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Cancellation of D1 line transitions of alkali-metal atoms by magnetic-field values
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In this work, π , σ+, and σ− transitions between magnetic sublevels of the D1 line of all alkali-metal atoms are
considered analytically. General block Hamiltonian matrices in the presence of a magnetic-field for the ground
and excited states are built in order to describe all the transitions. Eigenvalues and eigenkets describing ground
and excited levels are calculated and modified and unperturbed transfer coefficients as a function of the nuclear
spin I , the magnetic quantum number m, and the magnetic-field magnitude B are defined. Transition cancellations
are observed only for some π transitions of each isotope. The main result is that we obtain a single formula which
expresses the magnetic-field values canceling these transitions. These values also correspond to the case when
the intensities of some of the other transitions reach their maximum. In addition, we examine the derivative of
π transition modified transfer coefficients in order to find the magnetic-field values which correspond to the
intensities’ maximum. The accuracy of the magnetic-field B values is only limited by the uncertainty of the
physical quantities involved.
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I. INTRODUCTION

Alkali-metal vapors are widely used in atomic physics,
e.g., in laser experiments [1], information storage [2], spec-
troscopy [3–5], magnetometry [6,7], and laser frequency
stabilization [8], and are also the main material to study
Bose-Einstein condensates [9,10]. This is due to the fact that
alkali-metal atoms have a high transition intensity close to
the infrared range. Continuous wave narrowband diode lasers
operating in this domain have good features and are cheap,
which makes the experiments easier. The above-mentioned
properties make the study of alkali-metal vapor transitions
very important, especially in an external magnetic field.

It is well known that in a moderate external magnetic
field B, atomic energy levels split into magnetic sublevels
(Zeeman splitting). The frequency difference between ground
and excited sublevels deviates greatly from the linear behavior
[11–13]. Significant changes also occur for atomic transition
probabilities. In the case of small values of B (up to ap-
proximately 1000 G), the Zeeman split hyperfine transitions
overlap because of Doppler broadening. To study the behavior
of each atomic transition, one should use sub-Doppler tech-
niques [14,15]. It was demonstrated [16] that by derivative
selective reflection, strong line narrowing can be achieved.

In this paper modified and unperturbed transition coeffi-
cients for the D1 line are analytically obtained. A general
formula for the magnetic-field values canceling some transi-
tions while leading to the maximum of others is extracted.
We determine an expression describing the cancellation or
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maximum value of the transitions for the same magnetic quan-
tum number m.

From the point of view of numerical simulations, all stable
and long-lived isotope modified transfer coefficients within a
magnetic field are examined and B-field values for which the
transition intensities are maximum or zero are calculated.

II. THEORY

Fine structure is the splitting of main spectral lines of
an atom. It is the result of the coupling between the orbital
angular momentum L and spin angular momentum S of the
single optical electron. The total electron angular momentum
can be written in the form

J = L + S. (1)

For s → p transitions, for the ground state we have L = 0 and
S = 1/2 and for the excited state L = 1 and S = 1/2.

The hyperfine structure is the result of the combination
between the total electron angular momentum J and the total
nuclear angular momentum I of the atom. The total angular
momentum F is the sum of I and J:

F = I + J. (2)

In this work only the D1 line of alkali-metal atoms is con-
sidered. In these cases the value of the total electron angular
momentum magnitude is J = 1/2. The total atomic angular
momentum magnitude takes the values

I − 1
2 � F � I + 1

2 , (3)

where I is the magnitude of the total nuclear angular mo-
mentum. For all alkali-metal atoms the total nuclear angular
momentum is an integer or half-integer quantity. For the F
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FIG. 1. Scheme of the D1 line in a magnetic field, when I is a
half-integer quantity.

number the following notation will be used:

F±
g,e = I ± 1

2 . (4)

The indices g and e stand for the ground and excited states,
respectively.

Within a magnetic field, the D1 line energy levels split into
several magnetic sublevels, which are described by magnetic
quantum numbers m, which can take the values

−F � m � F. (5)

Figure 1 depicts the D1 line scheme when I is a half-integer
quantity. The following denotations are used: n is the principal
quantum number, which generally describes the system; εg =
E0(F+

g ) − E0(F−
g ) is the energy difference between ground

levels; and εe = E0(F+
e ) − E0(F−

e ) is the energy difference
between excited levels. It should be noted that when I is an
integer number, the hyperfine structure is inverted.

Within a static magnetic field B, the Hamiltonian H is the
sum of the unperturbed Hamiltonian and the Zeeman Hamil-
tonian. We choose the direction of quantization axis to be

the same as the direction of magnetic field [11]. Taking into
account the value of J , in the unperturbed basis |F, m〉, the
diagonal elements of the Hamiltonian matrix H are

〈F, m|H |F, m〉 = E0(F ) − μBgF (F )mB, (6)

where E0(F ) is the zero-field energy of the level with total
angular momentum value F , μB is the Bohr magneton, gF (F )
is the associated Landé factor, and B is the magnitude of the
magnetic field. Nondiagonal elements can be expressed in the
form

〈F, m|H |F − 1, m〉 = 〈F − 1, m|H |F, m〉

= −μB

2
(gJ − gI )B

√
1 −

(
2m

1 + 2I

)2

,

(7)

where gJ and gI are the total angular and nuclear Landé
factors [17], respectively. For the ground and excited states
gg

J = gS and ge
J = 4gL−gS

3 . As F quantum numbers for ground
and excited states are the same, in Eq. (6) we can use the
following formulas for gF (F ):

gF (F−
g,e) = gI + gI − gg,e

J

1 + 2I
and

gF (F+
g,e) = gg,e

J + 2gI I

1 + 2I
.

As we consider D1 line transitions within a magnetic field,
for a complete description of the system it is enough to write
general 2 × 2 block matrices for the ground and excited states,
where each block matrix corresponds to a given value of m,
using Eqs. (6) and (7). We will not write Hamiltonian elements
for the m = ±Fg,e values because they correspond to pure
states and the corresponding transitions do not depend on the
magnetic-field value B. The zero-field energies E0 have been
set to zero for both ground- and excited-state lower levels.
Below, the matrices HG and HE describe the ground and
excited states and can be written as

HG,E =

⎛
⎜⎜⎜⎜⎜⎜⎝

|F+
g,e, mg,e〉 |F−

g,e, mg,e〉

〈F+
g,e, mg,e| εg,e − μB

fg,e

1 + 2I
mg,eB

μB

2
gg,eB

√
1 −

(
2mg,e

1 + 2I

)2

〈F−
g,e, mg,e| μB

2
gg,eB

√
1 −

(
2mg,e

1 + 2I

)2

−μB

(
gI + gg,e

1 + 2I

)
mg,eB

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where gg = gI − gS , ge = 3gI −4gL+gS

3 , fg = gs + 2gI I , and
fe = 4gL−gS+6gI I

3 . After diagonalization, the eigenvalues of the
matrices are given by

�±
G,E = εg,e − 2μBgI mg,eB

2

±1

2

(
ε2

g,e + μ2
Bg2

g,eB2 + 4εg,eμBgg,emg,eB

1 + 2I

)1/2

. (9)

The eigenkets corresponding to �±
G,E , expressed in

terms of unperturbed state vectors |ψ (Fg,e, mg,e)〉 =∑
F ′

g,e
cFg,eF ′

g,e
|F ′

g,e, mg,e〉, are

|ψ (F±
g,e, mg,e)〉 = 1√

1 + κ2
g,e±

|F+
g,e, mg,e〉

+ κg,e±√
1 + κ2

g,e±
|F−

g,e, mg,e〉 , (10)
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TABLE I. Values used to calculate transitions between D1 line magnetic sublevels with their uncertainties. The asterisks mark the calculated
values of gL using the exact formula of Phillips [33] and values for the isotopes of Audi et al. [34].

Isotope I gL gI [3] εg (MHz) εe (MHz)

23Na 3/2 0.99997613 [19] −0.00080461080(80) 1771.6261288(10) [3] 188.697(14) [20,21]
39K 3/2 0.99997905339670(14)* −0.00014193489(12) 461.73(14) [22] 57.696(10) [20]
40K 4 0.99997974531640(14)* 0.000176490(34) −1285.87(35) [22] −155.31(35) [22]
41K 3/2 0.99998039390246(13)* −0.00007790600(8) 253.99(12) [3,22,23] 30.50(16) [22]
85Rb 5/2 0.99999354 [24] −0.00029364000(60) 3035.7324390(60) [3] 361.58(17) [25,26]
87Rb 3/2 0.99999369 [27] −0.0009951414(10) 6834.682610904290(90) [28] 814.50(13) [3,25,26]
133Cs 7/2 0.99999587 [29] −0.00039885395(52) 9192.631770 (exact) [29] 1167.680(30) [30,31]

where we defined

κg,e± = 2(1 + 2I )(�±
G,E − εg,e) + 2μB fg,emg,eB

μBgg,eB
√

(1 + 2I )2 − 4m2
g,e

.

The relation which defines the electric dipole component
Dq [11] is

|〈e| Dq |g〉|2 = 3ε0 h̄�eλ
3
eg

8π2

×a2[|ψ (Fe, me)〉 ; |ψ (Fg, mg)〉 ; q], (11)

where ε0 is the vacuum electric permittivity, �e is the natural
decay rate, λeg is the wavelength between ground and excited
states, and q = 0,±1 corresponds to π and σ± transitions,
respectively. The definition of the modified transfer coefficient
is

a[|ψ (Fe, me)〉; |ψ (Fg, mg)〉 ; q]

=
∑
F ′

e ,F ′
g

cFeF ′
e
a(F ′

e , me; F ′
g , mg; q)cFgF ′

g
, (12)

where a(Fe, me; Fg, mg; q) are the unperturbed transfer
coefficients

a(Fe, me; Fg, mg; q)

= (−1)3/2+I+Fe+Fg−me
√

2
√

2Fe + 1

×√
2Fg + 1

(
Fe 1 Fg

−me q mg

){
Fe 1 Fg
1
2 I 1

2

}
, (13)

which depend on Wigner 3- j and 6- j symbols.
The σ+ and σ− transitions are not canceled for any value

of the magnetic field. Cancellations occur only for π tran-
sitions. Let us examine the unperturbed transfer coefficients
a(Fe, m; Fg, m; 0). Two of them have the following expression:

a(F±
e , m; F±

g , m; 0) = ± 1√
3

2m

1 + 2I
. (14)

For the next two unperturbed coefficients the expression is

a(F±
e , m; F∓

g , m; 0) = 1√
3

√
1 −

(
2m

1 + 2I

)2

. (15)

From Eqs. (12) and (13) and formulas (14) and (15),
modified transfer coefficients that have a cancellation

are

a[|ψ (F±
e , m)〉 , |ψ (F±

g , m)〉 , 0]

= κe±√
1 + κ2

e±
a(F−

e , m; F−
g , m; 0)

κg±√
1 + κ2

g±

+ κe±√
1 + κ2

e±
a(F−

e , m; F+
g , m; 0)

1√
1 + κ2

g±

+ 1√
1 + κ2

e±
a(F+

e , m; F−
g , m; 0)

κg±√
1 + κ2

g±

+ 1√
1 + κ2

e±
a(F+

e , m; F+
g , m; 0)

1√
1 + κ2

g±
. (16)

The solutions of a[|ψ (F±
e , m)〉 , |ψ (F±

g , m)〉 , 0] = 0 are

B±
± = − 2m

μB(1 + 2I )

2εeεg

ggεe + geεg
. (17)

The condition on the considered solutions of the modified
transfer coefficients which defines permissible values of the
magnetic quantum number m depends on nuclear spin:

0 � (−1)2I m � I − 1
2 . (18)

From the formula (17) one notes that for isotopes having a
half-integer nuclear spin, transition cancellations exist for π

transitions between levels for which the magnetic quantum
number is zero (m = 0); however, as the atomic states are
degenerated, it is not possible to observe cancellation of these
transitions.

Modified transfer coefficients a[|ψ (F∓
e , m)〉 , |ψ (F±

g , m)〉 ,

0] cannot be equal to zero, but these quantities have a very
interesting behavior. While for certain values of B transition
intensities corresponding to a[|ψ (F±

e , m)〉 , |ψ (F±
g , m)〉 , 0]

are zero (transition cancellation), the transition intensities
corresponding to a[|ψ (F∓

e , m)〉 , |ψ (F±
g , m)〉 , 0] reach their

maximum value, which corresponds to the intensity of a π

transition occurring between pure states (so-called “guiding”
atomic transitions [18]). This is ensured by the calculation of
the derivative of modified transfer coefficients squared with
respect to the magnetic field:

da2[|ψ (F∓
e , m)〉 , |ψ (F±

g , m)〉 , 0]

dB
= 0. (19)
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TABLE II. Values of the B field canceling transitions of 85Rb
with their uncertainties.

Isotope No. F m B (G)

85Rb 1 2 −2 380.73(13)
85Rb 2 3 −2 380.73(13)
85Rb 3 2 −1 190.368(66)
85Rb 4 3 −1 190.368(66)

The solution of Eq. (19) is exactly the formula (17)
with the condition mentioned in the formula (18).
We call quantities a[|ψ (F±

e , m)〉, |ψ (F±
g , m)〉, 0] and

a[|ψ (F∓
e , m)〉, |ψ (F±

g , m)〉, 0] pair-modified transfer
coefficients and transitions corresponding to them
pair-transitions. As one can notice, cancellations occur only
for transitions obeying 
F = Fe − Fg = 0 and maximum
values take place when 
F = Fe − Fg = ±1.

III. ANALYSIS OF STABLE AND LONG-LIVED ISOTOPES

In this section we fully analyze D1 line transition cancel-
lations and maxima of 23Na, 39K, 40K, 41K, 85Rb, 87Rb, and
133Cs atoms. All the mentioned isotopes except 40K and 87Rb
are stable. The half-life of 40K is 1.248(3) × 109 and that of
87Rb is 49.23(22) × 109 years. It should be noted that we do
not study all the possible isotopes of all alkali-metal atoms
mainly due to the lack of data on these isotopes and also
because their half-life is too short to envisage an experiment
in the near future. However, the present theory is still valid to
study them.

In Table I all considered isotope data are given with un-
certainties. As one can see, the most imprecise values in
general are εe; however, for 39K, 40K, and 41K frequency
differences between ground-state levels are not precisely
known. These quantities have the most influence on the size
of the uncertainties of the calculated B values. It should
be noted that when the value of I is an integer (only for
40K in this work), the values of εg and εe should have a
minus sign to be in agreement with our notation. For fur-
ther calculations, for the Bohr magneton and gS spin Landé
factor we used the values μB/h = −1.399 624 504 2(86)
MHz/G and gS = 2.002 319 304 362 2(15) [32], respec-
tively. We noticed that in the paper of Phillips [33]
1/m is missing in the second term of the exact formula
for gL.

In order that the cancellation and maximization of transi-
tions could be well understood by the reader, as an example
we will show figures only for the 85Rb isotope. The total
atomic angular momentum magnitude is F = 2 for the lower
levels of ground and excited states and F = 3 for the upper
levels. Some transitions cancel for m = −2 and −1. For this
isotope we will also analyze those transitions which have
a maximum value, as mentioned before. The π transitions
corresponding to the above-mentioned magnetic quantum
numbers which do not cancel reach their maximum values
for the magnetic-field values canceling the other transitions.
Figure 2(a) depicts the modified transfer coefficients (i.e.,
a[|ψ (Fe, m)〉 , |ψ (Fg, m)〉 , 0] quantities) for m = −2 and −1.
Lines numbered 5–8 have no cancellation and are nothing

(a)

(b)

FIG. 2. (a) 85Rb D1 line modified transfer coefficients for m =
−2 and −1 π transitions. For this isotope four cancellations exist:
1, 2, 3, and 4. (b) Modified transfer coefficients squared for m =
−3, −2, and −1. The vertical dashed line indicates the value B =
380.73 G, which corresponds to the cancellation of the transitions 1
and 2 (point A) and coincides with the maximum of transitions 5 and
6 (point B). Numbers 1–8 given in the inset are defined in Tables II
and III; the guiding transition coefficient squared 9 corresponds to
m = −3.

more than transition coefficients between ground and excited
states, where Fg �= Fe. As an illustration, the dashed line in
Fig. 2(a) indicates that the intensity of transitions 1 and 2
is equal to zero for the same value of B. Figure 2(b) depicts
the modified transfer coefficients squared in order to compare
them with each other and with the guiding atomic transition
coefficient for which m = −3. To extend the previous illustra-
tion with the dashed line in Fig. 2(a), we draw it in the case of
the modified transfer coefficients squared to show explicitly
that the minimum of transitions 1 and 2 (point A) coincides
with the maximum of transitions 5 and 6 (point B).

In Table II all B-field values which cancel transitions of
the 85Rb D1 line are listed. One also can see that for these

TABLE III. Values of the B field maximizing transitions of 85Rb
with their uncertainties.

Isotope No. F m B (G)

85Rb 5 −1 −2 380.73(13)
85Rb 6 1 −2 380.73(13)
85Rb 7 −1 −1 190.368(66)
85Rb 8 1 −1 190.368(66)
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TABLE IV. B-field values canceling transitions of 23Na, 39K,
40K, 41K, 87Rb, and 133Cs with their uncertainties.

Isotope F m B (G)

23Na 1 −1 153.2007(86)
23Na 2 −1 153.2007(86)
39K 1 −1 44.991(10)
39K 2 −1 44.991(10)
40K 9/2 7/2 190.20(33)
40K 7/2 7/2 190.20(33)
40K 9/2 5/2 135.85(24)
40K 7/2 5/2 135.85(24)
40K 9/2 3/2 81.51(15)
40K 7/2 3/2 81.51(15)
40K 9/2 1/2 27.171(48)
40K 7/2 1/2 27.171(48)
41K 1 −1 24.046(95)
41K 2 −1 24.046(95)
87Rb 1 −1 642.590(76)
87Rb 2 −1 642.590(76)
133Cs 3 −3 1359.237(26)
133Cs 4 −3 1359.237(26)
133Cs 3 −2 906.158(17)
133Cs 4 −2 906.158(17)
133Cs 3 −1 453.0790(84)
133Cs 4 −1 453.0790(84)

values of magnetic-field transitions 5–8 (Table III) reach their
maximum value equal to the transfer coefficient 9 squared.

In Table IV all B-field values which cancel D1 line tran-
sitions of 23Na, 39K, 40K, 41K, 87Rb, and 133Cs are listed.
The second column shows the values of the total angular
momentum magnitude for both ground and excited states. The
third column indicates between which magnetic sublevels the
transition occurs and the fourth column displays calculated
values of B field with their uncertainties, which are a conse-
quence of the uncertainties of the physical quantities involved
in the calculations.

IV. CONCLUSION AND OUTLOOK

In this work an analytical model to calculate all optical
transitions within a magnetic field for all types of polarized

light and for the D1 line of all alkali-metal atoms was used.
We determined a unique formula expressing magnetic-field
values for which some π transition intensities become zero
and some other π transition intensities become maximum
simultaneously. No σ+ or σ− transitions have a cancellation.
Several reasons lead us to find these values as precisely as
possible. The first one is that for very sensitive magnetometer
calibration some standards should exist and these values are
good standards [35,36] for atomic systems: They do not de-
pend on any external condition or parameter. A second reason
is that relation (17) is an exact theoretical relation expressing
the values of B that cancel the transitions as a function of
fundamental quantities like energy differences, Landé factors,
Bohr magneton, nuclear spin value, and quantum numbers.
Thus, determining these B values by any experimental means
as precisely as possible can lead to an improvement of the
values of these fundamental quantities. However, in the ex-
periments it is always more complicated to precisely measure
small signals than big ones; thus the cancellation of transitions
cannot be measured directly because of the existence of noise
in any experiment. In other words, as for small peaks the
signal-to-noise ratio is smaller than for higher peaks, it is
profitable to measure peaks with bigger intensity. Thus, in the
experiment described in one of our latest papers [35], we are
going to measure those transitions (e.g., find maxima) which
have a maximum value. If we are able to find a magnetic-field
magnitude for which the transition intensity is maximum, it
will mean that we found a pair-transition cancellation value.
Obviously, the graph of the derivative of the intensity with
respect to B should be calculated in the neighborhood of the
maximum value, despite the fact that the change of transition
intensity can be very smooth, as the change of sign of the
slope of the derivative will give precisely the value for which
it crosses the B axis; thus will give the B value for which the
pair-transitions reach their minimum.
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