2mec2)

(
1 + Q(Q + 2mec2) − W 2

2W (E + Mc2)

)2

+ Q(Q + 2mec2) − W 2

2(E + Mc2)2
. (19)
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lo
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(e

V
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107
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[Q(Q+2 mec
2)]1/2

protons (M = 1836 me)

W = Q

FIG. 1. Domains of kinematically allowed transitions in the
(Q,W ) plane for protons. The curves represent the maximum al-
lowed energy loss Wm(Q), given by Eq. (12), for projectiles with
the indicated kinetic energies (in eV). When E increases, Wm(Q)
approaches the vacuum photon line, W0(Q) = [Q(Q + 2mec2)]1/2

[Eq. (41)], which is an absolute upper bound for the allowed energy
losses.
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The last factors in Eqs. (15) and (16) are, respectively, the longitudinal and transverse generalized oscillator strengths (GOSs).
The longitudinal GOS is given by

dfa(Q,W )

dW
= W

Q

2(Q + mec2)

Q + 2mec2

∑
nb,κb

2|κb| − qb

2|κb| δ(W − εnbκb + εnaκa )

×
∑

λ

(2λ + 1)
〈
�b

1
2 jb

∥∥C(λ)
∥∥�a

1
2 ja

〉2 [
Rλ

nbκb;naκa
(q)

]2

+ W

Q

2(Q + mec2)

Q + 2mec2

kb

εbπ

∑
κb

∑
λ

(2λ + 1)
〈
�b

1
2 jb

∥∥C(λ)
∥∥�a

1
2 ja

〉2 [
Rλ

εbκb;naκa
(q)

]2
(20)

with the radial integrals

Rλ
εbκb;naκa

(q) =
∫ ∞

0

[
Pεbκb (r)Pnaκa (r) + Qεbκb (r)Qnaκa (r)

]
jλ(qr) dr, (21)

where j�(x) are the spherical Bessel functions. The two terms on the right-hand side of Eq. (20) are contributions from excitations
to bound levels and ionizations, respectively. The quantity qb is the number of atomic electrons in the excited level εnbκb , and the
factor 1 − qb/(2|κb|) accounts for the Pauli exclusion principle, which forbids transitions to occupied orbitals. kb is the electron
wave number corresponding to the kinetic energy εb of the final free orbital.

The transverse GOS (TGOS) can be expressed as

dga(Q,W )

dW
= 2(Q + mec2)

W

∑
nb,κb

2|κb| − qb

2|κb| δ
(
W − εnbκb + εnaκa

)

×
∑

J

2J + 1

2J (J + 1)

{〈
�b

1
2 jb

∥∥C(J )
∥∥�a

1
2 ja

〉2[eRJ
nbκb;naκa

(q)
]2 + 〈

�b
1
2 jb

∥∥C(J )
∥∥�a

1
2 ja

〉2[mRJ
nbκb;naκa

(q)
]2}

+ 2(Q + mec2)

W

kb

εbπ

∑
κb

∑
J

2J + 1

2J (J + 1)

{〈
�b

1
2 jb

∥∥C(J )
∥∥�a

1
2 ja

〉2[eRJ
εbκb;naκa

(q)
]2

+ 〈
�b

1
2 jb

∥∥C(J )
∥∥�a

1
2 ja

〉2[mRJ
nbκb;naκa

(q)
]2}

, (22)

with the radial integrals

eRJ
εbκb;naκa

(q) = J (J + 1)

2J + 1

[
−κb − κa

J

(
F J−1

εbκb;naκa
+ GJ−1

εbκb;naκa

) + (
F J−1

εbκb;naκa
− GJ−1

εbκb;naκa

)
+ κb − κa

J + 1

(
F J+1

εbκb;naκa
+ GJ+1

εbκb;naκa

) + (
F J+1

εbκb;naκa
− GJ+1

εbκb;naκa

)]
(23)

and
mRJ

εbκb;naκa
(q) = (κa + κb)

(
F J

εbκb;naκa
+ GJ

εbκb;naκa

)
, (24)

where

F J
εbκb;naκa

=
∫ ∞

0
Pεbκb (r) Qnaκa (r) jJ (qr) dr and GJ

εbκb;naκa
=

∫ ∞

0
Qεbκb (r) Pnaκa (r) jJ (qr) dr. (25)

The quantities 〈�b
1
2 jb||C(L)||�a

1
2 ja〉 are the reduced matrix elements of the Racah tensors,1〈

�b
1
2 jb

∥∥C(L)
∥∥�a

1
2 ja

〉 = υ(L, �b, �a)
√

2 ja + 1 〈L ja0 1
2

∣∣ jb
1
2

〉
, (26)

where

υ(L, �b, �a) ≡
{

1 if L + �b + �a is even
0 otherwise, (27)

and 〈L ja0 1
2 | jb

1
2 〉 is a Clebsch-Gordan coefficient. It is worth

noticing that in the limit Q → 0 both the longitudinal and

1Equation (52) of Ref. [6] contains a typo.

transverse GOSs reduce to the optical oscillator strength
(OOS),

−dfa(0,W )

dW
= dga(0,W )

dW
= dfa(W )

dW
. (28)

As mentioned in Sec. I, we have generated a numerical
database of longitudinal and transverse GOSs for all the sub-
shells of neutral atoms with Z = 1–99 in their ground-state
configuration. For each subshell, the database tables include
the GOSs for excitations to discrete levels (occupied and
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unoccupied) with principal quantum numbers nb up to 25
as functions of Q, as well as the GOSs for ionization as
functions of W and Q. The numerical values cover finite
intervals of Q and W extending up to certain maximum values,
Qnum and Wnum, at which the adopted calculation methods are
considered to become inaccurate. The numerical solution of
the radial Dirac equation [7] is not possible for bound states
with nb larger than about 30, and for free states with εb less
than about 10−4 atomic units. The GOS in the narrow W
interval corresponding to excitations with nb > 25 and ioniza-
tions with εb < 10−4 hartrees is assumed to be constant and
equal to the ionization GOS at the lowest calculable energy
loss. Generally, the calculated GOS values are expected to
be accurate to five significant digits [6]. To ensure accuracy
of the energy-loss DCS and its integrals, specific schemes
are adopted for interpolating and extrapolating the numerical
GOS tables [6].

The calculated GOSs and TGOSs for ionization of the M1
(3s1/2) subshell of silver (Z = 47) are displayed in Fig. 2. The
representation of the GOS for ionization as a surface on the
(Q,W ) plane is called the Bethe surface [3]. As illustrated in
Fig. 2, for energy losses W larger than about 2Ea, the GOS
has a prominent maximum at W ∼ Q), the Bethe ridge [3],
which corresponds to collisions with relatively large momen-
tum transfers (close collisions). The TGOS can be represented
in a similar way; its Bethe surface is analogous to that of the
GOS, one differentiating feature being that beyond the Bethe
ridge, i.e., for Q > W , the TGOS decreases more slowly than
the GOS.

A. Bethe sum

In the nonrelativistic theory the subshell (longitudinal)
GOS satisfies the Bethe sum rule [3,5]∫ ∞

0

dfa(Q,W )

dW
dW = 2|κa| ∀Q, (29)

where the integral extends over all possible one-electron
transitions. In addition, the subshell GOS is assumed to be
calculated by assuming that all bound orbitals are empty, i.e.,
by setting qb = 0 and, consequently, disregarding restrictions
imposed by the exclusion principle. Notice that the contribu-
tion to the GOS of transitions to levels with energies higher
(lower) than the initial level are positive (negative). When
adding the contributions of the subshells to get the atomic
GOS (see below), contributions of up and down transitions
between occupied bound levels cancel each other and, as a
result, there is a net transfer of GOS from inner to outer
subshells.

Theoretical studies [8,9,15] show that relativistic effects
cause deviations from the Bethe sum rule at small and moder-
ate Q. The relativistic generalization of the integral (29) is the
Bethe sum

S0(a; Q) ≡
∫ ∞

0

dfa(Q,W )

dW
dW. (30)

The functions S0(a; Q) for the subshells of gold (Z = 79)
atoms, calculated from the numerical GOS tables, are dis-
played in Fig. 3 as functions of the reduced recoil energy
Q/Ea, where Ea = −εnaκa is the ionization energy of the
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FIG. 2. The GOS and the TGOS for ionization of the M1
subshell (3s1/2) of the silver atom (Z = 47), represented as
Bethe three-dimensional surfaces (top) and as color-level diagrams
(bottom).
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FIG. 3. Normalized sum S0(a; Q)/(2|κa|) for various subshells of
gold atoms (Z = 79), as functions of the reduced recoil energy Q/Ea.
Each curve is plotted with its own vertical axis, which is shifted an
arbitrary number of divisions to accommodate several subshells in
the same plot, and all curves are drawn with the same scale. The
division length of the vertical axis is indicated in the plot. The dashed
horizontal lines represent the asymptotic value of each curve, which
equals unity. The inset shows the sum for the 4s1/2 subshell in an
expanded scale, to reveal the magnitude of accumulated numerical
errors.

active subshell. The relativistic departure �(a; Q) = 1 −
S0(a; Q)/(2|κa|) decreases with Q; its value at Q = 0 is larger
for the K (1s1/2) shell and decreases when the principal quan-
tum number na increases, i.e., when the ionization energy
decreases.

To check the global accuracy of our calculated S0(a; Q)
values, we have performed calculations of the Bethe sum from
nonrelativistic GOSs obtained by running our code with the
speed of light c replaced with a value 1000 times larger; the
resulting sum was found to agree with the number of electrons
for recoil energies up to the largest value attainable, Qnum, the
relative differences being less than ∼10−4 in all cases.

For energy transfers W much larger than the ionization
energy Ea of the active subshell, atomic electrons respond as
if they were free and at rest. Under these circumstances, the
finite width of the Bethe ridge can be neglected (see Fig. 2),
i.e., the GOSs can be approximated as

dfa(Q,W )

dW
= dga(Q,W )

dW
= 2|κa| δ(W − Q). (31)

B. Atomic cross sections

The DDCS for inelastic collisions with an atom is obtained
by adding the contributions of the different electron subshells.
That is, the atomic DDCS takes the same form as the DDCS of
individual subshells, Eqs. (14)–(19), with the subshell GOSs
dfa(Q,W )/dW and dga(Q,W )/dW replaced with the atomic
GOSs given by

df (Q,W )

dW
=

∑
naκa

qa

2|κa|
dfa(Q,W )

dW
(32)

and
dg(Q,W )

dW
=

∑
naκa

qa

2|κa|
dga(Q,W )

dW
, (33)

where the summations run over the occupied subshells of the
ground-state configuration. In the case of an open subshell
(naκa) with qa electrons (qa < 2|κa|), its contribution to the
atomic GOSs is approximated by the product of the fractional
occupancy, qa/2|κa|, and the GOS of the closed subshell.

The energy-loss DCS (i.e., the DCS as a function of only
the energy loss W ) is obtained by integrating the DDCS over
the recoil energy,

dσ

dW
=

∫ Q+

Q−

d2σ

dW dQ
dQ. (34)

Evidently, the energy-loss DCS is defined only for energy
losses that are less than Wmax = E .

We consider the integrals (moments) of the energy-loss
DCS,

σ (i) ≡
∫ Wmax

0
W i dσ

dW
dW. (35)

σ (0) is the total inelastic cross section. σ (1) and σ (2) are known
as the stopping cross section and the energy straggling cross
section (for inelastic collisions), respectively. Since the prob-
ability density of the energy loss W in a single collision is

p1(W ) = 1

σ0

dσ

dW
, (36)

we can write

σ (i) = σ (0)
∫ Wmax

0
W i p1(W ) dW = σ (0) 〈W i〉, (37)

where 〈W i〉 is the average value of W i in a single collision.
When the fast projectile is moving in a monoatomic gas

of the element of atomic number Z with N atoms per unit
volume, the mean-free path λ for inelastic collisions is given
by

λ = 1/(Nσ (0) ). (38)

Its inverse, λ−1 = Nσ (0), is the probability of collision per
unit path length. The (collision) stopping power S and the
energy straggling parameter �2 are defined by

S = Nσ (1) = 〈W 〉
λ

(39)

and

�2 = Nσ (2) = 〈W 2〉
λ

, (40)
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respectively. Evidently, the stopping power gives the average
energy loss per unit path length. The product �2 ds is the vari-
ance of the energy distribution of an originally monoenergetic
beam after a short path length ds (see, e.g., Ref. [16]).

Values of the integrated cross sections σ (0), σ (1), and σ (2)

for collisions of protons with atoms have been calculated
for all the elements from Z = 1–99. The calculations were
made for a grid of kinetic energies that extended from 1 keV
to 100 GeV, with nearly logarithmic spacing and 20 points
per decade. Comparison of the results with the asymptotic
formulas derived below (and evaluated by using alternative
numerical methods) indicates that the numerical errors accu-
mulated throughout the lengthy calculation of integrated cross
sections are less than about 0.5% for energies up to 10 GeV.

III. BETHE ASYMPTOTIC FORMULAS

Bethe [1,2] (see also Refs. [5] and [3]) derived simple and
accurate analytical formulas for the stopping cross section and
the total cross section for high-energy projectiles, which are
among the most useful formulas in radiation physics. Their
usefulness stems from the fact that each formula contains only
two parameters, which are characteristic of each element or
material. These parameters can be inferred from experimental
measurements of the stopping power and the total cross sec-
tion. Thus, the Bethe formulas with empirically determined
parameters provide reliable values of these cross sections for
different kinds of charged particles, and in a wide energy
range, for molecules and condensed materials for which first-
principles calculations are not available or possible. Although
the Bethe formulas are asymptotic (i.e., valid only for pro-
jectiles with very high energies), they remain fairly accurate
down to moderately low energies (see below).

In the present section, we derive asymptotic formulas for
σ (i) (i = 0, 1, and 2) by using a method similar to the one
adopted in Fano’s [5] review. The conventional derivation of
the stopping power formula makes explicit use of the Bethe
sum rule, Eq. (29), which is correct only for sufficiently large
recoil energies. In our derivation we allow deviations from
that sum rule for small and intermediate recoil energies.

For the sake of simplicity, we shall derive first asymptotic
formulas for excitations of a single closed electron subshell
a = (naκa) with ionization energy Ea. We start from the
DDCS given by Eqs. (14)–(19). For high-energy projectiles,
the relevant energy transfers are such that W � E and the
minimum allowed recoil energy Q− is given by Eq. (11),

Q−(Q− + 2mec2) = W 2/β2,

where we have disregarded terms containing factors W/E .
Within the same approximation, and for small and moderate
recoil energies, the maximum allowed energy loss is [Eq. (13)]

Wm(Q) = β
√

Q(Q + 2mec2).

When the energy of the projectile increases, both Q−(W ) and
Wm(Q) tend towards the vacuum photon line,

W0(Q) =
√

Q(Q + 2mec2). (41)

The recoil energy at this line is

Q0(W ) = mec2

⎡
⎣

√
1 +

( W

mec2

)2

− 1

⎤
⎦

� W 2

2mec2

[
1 −

( W

2mec2

)2

+ · · ·
]
. (42)

That is, recoil energies less than Q0(W ) and energy losses
larger than W0(Q) are not attainable in inelastic collisions.
For the most probable excitations, W is much less than 2mec2

and Q0(W ) is closely approximated by the first term of the
expansion (42), i.e., Q0(W ) � W 2/2mec2.

Following Fano [5], we evaluate the integrals of the DDCS
(14) approximately by considering various ranges of Q. For
recoil energies smaller than about 0.01W , the GOS and the
TGOS practically coincide with the OOS. Hence, we may
introduce a cutoff recoil energy Q1 � 0.001 Ea, and con-
sider that for Q < Q1 both the GOS and the TGOS are
approximately equal to the OOS, dfa(W )/dW (dipole approx-
imation). For recoil energies between Q1 and a certain value
Q2, which we assume much larger than the ionization energy
of the atomic electrons, the maximum allowed energy transfer
Wm(Q) is sufficiently large to include the practical totality of
the GOS, i.e., to exhaust the Bethe sum. In our calculations we
set Q2 = max(104Ea, 105Eh ), where Eh is the Hartree energy.
We have verified that for recoil energies higher than Q2 the
GOSs reduce to the Bethe ridge and the Bethe sum rule (29)
is satisfied, i.e., the subshell DDCS can be approximated by
that of binary collisions with qa free electrons at rest.

Although an impact parameter is not defined in the PWBA,
the classical picture suggests that large (small) momentum
transfers roughly correspond to small (large) impact param-
eters. In fact, interactions with small and large recoil energies
are frequently referred to as distant and close interactions,
respectively.

A. Interactions with small and intermediate Q

The contribution of distant interactions, with Q < Q2, to
the energy-loss DCS can be estimated by assuming that Q2 �
2mec2. Then, for energy losses much smaller than E we have,

Q− = W 2/(2mec2β2), (43)

The DDCS for longitudinal distant interactions, Eq. (15), can
be approximated as

d2σ L,d
a

dW dQ
� B 1

W Q

dfa(Q,W )

dW
�(Q2 − Q), (44)

where we have neglected terms proportional to (E + Mc2)−1

(which do not contribute in the asymptotic limit) and we have
inserted the Heaviside unit step function �(x) (= 1 if x > 0
and = 0 otherwise), to indicate that this DDCS vanishes if
Q > Q2. The corresponding energy-loss DCS is

dσ L,d
a

dW
=

∫ Q2

Q−
dQ

d2σ L,d
a

dW dQ

= B 1

W

∫ Q2

Q−

dQ

Q

dfa(Q,W )

dW
�(Q2 − Q). (45)
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It is convenient to remove the energy dependence of the lower
limit of this integral by writing

dσ L,d
a

dW
= B 1

W

(∫ Q2

Q0

dQ

Q

dfa(Q,W )

dW

−
∫ Q−

Q0

dQ

Q

dfa(Q,W )

dW

)
�(Q2 − Q), (46)

where Q0 is the recoil energy of the vacuum photon line,
Eq. (42). If the kinetic energy of the projectile is high enough,
the second integral in (46) involves only small recoil energies,
for which the dipole approximation is applicable, and∫ Q−

Q0

dQ

Q

dfa(Q,W )

dW
� dfa(W )

dW

∫ Q−

Q0

dQ

Q

= dfa(W )

dW
ln

(
Q−
Q0

)
� − dfa(W )

dW
ln β2, (47)

where we have used the approximations

Q− � W 2/(2mec2β2) and Q0 � W 2/(2mec2). (48)

Notice that the latter is valid only for energy losses such that
W � 2mec2 and, therefore, the following formulas have lim-
ited accuracy for the innermost subshells of heavy elements,
whose K shells have binding energies Ea of the order of 100
keV (∼0.2mec2). Now we can write

dσ L,d
a

dW
= B 1

W

(∫ Q2

Q0

dQ

Q

dfa(Q,W )

dW

+ dfa(W )

dW
ln β2

)
�(Q2 − Q). (49)

The DDCS of transverse distant interactions is obtained
from Eq. (16) after removing terms proportional to (E +
Mc2)−1,

d2σ T,d
a

dW dQ
= B 2mec2W

[Q(Q + 2mec2) − W 2]2

×
(

β2 − W 2

Q(Q + 2mec2)

)
dga(Q,W )

dW
�(Q2 − Q). (50)

The contribution of these excitations to the energy-loss DCS
is

dσ T,d
a

dW
=

∫ Q2

Q−
dQ

d2σ T,d
a

dW dQ

= B
∫ Q2

Q−
dQ

2mec2W

[Q(Q + 2mec2) − W 2]2

×
(

β2 − W 2

Q(Q + 2mec2)

)
dga(Q,W )

dW
�(Q2 − Q).

Following Fano [5], because the DDCS (50) decreases rapidly
with Q, we will replace the TGOS with the OOS (dipole
approximation). In addition, to allow the analytical evalua-
tion of the integral, we multiply the integrand by a factor

(Q + mec2)/mec2, which approaches unity for small Q. This
gives

dσ T,d
a

dW
= B dfa(W )

dW

∫ Q2

Q−
dQ

2(Q + mec2)W

[Q(Q + 2mec2) − W 2]2

×
(

β2 − W 2

Q(Q + 2mec2)

)
�(Q2 − Q). (51)

To evaluate the integral we introduce the angle ϑr defined by

cos2 ϑr (Q) ≡ W 2/β2

Q(Q + 2mec2)
(52)

and write

dσ T,d
a

dW
= B dfa(W )

dW

1

W

∫ Q2

Q−
dQ

×
[
−

{
β4(1 − cos2 ϑr )

(1 − β2 cos2 ϑr )2

}
d (cos2 ϑr )

dQ

]
. (53)

The function in curly brackets equals unity at cos2 ϑr =
0, which corresponds to large Q values, and vanishes at
cos2 ϑr (Q−) = 1; this function has a single maximum at
cos2 ϑr = 2 − β−2, the width of which decreases when the
speed of the particle increases. At high energies, the sharpness
of this maximum makes the numerical calculation of the inte-
gral of the transverse DDCS over Q difficult. With the dipole
approximation the dependence of the GOSs on Q is removed
and the integral over Q can be calculated analytically. This
gives

dσ T,d
a

dW
= B dfa(W )

dW

1

W

×
[
− β2 − 1

1 − β2 cos2 ϑr
+ ln(1 − β2 cos2 ϑr )

]cos ϑr (Q2 )

1

.

(54)

When the energy of the projectile is sufficiently high, the
most probable distant interactions involve energy trans-
fers that are much less than Wm(Q2), for which Q− � Q2

and cos2 ϑr (Q2) � 0. To get simpler formulas, we shall set
cos2 ϑr (Q2) = 0, which amounts to extending the integral
over Q values larger than Q2 or, equivalently, to removing
the �(Q2 − Q) function in Eq. (51). Thus, expression (54)
simplifies to

dσ T,d
a

dW
= B[−β2 − ln(1 − β2)]

1

W

dfa(W )

dW
. (55)

The energy-loss DCS for distant interactions can now be
expressed as

dσ d
a

dW
= dσ L,d

a

dW
+ dσ T,d

a

dW
� B

{
1

W

∫ Q2

Q0

dQ

Q

dfa(Q,W )

dW

+ 1

W

dfa(W )

dW
ln β2

+ [−β2 − ln(1 − β2)]
1

W

dfa(W )

dW

}
. (56)
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The integrated cross sections for distant interactions are

[
σ d

a

](i) =
∫ Wm (Q2 )

0
W i dσ d

a

dW
dW.

Recalling that that Wm(Q2) is assumed to be sufficiently large
to exhaust the Bethe sum, it can be replaced with ∞ to give

[
σ d

a

](i) � B
[

ln

(
β2

1 − β2

)
− β2

] ∫ ∞

0
W i−1 dfa(W )

dW
dW

+B
∫ ∞

0
dW W i−1

∫ Q2

Q0

dQ

Q

dfa(Q,W )

dW
. (57)

To evaluate the integrals

Xi ≡
∫ ∞

0
dW W i−1

∫ Q2

Q0

dQ

Q

dfa(Q,W )

dW
(58)

we first separate the low-Q interval where the dipole approxi-
mation is valid (Q < Q1),

Xi �
∫ ∞

0
dW W i−1

∫ Q1

Q0

dQ

Q

dfa(W )

dW

+
∫ ∞

0
dW W i−1

∫ Q2

Q1

dQ

Q

dfa(Q,W )

dW

=
∫ ∞

0
dW W i−1 ln

(
Q1

Q0

)
dfa(W )

dW

+
∫ ∞

0
dW W i−1

∫ Q2

Q1

dQ

Q

dfa(Q,W )

dW
.

Exchanging the order of the integrals in the second term, we
have

Xi =
∫ ∞

0
dW W i−1 ln

(
Q1

Q0

)
dfa(W )

dW

+
∫ Q2

Q1

dQ

Q
Si−1(a; Q),

with

Si(a; Q) ≡
∫ ∞

0
W i dfa(Q,W )

dW
dW. (59)

Notice that at sufficiently large Qs the GOSs can be approx-
imated as qaδ(W − Q) and, consequently, Si(a; Q) ∼ qaQi.
Introducing the approximation Q0 = W 2/(2mec2) we can
write

Xi = Si−1(a) ln(2mec2 Q1) − 2Si−1(a) ln[Ii−1(a)]

+
∫ Q2

Q1

dQ

Q
Si−1(a; Q), (60)

where

Si(a) ≡ Si(a; 0) =
∫ ∞

0
W i dfa(W )

dW
dW (61)

and

ln[Ii(a)] = 1

Si(a)

∫ ∞

0
W i ln W

dfa(W )

dW
dW. (62)

With these results, the integrated cross sections for distant
interactions, Eq. (57), can be expressed as

[
σ d

a

](i) � B
{[

ln

(
β2

1 − β2

)
− β2

]
Si−1(a)

+ Si−1(a) ln(2mec2 Q1) − 2Si−1(a) ln[Ii−1(a)]

+
∫ Q2

Q1

dQ

Q
Si−1(a; Q)

}
. (63)

B. Close interactions

Close interactions, with Q > Q2, will be described as bi-
nary collisions with stationary free electrons. In this case, the
largest allowed energy loss is that of the intersection of the
curve Wm(Q), Eq. (12), with the diagonal W = Q, the Bethe
ridge, which is given by

Wridge = 2β2γ 2mec2R (64)

with

R =
[
1 +

(me

M

)2
+ 2γ

me

M

]−1

. (65)

Notice that R � 1, except for projectiles with mass M compa-
rable to the electron mass. The energy-loss DCS is given by
Eq. (14) with the GOSs (31). It can be expressed as

dσ c
a

dW
= B 2|κa| 1

W 2
Frel(W ) �(W − Q2) �(Wridge − W ), (66)

with

Frel(W ) = 1 − β2 W

Wridge
+ 1 − β2

2M2c4
W 2. (67)

The contributions of close interactions to the integrated
cross sections are[

σ c
a

](i) =
∫ Wridge

Q2

W i dσ c
a

dW
dW

= B 2|κa|
∫ Wridge

Q2

W i−2 Frel(W ) dW. (68)

These integrals can be evaluated analytically. In the high-
energy limit (Wridge � Q2) they reduce to[

σ c
a

](0) � B 2|κa| 1

Q2
, (69)

[
σ c

a

](1) � B 2|κa|
[

ln

(
2mec2β2R

(1 − β2) Q2

)
− β2

+
(me

M
β2γ R

)2]
, (70)

[
σ c

a

](2) � B 2|κa|
[
−Q2 + (2 − β2)

mec2 β2

1 − β2
R

+ 4

3

m2
e

M2
β6γ 4 mec2R3

]
. (71)

C. Integrated subshell cross sections

We can now derive asymptotic formulas of the integrated
cross sections σ (i)

a for excitations of a subshell naκa with qa (�
2|κa|) electrons. Hereafter, the subshell GOS and TGOS are
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assumed to describe only real transitions that are allowed by
Pauli’s exclusion principle, that is, transitions to empty final
states.

1. Total cross section

The total cross section for distant interactions is given by
Eq. (63),

[
σ d

a

](0) � B
{[

ln

(
β2

1 − β2

)
− β2

]
S−1(a)

+ S−1(a) ln(2mec2 Q1) − 2S−1(a) ln[I−1(a)]

+
∫ Q2

Q1

dQ

Q
S−1(a; Q)

}
, (72)

where

S−1(a) =
∫ ∞

0

1

W

dfa(W )

dW
dW (73)

is the total dipole matrix element squared [3] and

ln[I−1(a)] = 1

S−1(a)

∫ ∞

0

1

W
ln W

dfa(W )

dW
dW. (74)

The total cross section is obtained by adding to this result
the contribution from close collisions, given by Eq. (69) with
the occupancy qa of the subshell,[

σ c
a

](0) = B qa
1

Q2
. (75)

We have

σ (0)
a = B

{
S−1(a)

[
ln

(
β2

1 − β2

)
− β2

]

+ 2 S−1(a) ln

(
2mec2

I−1(a)

)
+ D−1(a)

}
, (76)

with

D−1(a) = S−1(a) ln
( Q1

2mec2

)

+
∫ Q2

Q1

dQ

Q
S−1(a; Q) + qa

1

Q2
. (77)

2. Stopping cross section

The stopping cross section for distant interactions, see
Eq. (63), can be written as

[
σ d

a

](1) � B
{[

ln

(
β2

1 − β2

)
− β2

]
S0(a)

+ S0(a) ln(2mec2 Q1) − 2S0(a) ln[I0(a)]

+
∫ Q2

Q1

dQ

Q
S0(a; Q)

}
, (78)

where

S0(a) =
∫ ∞

0

dfa(W )

dW
dW (79)

is the dipole sum, and

ln[I0(a)] = 1

S0(a)

∫ ∞

0
ln W

dfa(W )

dW
dW. (80)

The stopping cross section of the subshell is obtained by
adding this result and the contribution of close interactions,
Eq. (70) with the number qa of electrons in the subshell,

[
σ c

a

](1) � B qa

[
ln

(
2mec2β2R

(1 − β2) Q2

)
− β2 +

(me

M
β2γ R

)2
]
.

(81)

We thus find

σ (1)
a = B

{
[S0(a) + qa]

[
ln

(
β2

1 − β2

)
− β2

]

+ 2 S0(a) ln

(
2mec2

I0(a)

)
+ D0(a)

+ qa

[
ln R +

(me

M
β2γ R

)2]}
, (82)

with

D0(a) = S0(a) ln
( Q1

2mec2

)
+

∫ Q2

Q1

dQ

Q
S0(a; Q)

− qa ln
( Q2

2mec2

)
. (83)

3. Energy-straggling cross section

The energy-straggling cross section for distant interactions
with Q < Q2 is [see Eq. (63)]

[
σ d

a

](2) � B
{[

ln

(
β2

1 − β2

)
− β2

]
S1(a)

+ S1(a) ln
(
2mec2 Q1

) − 2S1(a) ln[I1(a)]

+
∫ Q2

Q1

dQ

Q
S1(a; Q)

}
, (84)

with

S1(a) =
∫ ∞

0
W

dfa(W )

dW
dW (85)

and

ln[I1(a)] = 1

S1(a)

∫ ∞

0
W ln W

dfa(W )

dW
dW. (86)

The energy-straggling cross section of the subshell is ob-
tained by adding to this result the contribution from close
collisions, given by Eq. (71) with the number qa of electrons
in the subshell. We thus obtain

σ (2)
a = B

{
S1(a)

[
ln

(
β2

1 − β2

)
− β2

]

+ 2S1(a) ln

(
2mec2

I1(a)

)
+ D1(a)

+ qa

[
(2 − β2)

mec2 β2

1 − β2
R + 4

3

m2
e

M2
β6γ 4 mec2R3

]}
(87)
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with

D1(a) = S1(a) ln
( Q1

2mec2

)

+
∫ Q2

Q1

dQ

Q
S1(a; Q) − qa Q2. (88)

D. Asymptotic formulas for atoms

The integrated cross sections for atoms are obtained by
adding the contributions of the individual electron subshells
with weights qa/(2|κa|).

1. Total cross section

The asymptotic formula for the total cross section is [see
Eq. (76)]

σ (0) =
∑

a

σ (0)
a = B

{
S−1

[
ln

(
β2

1 − β2

)
− β2

]

+ 2 S−1 ln

(
2mec2

I−1

)
+ D−1

}
(89)

with

S−1 =
∑

a

S−1(a) =
∫ ∞

0

1

W

df (W )

dW
dW, (90)

ln[I−1] = 1

S−1

∑
a

S−1(a) ln[I−1(a)]

= 1

S−1

∫ ∞

0

1

W
ln W

df (W )

dW
dW, (91)

and

D−1 =
∑

a

D−1(a). (92)

Notice that the limits of the integral in the definition of
D−1(a), Eq. (77), depend on the ionization energy Ea of the
subshell.

The expression (89) can be recast in a form similar to
the conventional formula employed normally in the related
literature,

σ (0) = B
{

M2
tot

[
ln

(
β2

1 − β2

)
− β2

]
+ Ctot

}
, (93)

where

M2
tot = S−1 (94)

is the total dipole-matrix element squared [3], and

Ctot = 2 S−1 ln

(
2mec2

I−1

)
+ D−1. (95)

We see that the total cross section σ (0) depends only on the
speed and the charge of the projectile, but not on its mass.
This feature is in contradistinction to the stopping and energy-
straggling cross sections, which are different for particles
with different masses and the same speed (see below). The
parameters M2

tot and Ctot are energy-independent constants,
characteristic of the target atom or ion. The values of these
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FIG. 4. Parameters of the asymptotic formula (93) of the total
cross section for inelastic collisions with free neutral atoms, calcu-
lated from the present numerical GOS (crosses). The color circles are
values from non-relativistic calculations in Refs. [17,18,20].

parameters for free atoms, calculated from our numerical
GOSs, are displayed in Fig. 4, which also shows the values ob-
tained from non-relativistic calculations by Dehmer et al. [17]
and Inokuti et al. [18] using the Hartree-Slater potential for the
elements up to strontium (Z � 38). There is good agreement
between the two calculations, because relativistic effects are
small for these elements. It should be borne in mind that,
because of the simplicity of our central-field approximation,
the asymptotic formula with these constants may yield total
cross sections that differ substantially from their actual values.
Although total cross sections are very sensitive to aggrega-
tion effects, the formula (93), with appropriate values of the
parameters M2

tot and Ctot , is valid also for inelastic collisions
of charged projectiles with molecules or solids, (see, e.g.,
Ref. [19]).

The formula (93) is analogous to the one derived by
Fano [21], who considered only ionizing collisions and used
the nonrelativistic GOS for longitudinal interactions and the
dipole approximation for transverse interactions. Bethe [1]
obtained the nonrelativistic analog of this formula for atomic
hydrogen. As noted by Fano, a plot of the total cross section as
a function of the quantity ln(β2γ 2) − β2 is a straight line with
slope M2

tot and ordinate intercept Ctot. This Fano plot has been
used to assess the validity of the PWBA, and as a consistency
check of experimental data (see, e.g., Refs. [3,22]).
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2. Stopping cross section

The stopping cross section of the atom is obtained as [see
Eq. (82)]

σ (1) =
∑

a

σ (1)
a = B

{
[S0 + Z]

[
ln

(
β2

1 − β2

)
− β2

]

+ 2 S0 ln

(
2mec2

I0

)
+ D0 + Z f (γ )

}
(96)

with

S0 =
∑

a

S0(a) =
∫ ∞

0

df (W )

dW
dW, (97)

ln I0 = 1

S0

∑
a

S0(a) ln[I0(a)]

= 1

S0

∫ ∞

0
ln W

df (W )

dW
dW, (98)

D0 =
∑

a

D0(a), (99)

and

f (γ ) = ln(R) +
(

me

M

γ 2 − 1

γ
R

)2

. (100)

Figure 5 shows the dipole sum S0 and the parameter D0 calcu-
lated from the present numerical GOSs of neutral atoms.

It is interesting to compare the formula (96) with the
conventional stopping power formula [23–25], which can be
expressed as

σ
(1)
Bethe = B 2Z

[
ln

(
2mev

2

I

)
+ ln

(
1

1 − β2

)
− β2 + 1

2
f (γ )

]
(101)

with the mean excitation energy I defined by

ln I = 1

Z

∫ ∞

0
ln W

df (W )

dW
dW. (102)

The derivation of the Bethe formula (see, e.g., Ref. [5]) makes
explicit use of the Bethe sum rule (S0(Q) = Z), which is as-
sumed to hold for any Q. Consequently, the formula is strictly
valid only for light elements, for which relativistic deviations
from the sum rule are small and do not modify appreciably
the calculated stopping cross sections. In spite of this sim-
plification, the Bethe formula (101) (with Z interpreted as
the number of electrons in a molecule and with a correction
to account for the dielectric polarization of the medium) is
considered to provide the molecular stopping cross section for
arbitrary materials [10,24]. The only nontrivial parameter in
the formula (101) is the mean excitation energy. Figure 6
displays the mean excitation energies of elemental materials
recommended in the ICRU Report 37 [10], which were in-
ferred from a combination of stopping power measurements
and calculations for specific materials. Also shown are the
values of the parameter I0 calculated from the GOSs in our
database.

The I0 values and the ICRU empirical I values are seen to
vary similarly with Z , although the difference I − I0 increases
gradually with Z . The DHFS results are expected to be more
accurate for the noble gas atoms than for other elements which
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FIG. 5. Values of the dipole sum S0 and the parameter D0 calcu-
lated from the present database of numerical GOSs of neutral atoms.
For the sake of clarity, the ratios S0/Z and D0/Z are plotted versus Z .

naturally are in condensed phases or in molecular forms. The
results in Fig. 6 show that our calculated I0 values are close
to the experimental values for He (Z = 2), Ne (Z = 10), and
Ar (Z = 18), but are clearly too small for Kr (Z = 36), Xe
(Z = 54), and Rn (Z = 86). The difference I − I0 for high-Z
elements is partially due to the relativistic deviation from the
Bethe sum rule.

To verify the last assertion, we express the asymptotic
formula (96) in a form as similar as possible to that of the
Bethe formula (101). We write

σ (1) = B 2Z

{
ln

(
2mev

2

I ′
0

)
+ ln

(
1

1 − β2

)
− β2 + 1

2
f (γ )

+ S0 − Z

2Z

[
ln

(
β2

1 − β2

)
− β2

]}
, (103)

where we have grouped the energy-independent terms by in-
troducing the modified mean excitation energy I ′

0 defined by

ln

(
2mec2

I ′
0

)
= S0

Z
ln

(
2mec2

I0

)
+ D0

2Z
. (104)

Evidently, Eq. (103) reduces to the Bethe formula when
S0 = Z (the OOS satisfies the dipole sum rule) and
D0 = 0 (the Bethe sum rule is valid for all Q). Under
these circumstances, we also have I ′

0 = I0 = I .
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FIG. 6. Mean excitation energy of elemental substances versus
the atomic number Z . The mean excitation energies recommended in
the ICRU Report 37 [10] are represented by the times symbols. The
red circles and blue squares are values calculated by Dehmer et al.
[17] and by Inokuti et al. [18] with a nonrelativistic Hartree-Slater
potential. Crosses indicate our calculated I0 values, and the solid
curve represents the modified mean excitation energies obtained
from Eq. (104).

Figure 6 includes the values of I ′
0 obtained from our DHFS

calculations, which are seen to be closer to the empirical mean
excitation energies. These results indicate that for the noble
gases heavier than Ar nearly half the difference I − I0 is due
to the departure from the Bethe sum rule. We conclude that
the usual definition of the mean excitation energy, Eq. (102),
should be replaced with Eq. (104), which does account for that
departure.

3. Energy-straggling cross section

The energy-straggling cross section for collisions of high-
energy projectiles with atoms is given by [see Eq. (87)]

σ (2) =
∑

a

σ (2)
a = B

{
S1

[
ln

(
β2

1 − β2

)
− β2

]

+ 2 S1 ln

(
2mec2

I1

)
+ D1 + Z mec2 g(γ )

}
, (105)

with

S1 =
∑

a

S1(a) =
∫ ∞

0
W

df (W )

dW
dW, (106)

ln I1 = 1

S1

∑
a

S1(a) ln[I1(a)]

= 1

S1

∫ ∞

0
W ln W

df (W )

dW
dW, (107)

D1 =
∑

a

D1(a), (108)
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FIG. 7. Parameters S1 and Atot of the asymptotic formula (110) of
the energy-straggling cross section for inelastic collisions with free
neutral atoms, calculated from the present numerical GOS (crosses).
The symbols are values obtained by Dehmer et al. [17] and Inokuti
et al. [18] from nonrelativistic calculations.

and

g(γ ) = γ 4 − 1

γ 2
R + 4

3

m2
e

M2

(γ 2 − 1)3

γ 2
R3. (109)

Grouping the energy-independent terms, we can write

σ (2) = B
{

S1

[
ln

(
β2

1 − β2

)
− β2

]

+ Atot + Z mec2 g(γ )

}
, (110)

where

Atot = 2 S1 ln

(
2mec2

I1

)
+ D1. (111)

The top plot of Fig. 7 shows the values of the parameter S1

for free neutral atoms calculated from our numerical OOSs,
together with values obtained by Dehmer et al. [17] and by
Inokuti et al. [18] from nonrelativistic calculations with the
Hartree-Slater potential for the elements with Z = 1–38. The
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difference between these calculated values and ours increases
gradually with the atomic number because of the increasing
importance of relativistic effects. The bottom plot in Fig. 7
displays the calculated values of Atot. Because the parameters
S1 and Atot depend strongly on the details of the excitation
spectrum, our central-field approximation is not expected to
give accurate values for materials other than the noble gases.
Nonetheless, the asymptotic formula (110), with its parame-
ters determined empirically for each material, is valid also for
molecules and solids.

A classical formula for the energy-straggling cross sec-
tion due to Bohr (Eq. (3.4.5) in Ref. [26]) is frequently
referred to. Bohr’s formula was derived by neglecting the
binding of atomic electrons and using the nonrelativistic DCS
for collisions with free electrons at rest. Later, Jackson [13]
improved the formula by using the energy-loss DCS obtained
from the relativistic PWBA [see Eqs. (66) and (67)],

σ (2) �
∫ Wridge

0
B Z

(
1 − β2 W

Wridge

)
dW.

This gives (Eq. (13.50) in Ref. [13])

σ (2) = B 2Z

[
γ 2β2 mec2

(
1 − β2

2

)]
. (112)

For comparison purposes, Fig. 10 below includes the energy-
straggling cross sections of hellium, argon, and radon atoms
calculated from this formula. The values obtained from ex-
pression (112) are nearly independent of E at low energies,
and a few percent larger than ours at energies higher than
about 1 GeV, because of the neglect of electron binding ef-
fects.

IV. NUMERICAL RESULTS FOR NOBLE GASES

The accuracy of the asymptotic formulas derived above
can be assessed by direct comparison with integrated cross
sections σ (i) obtained from the numerical integration of the
DDCS times W i. We present results for collisions with
noble-gas atoms, for which the central-field approximation
is expected to be more accurate than for atoms with open-
shell configurations. Figures 8–10 display integrated cross
sections for collisions of protons as functions of the kinetic
energy of the projectile. We see that the differences between
the numerical cross sections and the asymptotic formulas de-
crease smoothly when the energy of the projectile increases
beyond a certain value, as expected for asymptotic formulas.
For the total cross section, the differences become impercep-
tible, on the scale of the plots, for energies higher than about
1 MeV. Similarly, the curves of the asymptotic formulas and
the numerical values of the stopping cross sections are seen
to merge at energies of the order of 10 MeV. The asymptotic
formula for the energy-straggling cross section agrees with the
calculated values for energies larger than about 100 MeV. Of
course, the asymptotic formulas (93), (103), and (110) should
not be used for projectiles with lower energies.

It is worth observing that the larger the order i of the
integrated cross section σ (i) the higher the energy where
the corresponding formula starts yielding reasonably accurate
values, because of the increasing importance of large-W inter-
actions, part of which correspond to excitations of electrons
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FIG. 8. Total cross sections, σ (0), for inelastic collisions of pro-
tons with noble-gas atoms as functions of the kinetic energy of the
projectile. The solid curves represent results from numerical PWBA
calculations. The dashed curves show the predictions of the asymp-
totic formula (93).

in inner subshells. Therefore, the relative shell corrections
(see the following section) are larger for the stopping cross
section than for the total cross section, and even larger for the
energy-straggling cross section.
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FIG. 9. Stopping cross sections, σ (1), for inelastic collisions of
protons with noble-gas atoms. Dashed curves are predictions of the
asymptotic formula (103). Other details as in Fig. 8.
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dictions of the asymptotic formula (110). The blue dot-dashed curves
are the predictions of the formula (112) for He, Ar, and Rn. Other
details as in Fig. 8.

The parameters of the asymptotic formulas were obtained
by direct integration of the GOS by using numerical methods
that are independent of those employed in the calculation of
the integrated cross sections. The good agreement, at suffi-
ciently high energies, between the numerical integrated cross
sections and the asymptotic formulas indicates that the numer-
ical algorithms used to interpolate and integrate the DDCSs
remain accurate for energies up to 1011 eV. Nonetheless, for
high-energy projectiles, the cross sections calculated numer-
ically by integrating the DDCS are found to differ by up to
1% from the predictions of the asymptotic formulas. These
differences arise from numerical errors accumulated during
the calculations and, in the case of inner subshells with large
ionization energies, from the approximations (48). For sub-
shells with small and moderate ionization energies, say up to
about 5 keV, and for high-energy projectiles, the difference
between the subshell integrated cross sections obtained nu-
merically and from the asymptotic formulas are typically less
than about 0.5%.

V. SHELL CORRECTIONS

The asymptotic formulas derived in the previous sec-
tion result from some drastic approximations, whose accuracy
deteriorates as the energy of the projectile decreases. The
difference between the exact cross section σ (i) (i.e., the one
obtained by integrating the DDCS) and the corresponding
asymptotic formula is known as the shell correction. This
name is motivated by the fact that the largest errors in the
asymptotic formulas come from the contributions of the inner-

most subshells (i.e., those with the largest ionization energies).
Since the wave functions of inner-shell electrons are quite
insensitive to the effect of aggregation, shell corrections cal-
culated for collisions with free atoms are expected to be
approximately valid also for collisions in condensed media.

Previous theoretical calculations of shell corrections to the
asymptotic formula for the stopping power were essentially
nonrelativistic. Explicit formulas for the shell corrections in
terms of the GOSs were obtained by subtracting from the
integrals that define σ (1) those effectively used to calculate its
asymptotic formula (see, e.g., Ref. [5]). Thus, Walske [27,28]
used hydrogenic wave functions to obtain shell corrections for
K shell and L subshells; Khandelwal and Merzbacher [29] and
Bichsel [30] performed similar calculations for M subshells.
Bonderup [12] obtained an atomic subshell correction from
stopping powers calculated using the local-plasma approxi-
mation of Lindhard and Scharff [31]. More recently, Bichsel
[11] determined the corrections for the inner subshells of alu-
minum and silicon by direct integration of the nonrelativistic
GOSs of Manson [32].

With our computational tools, the shell corrections can be
obtained simply as the differences between the numerical inte-
grated cross sections σ (i)

num and the results from the asymptotic
formulas. For this purpose, we define the shell corrections C (i)

so that the following formulas

σ (0) = B
{

M2
tot

[
ln

(
β2

1 − β2

)
− β2

]
+ Ctot − C (0)

}
, (113)

σ (1) = B
{

2Z

[
ln

(
2mec2

I ′
0

)
+ ln

(
β2

1 − β2

)
− β2

+ 1

2
f (γ )

]
+ (S0 − Z )

[
ln

(
β2

1 − β2

)
− β2

]

− C (1)

}
, (114)

and

σ (2) = B
{

S+1

[
ln

(
β2

1 − β2

)
− β2

]
+ Atot + Z mec2 g(γ )

− C (2)

}
, (115)

reproduce the exact values of the integrated cross sections ob-
tained by direct numerical integration of the DDCS. The
expressions on the right-hand sides of these equations with
C (i) = 0 are the asymptotic formulas for the atomic integrated
cross sections σ (i). Evidently, each shell correction is propor-
tional to the error of the associated asymptotic formula,

C (i) = 1

B
(
σ

(i)
asympt − σ (i)

num

)
. (116)

Upon insertion of the calculated numerical cross section, this
equation determines the correction C (i).

The results displayed in Fig. 8 show that the shell correc-
tion C (0) for protons with energies higher than about 1 MeV is
small. At E = 10 MeV, the asymptotic formula (93) approxi-
mates the exact total cross to an accuracy better than about 0.1
percent. The shell correction C (2) to the asymptotic formula
of the energy-straggling cross section may be neglected for
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proton energies higher than about 5Z MeV (see Fig. 10). At
lower energies, the asymptotic formula departs rapidly from
the exact cross section and it is preferable to use a tabulation
of the numerical cross section σ (2) instead of the asymptotic
formula.

The correction C (1) to the stopping power formula is impor-
tant because of the relevance of the stopping power in practical
calculations of dosimetry and charged-particle transport. The
asymptotic formula (103) for protons is found to differ from
the numerical stopping cross section by less than about 1% for
energies higher than about 100 MeV. At intermediate energies,
say between 1 MeV and 100 MeV, the formula (103) yields
values larger than the numerical ones. In the case of uranium
(Z = 92), a maximum difference of about 7.5% is found at
E ∼ 5 MeV; for gold (Z = 79) the largest difference is 8.3%
at E ∼ 4.5 MeV. Because these differences are only one order
of magnitude larger than the estimated numerical uncertainty
of the calculated stopping cross sections, the resulting shell
correction is very sensitive to accumulated numerical errors.

To conform with the literature, let us write the formula
(114), as (cf. Refs. [5,23]),

σ (1) = B 2Z

{
ln

(
2mec2

I ′
0

)
+ ln

(
β2

1 − β2

)
− β2 + 1

2
f (γ )

− Z − S0

2Z

[
ln

(
β2

1 − β2

)
− β2

]
− C

Z

}
, (117)

where C/Z = C (1)/2 is the quantity usually referred to as
the shell correction. The first term in the second line of this
equation accounts for the departure from the dipole sum rule;
it does not occur in the nonrelativistic theory.

Our calculated values of stopping cross sections for protons
were used for determining the shell correction C/Z to the
stopping cross section. For low energies, up to Ecut = 0.2 Z
MeV, the correction was obtained by means of Eq. (116), that
is, from the difference between the stopping cross section cal-
culated numerically and the result of the asymptotic formula
with C (1) = 0. Figure 11 displays the shell correction to the
stopping cross section for collisions of protons with noble-gas
atoms as functions of the kinetic energy of the projectile.

As mentioned above, the difference on the right-hand side
of Eq. (116) magnifies the numerical errors accumulated
throughout the calculation of the integrated cross section σ (1)

num.
This is illustrated in Fig. 11 for the case of argon and kinetic
energies higher than Ecut, where the blue crosses represent the
calculated numerical values. Although the magnitude of the
errors in the calculated stopping cross sections is estimated
to be less than about 0.5%, these errors blur the continuous
curves of the shell correction as a function of the proton
energy. To obtain a well-defined shell correction for energies
higher than Ecut, we approximate it in the form

C

Z
=

6∑
n=1

cn

(
mpc2

E

)n/4

, (118)

where mp is the proton mass. By similarity with the nonrela-
tivistic theory, here we assume that the shell correction tends
to zero at high energies. The parameters cn (n = 1–6) have
been determined through a least-squares fit to the calculated
stopping cross section σ (1)

num for energies in the interval from
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FIG. 11. Shell corrections C/Z to the asymptotic formula of
the stopping cross section for inelastic collisions of protons with
noble-gas atoms, as functions of the kinetic energy of the projectile.
The vertical segments indicate the energies Ecut = 0.2Z MeV above
which the correction is described by the fitted formula (118). Crosses
represent values obtained from Eq. (116), with visible fluctuations
arising from numerical uncertainties of the calculated σ (1)

num at ener-
gies higher than ∼108 eV.

Ecut up to 1 GeV. In that energy interval, the analytical expres-
sion (118) with the fitted parameters approaches the calculated
stopping cross sections with an accuracy generally better than
0.05% for all the elements. The fitted formula effectively
averages the numerical errors and gives estimates of the shell
correction that are probably better than the values obtained
numerically from Eq. (116). Assuming that C/Z remains con-
stant for energies higher than 1 GeV, where the magnified
numerical uncertainties do not allow determining the shell
correction unambiguously, the relative difference between the
Bethe formula and the calculated σ (1)

num values remains less
than 0.3% for energies up to 10 GeV. The fitting procedure
provides evidence that numerical errors accumulated through-
out the calculation of integrated cross sections are less than
about 0.5% for energies up to 10 GeV.

It is important to notice that we are considering shell cor-
rections that arise only from inaccuracies in approximating
the integrated cross sections obtained from the PWBA. Chen
et al. [33–35] went beyond the PWBA by using the perturbed-
stationary-state approximation of Brandt and Lapicki [36],
which accounts for (1) alterations in the binding of the active
electron due to the presence of the projectile proton near
the nucleus of the target atom, and (2) the deflection of the
projectile path caused by the Coulomb field of the nucleus.
Empirical shell corrections resulting from comparisons of the
asymptotic formulas with these more elaborate calculations,
and with experimental data, would account also for the sim-
plifications implicit in the PWBA.
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FIG. 12. Shell corrections C/Z to the asymptotic formula of the
stopping cross section for inelastic collisions of protons with atoms
of the elements with the indicated atomic numbers, as functions
of the kinetic energy of the projectile. Solid curves are the present
results, symbols are Bichsel’s semiempirical shell corrections given
in the ICRU Report 37 [10], and the dashed curves were generated
with the program BEST of Berger and Bichsel [37].

Figure 12 displays the shell correction to the stopping cross
sections for collisions of protons with atoms of the elements
C (Z = 6), Al (Z = 13), Cu (Z = 29), Ag (Z = 47), Au (Z =
79), and U (Z = 92), as functions of the kinetic energy of the
projectile. Also shown are the values of Bichsel’s (Model 1)
semiempirical shell correction given in the ICRU Report 37
[10] and calculated with the program BEST [37]. It is worth
noticing that Bichsel [24] derived the shell correction and
the mean excitation energy I from a multiparametric fit to
available experimental stopping-power data for the elements
C, Al, Cu, Ag, and Au of the formula [cf. Eq. (101)]

σ
(1)
Bethe = B 2Z

[
ln

(
2mev

2

I

)
+ ln

(
1

1 − β2

)
− β2

+ 1

2
f (γ ) − C

Z
− δ

2
+ L1(β ) + L2(β )

]
, (119)

where δ/2, L1(β ), and L2(β ) are, respectively, the density-
effect correction, the Barkas correction, and the Bloch
correction [24]. At intermediate energies near the maximum

of the C/Z curves, our calculated corrections agree reasonably
with Bichsel’s estimates for C and U, are sensibly larger for
Al, and smaller for Cu, Ag, and Au. The differences between
our shell corrections and Bichsel’s estimates are much larger
than the numerical inaccuracies of our calculated data. These
differences are caused by the neglect of the relativistic depar-
ture from the Bethe sum rule, which is implicit in Eq. (119),
and by the consideration of the density effect, Barkas, and
Bloch corrections in Bichsel’s fit.

VI. CONCLUDING REMARKS

The relativistic PWBA, combined with the independent-
electron DHFS model, allows the calculation of accurate
longitudinal and transverse GOSs. We have computed a
numerical database of GOSs for all subshells of neutral
atoms from hydrogen (Z = 1) to einsteinium (Z = 99) in
their ground-state configurations. This database exhibits the
known relativistic departure from the Bethe sum rule. We
have derived asymptotic formulas of the total cross sec-
tion, the stopping cross section, and the energy-straggling
cross section for collisions of charged particles heavier than
the electron with neutral atoms. Calculations for protons
have shown that these asymptotic formulas are consistent
with cross sections calculated numerically by integrating the
energy-loss DCS. The asymptotic formula for the stopping
cross section [Eq. (103)] has the same form as the conven-
tional Bethe formula [Eq. (101)], except for the fact that the
mean excitation energy I [Eq. (102)] is to be replaced with the
modified value defined by Eqs. (104) and (98), and a small
additional term [second line of Eq. (103)] is to be added. A
central result of our study is that the definition of the mean
excitation energy should be modified for high-Z elements to
account for the departure from the Bethe sum rule.

The calculated total, stopping, and energy-straggling cross
sections allow the systematic calculation of shell corrections
from the differences between the numerical values and the
prediction of the corresponding asymptotic formulas. In the
case of the stopping cross section, this approach is free from
interference with effects beyond the PWBA (such as the
Barkas and Bloch corrections [24]). The resulting shell cor-
rection is expected to be more reliable than current estimates
and models. It can be used, e.g., for determining the modified
mean excitation energy I ′

0 from available experimental data by
following a procedure similar to the one described by Ziegler
[25].

The parameters in the asymptotic formulas calculated from
the present approach are found to be consistent with nonrel-
ativistic results from the literature. A numerical tabulation of
the parameters displayed in the plots, for the elements with
Z = 1–99, is available from the authors and will be published
elsewhere together with tables of the calculated shell correc-
tion to the stopping cross section.
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