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Nuclear magnetic shielding in HD and HT
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We perform a calculation of the nuclear magnetic shielding in HD and HT molecules, with complete and
perturbative accounts for nuclear masses. From the difference in shielding, we obtain the deuteron and triton
magnetic moments in agreement with the CODATA value, with the accuracy limited only by nuclear magnetic
resonance measurements. Most importantly, our calculations indicate a potential for improved determination of
nuclear magnetic moments.
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I. INTRODUCTION

The most accurate determination of the nuclear magnetic
moments is that of the proton, μp = 2.792 847 344 62(82) μN

[1]. Magnetic moments of all other nuclei have been measured
with less or much less accuracy. One of the reasons is the
lack of a convenient reference system for which we accu-
rately know the magnetic moment and which can be used for
relative measurement of nuclear magnetic resonance (NMR)
frequencies. 3He as a noble gas atom would be very conve-
nient once its magnetic moment is accurately measured and
the shielding calculated. In fact, the magnetic shielding in the
3He atom has very recently been calculated with the inclusion
of leading relativistic and quantum electrodynamics effects to
obtain σ = 59.967 029(23)×10−6 [2]. Also, the direct mea-
surement of the helion (3He nucleus) magnetic moment, like
that of the proton, is being considered by the Heidelberg group
[3], which will allow 3He to be set as the ultimate reference
system for NMR measurements. In the meantime, we plan
to determine the helion magnetic moment from the relative
measurements of NMR frequencies between the hydrogen
molecule and the 3He atom [4].

Let us now recall the definition of the magnetic shielding.
When a molecule is placed in a homogeneous magnetic field
�B, its nuclei experience the field that is shielded by the sur-
rounding electrons, (1 − σ ) �B. The magnitude of the shielding
factor σ , typically of the order of 10−5, depends on the par-
ticular atomic and molecular system. Ramsey first considered
this effect in [5] with the help of the nonrelativistic Hamil-
tonian with clamped nuclei in the external magnetic field.
His result for the isotropic shielding factor σ0 in the Born-
Oppenheimer (BO) approximation is presented in Eq. (23).
An immediate conclusion that can be drawn from this formula
is that the shielding of the proton and deuteron (triton) in the
HD (HT) molecule is the same. Clearly, one has to go beyond
the BO approximation and include finite nuclear mass effects
in the coupling to the external magnetic field to obtain the
difference in the magnetic shielding.

In the past, there have been several attempts to calculate
this shielding difference in HD (HT). Neronov and Barzakh
in 1977 [6] derived the formula for the shielding difference,
but they started with the incomplete Hamiltonian, i.e., their
formula (4) does not include the nuclear spin-orbit interaction
[see gA − 1 terms in Eq. (2) below]. Later, calculations by
Jaszuński et al. [7] simulated nonadiabatic effects by an ar-
tificial charge difference. Their result of δσ (HD) = 9×10−9,
although of the correct magnitude, is not well substantiated
from the physical point of view, nor is it complete. In more
recent calculations, Golubev and Shchepkin [8] used a more
realistic treatment of nonadiabatic effects, but their result
of δσ (HD) = 9×10−9 was also incomplete. In Ref. [9], we
have derived the complete formula for the shielding differ-
ence and performed calculations with the result δσ (HD) =
20.20(2)×10−9; however, with some mistakes which are cor-
rected here.

In this work, we calculate nuclear magnetic shielding in
the HD and HT molecules and take advantage of the relative
measurements of proton and deuteron (triton) NMR frequen-
cies [4,6,10,11],

μA (1 − σA)

μB (1 − σB)
= fA

fB

IA

IB
, (1)

to determine deuteron and triton magnetic moments with the
accuracy limited only by the experimental values of the NMR
frequencies. For this, we present a rigorous derivation of the
nuclear magnetic shielding constant. We obtain an exact for-
mula that applies for arbitrary nuclear masses, and we perform
a so-called direct nonadiabatic (DNA) numerical calculation,
treating the hydrogen molecule isotopologue as a four-body
system. In addition, we derive the formula for the leading
finite nuclear mass effects. For this purpose, we employ the
so-called nonadiabatic perturbation theory (NAPT) [12–14]
and point out a few mistakes in the former formula [9].
Numerical calculations show that these mistakes had only a
minor influence on the nuclear shielding at the equilibrium
distance, and our perturbative numerical results essentially
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agree with those obtained by us in Ref. [9]. Moreover, the
obtained results using DNA agree with perturbative (NAPT)
calculations. Therefore, we confirm the recent CODATA [15]
values of the deuteron and triton magnetic moments which
used our previous results from Ref. [9].

II. THEORY OF MAGNETIC SHIELDING ACCOUNTING
FOR THE NUCLEAR MASS

The derivation of the nuclear magnetic shielding with
full account for nuclear masses closely follows that of
Refs. [5,9,16]. We start with the Hamiltonian for electrons
and nuclei, which includes coupling to the external electro-
magnetic field and all possible nuclear spin-orbit interactions,
i.e.,

H =
∑

a

�π2
a

2 me
+ �π2

A

2 mA
+ �π2

B

2 mB
+ V − eA

2 mA
gA �IA �B

+
∑

b

eA e

4 π

�IA

2 mA
· �rAb

r3
Ab

×
[

gA
�πb

me
− (gA − 1)

�πA

mA

]

+eA eB

4 π

�IA

2 mA
· �rAB

r3
AB

×
[

gA
�πB

mB
− (gA − 1)

�πA

mA

]
, (2)

where we assumed h̄ = c = 1, and where �π = �p − e �A, �A is
an external magnetic vector potential, and gA is the g-factor of

the nucleus A related to the magnetic moment by

�μA = eA gA

2 mA

�IA. (3)

To derive the formula for the shielding constant, including the
finite nuclear mass corrections, we perform a unitary transfor-
mation ϕ,

H̃ = e−i ϕ H ei ϕ + ∂tϕ, (4)

which places the gauge origin at the moving nucleus A. We
assume that the molecule is neutral and that the external
magnetic field is homogeneous, so

ϕ =
∑

a

e
(

xi
a Ai + 1

2
xi

a x j
a Ai

, j

)

+ eB

(
xi

B Ai + 1

2
xi

B x j
B Ai

, j

)
, (5)

where �A = �A(�rA), and �xa = �ra − �rA. The transformed mo-
menta are

e−i ϕ π j
a ei ϕ = pj

a + ea

2
(�xa × �B) j, (6)

e−i ϕ π
j

B ei ϕ = pj
B + eB

2
(�xB × �B) j, (7)

e−i ϕ π
j

A ei ϕ = pj
A + eA

2
( �D × �B) j, (8)

where eA �D = ∑
a e �xa + eB �xB is the electric dipole moment

operator. We can now assume that the total momentum van-
ishes; thus, �pA = −�pB − ∑

a �pa and the independent position
variables are �xa and �xB.

The new Hamiltonian H̃ after this transformation with
�pel = ∑

a �pa and �xel = ∑
a �xa becomes

H̃ =
∑

a

1

2 me

(
�pa + e

2
�xa × �B

)2
+ 1

2 mB

(
�pB + eB

2
�xB × �B

)2
+ 1

2 mA

(
�pB + �pel − eA

2
�D × �B

)2

+ V

− eA gA

2 mA

�IA �B −
∑

a

eA e

4 π

�IA

2 mA
· �xa

x3
a

×
[

gA

me

(
�pa + e

2
�xa × �B

)
+ (gA − 1)

mA

(
�pB + �pel − eA

2
�D × �B

)]

− eA eB

4 π

�IA

2 mA
· �xB

x3
B

×
[

gA

mB

(
�pB + eB

2
�xB × �B

)
+ (gA − 1)

mA

(
�pB + �pel − eA

2
�D × �B

)]
. (9)

Separating contributions that are linear in �B and �IA, one arrives at

H̃ = H0 + �HB · �B − eA gA

2 mA
Ii
A

(
Bi + Hi

I + Hi j
IB B j

) + · · · , (10)

where H0 is the nonrelativistic Hamiltonian of the hydrogen molecule and

�HB = − e

2 me

∑
a

�xa × �pa − eB

2 mB
�xB × �pB + eA

2 mA

�D × ( �pB + �pel ), (11)

�HI =
∑

a

e

4 π

�xa

x3
a

×
[

1

me
�pa + (gA − 1)

gA mA
( �pB + �pel )

]
+ eB

4 π

�xB

x3
B

×
[

1

mB
�pB + (gA − 1)

gA mA
( �pB + �pel )

]
, (12)

Hi j
IB I i

A B j =
∑

a

e

4 π
�IA × �xa

x3
a

[
e

2 me
�xa − eA

2 mA

(gA − 1)

gA

�D
]

× �B + eB

4 π
�IA × �xB

x3
B

[
eB

2 mB
�xB − eA

2 mA

(gA − 1)

gA

�D
]

× �B. (13)

The coupling of the nuclear spin to the magnetic field is given by

δE = − eA gA

2 mA

[
〈Hi j

IB I i B j〉 + 2 〈 �HB · �B 1

E0 − H0

�HI · �I〉
]
. (14)
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After averaging over orientations of the rotational angular
momentum, δE becomes

δE = −eA gA

2 mA

�I · �B
3

[
〈Hii

IB〉 + 2

〈
Hi

B

1

E0 − H0
Hi

I

〉]
, (15)

where

Hii
IB = −

∑
a

e

4 π

�xa

x3
a

[
e

m
�xa − eA

mA

(gA − 1)

gA

�D
]

− eB

4 π

�xB

x3
B

[
eB

mB
�xB − eA

mA

(gA − 1)

gA

�D
]
. (16)

Finally, the isotropic shielding constant is

σ = − 1

3

[〈
Hii

IB

〉 + 2

〈
Hi

B

1

E0 − H0
Hi

I

〉]
. (17)

This formula completely accounts for the nuclear masses and
is employed in our numerical calculations reported below.
We note that evaluation of σ according to (17) is not a
straightforward task. In the following sections, starting from
the above result, we derive alternative simplified expressions
for the leading finite nuclear mass effects using NAPT, and for
the reader’s convenience, we shall describe the NAPT matrix
elements in Appendix A.

III. NUCLEAR MAGNETIC SHIELDING USING NAPT

Because the electron to nuclear mass ratio is small, it is
customary to assume the BO approximation and represent
the total wave function as a product of the electronic φ and
nuclear χ functions,

ψ (�r, �R) = φ(�r; �R) χ ( �R). (18)

The electronic wave function φ depends parametrically on �R
and is the eigenstate of the clamped nuclei Hamiltonian Hel

with an eigenvalue Eel(R), while χ (R) satisfies the nuclear
equation with the Hamiltonian including potential E (R); for
details, see Appendix A. Analogously, physical quantities
such as the magnetic shielding constant can be represented as
an expectation value of the R-dependent quantity σ (R) with
the nuclear wave function χ . To obtain σ (R), let us construct
the general effective Hamiltonian that is the function of the
internuclear distance and describes all the relevant interac-
tions between the nuclear spin �IA, the magnetic field �B, and
the rotational angular momentum �J , namely,

Heff ( �R) = − γJ(R) �J · �B − γI(R) �IA · �J
− γA Ii

A B j [δi j − σ i j (R)], (19)

where

σ i j (R) = δi j σ (R) + σT (R) (Ji J j − δi j �J2/3) (20)

and where γJ is the rotational magnetic moment, γI is the
spin-rotational constant, and γA = eA gA/(2 mA). The isotropic
shielding deduced from this Hamiltonian is

σ = 〈χ |σ (R)|χ〉 + 2 J (J + 1)

3 γA
〈χ |γJ(R)

1

(E − H)′
γI(R)|χ〉,

(21)

where H is defined in Eq. (A9). The constants γJ, γI, and
γA contain the inverse power of nuclear masses, while the
resolvent includes the sum over all vibrational excitations
and is of the order of the inverse square root of the nuclear
mass. Therefore, the latter term is smaller than the leading
m/μn corrections (μn is the reduced nuclear mass) by the
square root of the nuclear mass, which means it is negligible.
However, γI(R) is the same for both nuclei at the equilibrium
distance—see formula (110) in Ref. [16] for the spin-rotation
constant. Therefore, it cancels out in the shielding difference
and the second term in Eq. (21) can safely be neglected.

Considering now the first term in Eq. (21), the nuclear
magnetic shielding σ (R) is the sum of two terms,

σ (R) = σ0(R) + σ1(R). (22)

Here, σ0 is the shielding in the BO approximation [neglecting
all the terms in Eq. (17) containing inverse powers of nuclear
masses],

σ0(R) = α2

3

[〈∑
a

1

xa

〉

+
〈∑

a

�xa × �pa
1

Eel − Hel

∑
b

�xb

x3
b

× �pb

〉]
, (23)

and σ1(R) is the first order in the electron-nuclear mass ratio
correction. We focus here only on terms that contribute to the
difference in the nuclear shielding; therefore, we take

σ1(R) = α2

3

me

mA

[
σn(R) + σA(R) + σ ′

A(R)

gA

]
. (24)

The first correction σn is obtained by perturbing Eq. (23) by
the nuclear kinetic energy Hn. As shown in Appendix B, Hn

can be replaced in matrix elements by m/mA H̃n, with

H̃n ≡ (�xel − 〈�xel〉) �∇B[V − Eel] − �∇2
el

2 me
, (25)

plus some additional terms, which leads to

σn = α2

3

m

mA

[
2

〈∑
b

1

xb

1

Eel − Hel
H̃n

〉
+

〈
H̃n

1

Eel − Hel

∑
a

�xa × �pa
1

Eel − Hel

∑
b

�xb × �pb

x3
b

〉

+
〈∑

a

�xa × �pa
1

Eel − Hel
H̃n

1

Eel − Hel

∑
b

�xb × �pb

x3
b

〉
+

〈∑
a

�xa × �pa
1

Eel − Hel

∑
b

�xb × �pb

x3
b

1

Eel − Hel
H̃n

〉

+
〈
�xel × �P 1

Eel − Hel

∑
b

�xb

x3
b

× �pb

〉
+

〈∑
a

�xa × �pa
1

Eel − Hel

∑
b

�xb

x3
b

× �P
〉]

, (26)
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where

�xel =
∑

a

�xa, (27)

�∇el =
∑

a

�∇a, (28)

�P = − i

2
( �∇R − �∇R). (29)

The latter, symmetrized form of the R derivative comes from the careful analysis of matrix elements in the NAPT, as shown in
Appendix A. The remaining corrections σA and σ ′

A come from the explicit nuclear mass-dependent terms in Eq. (17). In these
expressions, the 1/mB coefficient can be replaced by 1/μn − 1/mA, and the nuclear momentum �pB by − �P, which results in

σA = −
〈

1

R
+ �K · (�xel + �R)

〉
+

〈∑
a

�xa × �pa
1

Eel − Hel

[
�K × (

�pel − �P) + �R
R3

× �P
]〉

+
〈∑

a

�xa × �pa

x3
a

1

Eel − Hel

[(
�xel + �R) × ( �P − �pel

) + �R × �P
]〉

(30)

and

σ ′
A = 〈 �K · (�xel + �R)〉

+
〈∑

a

�xa × �pa
1

Eel − Hel

�K × ( �P − �pel )

〉
, (31)

where

�K =
∑

a

�xa

x3
a

+ �R
R3

. (32)

Formulas (26), (30), and (31) almost coincide with our pre-
vious derivation in Ref. [9]. The only difference is in the
presence of 〈�xel〉 = − �R in H̃n of Eq. (25) and in the sym-
metrization of the �∇R derivative. These changes affect the
shape of the δσ (R) curve, but close to equilibrium the nu-
merical values for HD and HT molecules are not essentially
changed, as shown in the next section.

IV. NUMERICAL CALCULATIONS USING EXPLICITLY
CORRELATED GAUSSIANS

Numerical evaluation of the shielding constant in the hy-
drogen molecule can be efficiently performed using explicitly
correlated Gaussian (ECG) wave functions. In this work, we
applied two independent ECG-based methods. The first one
is the direct nonadiabatic (DNA) method, in which all the
particles of a molecule are treated on equal footing [17],
and the second makes use of the nonadiabatic perturbation
theory (NAPT) formalism. To a large extent, these two meth-
ods complement and verify each other. The most noteworthy
feature of the NAPT approach is the possibility of accurately
determining all the rotational and vibrational energy levels
simultaneously (for a given electronic state). NAPT enables
all the leading-order nonadiabatic effects to be accounted for
in the Hamiltonian and wave function. In contrast, the DNA
method fully accounts (to all orders) for the finite nuclear
mass effects and surpasses the NAPT approach in terms of
accuracy, but each rovibrational level must be treated individ-
ually, making the method computationally expensive. Because
we focus on properties of the rovibrational ground level, DNA

is the method of choice. On the other hand, the NAPT calcula-
tions gain significance at the stage of temperature averaging.

A. Direct nonadiabatic approach

In the framework of the DNA method, the wave function
for the ground-state hydrogen molecule was introduced in
our previous papers [17,18], and here we recall only its most
important features. The total molecular wave function is rep-
resented in the form of a linear combination,

� =
N∑
i

ciψi, (33)

ψi = (1 ± P0↔1) (1 + P2↔3) φi, (34)

of the four-particle Gaussian basis functions (called naECG),

φS = rn
01 e−a01r2

01−a02r2
02−a03r2

03−a12r2
12−a13r2

13−a23r2
23 , (35)

where the superscripts 0, 1 and 2, 3 correspond to nuclei and
electrons, respectively. The nonlinear parameters ai j of each
basis function were optimized variationally with respect to
the nonrelativistic energy. The integer powers n of the in-
ternuclear coordinate r01 were generated randomly from the
log-normal distribution within the 0–80 range. The final distri-
bution of n was obtained in an iterative refinement procedure
by replacing basis functions of an insignificant energy gain
with new ones obtained from the updated distribution. For
heterogeneous molecules, such as HD or HT, we distinguish
functions that are symmetric and antisymmetric in the 0 ↔ 1
exchange, and their share in the basis set was treated as an-
other discrete optimization parameter.

The second-order matrix elements in Eq. (17) involve the
intermediate states of P-even (Pe) symmetry. The following
basis functions represent such states:

�φPe = (�rab × �rcd ) φS, (36)

with arbitrary mapping of particle indices 0, . . . , 3 onto sub-
scripts a, . . . , d . The contribution of various variants of the
angular prefactors was also determined in an iterative refine-
ment process. The optimal shares of 0 ↔ 1 symmetries and
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functions (36) in the whole basis set turned out to be crucial in
obtaining highly accurate final results despite using relatively
short expansions (33).

To control the numerical uncertainty of the shield-
ing constant, we performed calculations with several wave
functions with regularly increased expansion, i.e., N =
256, 384, 512, 768, . . . . At the stage of the optimization,
the intermediate states were assumed to be of the same size
as the wave function �. For each N , two separate optimiza-
tions were performed—the goal function was of the same
form as the second term of the isotropic shielding constant
σ of Eq. (17), but the second-order expression was made
symmetric, i.e., both Hamiltonians were either Hi

B or Hi
I [see

Eqs. (11) and (12) for their definitions]. In the final calcu-
lations, the two optimized basis sets were added together,
forming an intermediate state function of size 2N .

Results of the shielding constant calculations for HD and
HT, performed using the DNA method, are presented in
Table I. The uncertainties of the extrapolated values reflect the
numerical convergence only and do not account for the miss-
ing relativistic effects of the relative order α2. The numerical
accuracy of σ is estimated as better than 6×10−8, whereas that
of δσ as 8×10−5.

B. Numerical calculations in the NAPT framework

First, all of the matrix elements in the shielding difference
δσ (R) in Eq. (24) are converted to the forms without the
R derivatives acting on the electronic wave function. Taking
∇ i

R[Q j] = ∇ i
R[Q′ j] = 0, one obtains〈

�Q′ 1

Eel − Hel

�Q × ( �∇R − �∇R)

〉
el

= εi jk

[
−

〈
∇k

R[V − Eel]
1

(Eel − Hel )′
Q′i 1

E − H
Q j

〉

−
〈
Q′i 1

Eel − Hel
∇k

R[V − Eel]
1

Eel − Hel
Q j

〉

+
〈
Q′i 1

Eel − Hel
Q j 1

(Eel − Hel )′
∇k

R[V − Eel]

〉]
,

(37)

where all matrix elements are expressed in terms of electronic
operators. This conversion allows additional numerical eval-
uation of the radial derivatives to be circumvented, which is
problematic in accurate numerical calculations.

The ground electronic state wave function is represented
as a linear combination of two-center ECG basis functions
expressed in terms of interparticle coordinates,

ϕ�+ = e−a1A r2
1A−a1B r2

1B−a2A r2
2A−a2B r2

2B−a12 r2
12 , (38)

where indices A, B and 1,2 are related to nuclei and electrons.
Basis functions ϕ are properly symmetrized to represent the
singlet gerade electronic state,

φ =
N∑
i

ci(1 + PA↔B) (1 + P1↔2) ϕ�+,i, (39)

where Pi↔ j is the particle exchange operator and ci is a
linear variational parameter. Additional basis functions are

TABLE I. Convergence of the isotropic shielding constant σ

of Eq. (17) and of the shielding difference δσ (HX) = σx (HX) −
σp(HX) (in ppm) evaluated using the DNA method for the ground
rovibrational level (v = 0, J = 0).

σp(HD) σd (HD) δσ (HD)

256 26.359 335 87 26.366 390 735 0.007 054 86
384 26.352 895 60 26.372 807 241 0.019 911 64
512 26.352 906 53 26.372 805 619 0.019 906 14
768 26.352 902 70 26.372 804 050 0.019 901 13
1024 26.352 901 63 26.372 801 890 0.019 900 26
1536 26.352 901 31 26.372 801 914 0.019 900 61
∞ 26.352 901 1(3) 26.372 801 9(10) 0.019 901(1)

σp(HT) σt (HT) δσ (HT)

256 26.366 892 93 26.392 063 42 0.025 170 5
384 26.367 539 47 26.391 387 89 0.023 848 4
512 26.367 542 37 26.391 389 02 0.023 846 6
768 26.367 479 23 26.391 449 91 0.023 970 6
1024 26.367 480 06 26.391 453 89 0.023 973 8
1536 26.367 480 91 26.391 455 42 0.023 974 5
∞ 26.367 481 3(8) 26.391 456 1(15) 0.023 975(2)

necessary for calculations of the matrix elements containing
1/(E − H ) resolvents with the intermediate states of �− and
� symmetry. The following functions were employed for this
purpose:

ϕ�− = �R · (�r1A × �r2A) ϕ�+ , (40)

�ϕ� = ( �R × �r1A) ϕ�+ . (41)

Variational calculations are performed using N = 128 and
256 expansions (39). For the given N , the optimization was
also performed on the intermediate � and �− states using
symmetric second-order expressions with the same basis size
N . For �+ intermediate states, we use a fixed sector of ba-
sis functions with nonlinear parameters taken from the �+
wave function of size N/2. Such a combination improves the
quality of the electronic ground state, which must be precisely
removed from the reduced resolvent 1/(E − H )′. Numerical
values of the matrix elements were checked against the R →
∞ limit. The known separated-atoms limit for the shielding
constant is

σ
(1)
A (∞) = −α2

3

m

mA

(
1 + gA − 1

gA

)
, (42)

δσAB(∞) = σ
(1)
B (∞) − σ

(1)
A (∞), (43)

which yields the following numerical values: δσHD(∞) �
0.010 753×10−6 and δσHT (∞) � 0.011 326×10−6. Numer-
ical results in the range R ∈ 〈0.1, 6〉 a.u. are collected in
Appendix C and presented graphically in Figs. 1 and 2, where
the correct behavior at the R → ∞ limit can be noted. The
final results for the nuclear magnetic shielding constants are
obtained by averaging with the nuclear function according
to Eq. (21). Apart from checking the consistency with the
DNA calculations in the ground energy level, we also obtain
the shielding constant differences for excited rotational states,
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FIG. 1. The difference δσ (HD, R) in ppm of the shielding con-
stant between the deuteron and the proton in HD as a function of the
internuclear distance R in a.u. The horizontal line is the separated-
atoms limit.

which are populated in 300 K temperature in which the corre-
sponding experiments were performed.

V. RESULTS AND CONCLUSIONS

Our final numerical results of the deuteron and triton mag-
netic moments are presented in Table II. As described above,
the shielding difference δσ = σd/t − σp for the ground rovi-
brational level (v = 0, J = 0) was obtained in two manners:
using NAPT, which includes only the leading nonadiabatic ef-
fects, and using the DNA method, which completely accounts
for the finite nuclear mass effects. The knowledge of the latter
enables estimation of the missing higher-order finite-mass
effects in the former. The difference NAPT–DNA corresponds
to the relative uncertainty of 3×10−2 and is consistent with
estimation by the square root of the inverse power of the
nuclear masses. This difference, however, is an order of mag-
nitude larger than our previous estimation by me/μn ∼ 10−3

in Ref. [9].
The DNA value is augmented by the temperature averaging

correction �T δσ evaluated for T = 300 kelvins—the tem-

FIG. 2. The difference δσ (HT, R) in ppm of the shielding con-
stant between the triton and the proton in HT as a function of the
internuclear distance R in a.u. The horizontal line is the separated-
atoms limit.

TABLE II. Magnetic moment of the deuteron μd and the triton
μt determined from the proton magnetic moment μp using Eq. (1).
μx (HX) denotes the shielded magnetic moment of the nucleus x in
the HX molecule. �T δσ is the change in δσ caused by the temper-
ature averaging. NAPT results have explicit numerical uncertainties
and implicit ones of relative order 3×10−2 due to nonadiabatic ef-
fects. The uncertainty of the final shielding δσ (HX, 300 K) due to
relativistic effects is estimated to be 1×10−6.

Quantity Value Reference

μp 2.792 847 344 62(82) μN [1]

δσ (HD, v = 0, J = 0) 0.020 433×10−6 NAPT
δσ (HD, v = 0, J = 0) 0.019 901(1)×10−6 DNA
�T δσ (HD, 300 K) −0.000 023 7×10−6 NAPT
δσ (HD, 300 K) 0.019 877(1)×10−6 DNA+�T

0.020 20(2)×10−6 [9]

μp(HD)/μd (HD) 3.257 199 516(10) [15,19]
μd = μd (HD)/μp(HD) 0.857 438 233 8(26) μN This work

×(1 + δσ ) μp 0.857 438 233 8(22) μN CODATA [15]
0.857 438 234 6(53) μN [9]

δσ (HT, v = 0, J = 0) 0.024 368×10−6 NAPT
δσ (HT, v = 0, J = 0) 0.023 975(2)×10−6 DNA
�T δσ (HT, 300 K) −0.000 030 0×10−6 NAPT
δσ (HT, 300 K) 0.023 945(2)×10−6 DNA+�T

0.024 14(2)×10−6 [9]

μt (HT)/μp(HT) 1.066 639 893 3(21) [11,15]
μt = μt (HT)/μp(HT) 2.978 962 465 0(59) μN This work

×(1 + δσ ) μp 2.978 962 465 6(59) μN CODATA [15]
2.978 962 471(10) μN [9]

perature in which the measurements were performed. Since
it is a quite small effect, for its calculation the adiabatic
rotational energies εJ and wave functions χJ , obtained in the
NAPT framework, were employed. First, the shielding differ-
ence δσ (R) was averaged for the lowest 10 rotational states,
〈δσ 〉J = 〈χJ |δσ |χJ〉, and the rotational energies were used to
obtain the Boltzmann weights,

wJ = (2J + 1) exp [−εJ/(kT )]∑
J (2J + 1) exp [−εJ/(kT )]

. (44)

Then the rotationally averaged δσ (R) values were summed up
with the J = 0 value subtracted,

�T δσ =
∑

J

wJ 〈δσ 〉J − 〈δσ 〉0. (45)

The relative uncertainty of �T δσ comes mainly from nona-
diabatic effects and is about 3×10−2, while numerical
uncertainty is completely negligible.

The new shielding values slightly differ from our previ-
ous result due to underestimation of the nonadiabatic effects
and due to mistakes in the final formulas, which we have
already discussed. The final shielding difference δσ , labeled
“DNA+�T ” in Table II, was used in the evaluation of the
magnetic moment of the nucleus x according to

μx = μx(HX)/μp(HX)(1 + δσ ) μp, (46)

derived directly from Eq. (1).
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The obtained values of the deuteron and the triton magnetic
moments do not differ greatly from the the CODATA 2018
values, which used our previous results. Their accuracy is
limited exclusively by experimental uncertainties in the NMR
determination of the magnetic moment ratio. In principle, the
deuteron and triton magnetic moments can be obtained as
accurately as that of the proton, provided the experimental
uncertainty in the NMR frequency ratio is reduced by a factor
of 10.

Similarly, the magnetic moments of all stable nuclei can,
in principle, be determined by a chain of NMR measurements
through 3He. The 3He magnetic moment can be obtained by
measuring the magnetic moment ratio in H2 and 3He. For
this, one would need nonadiabatic shielding and relativistic
correction in H2, while for 3He, the shielding is already ac-
curately known [2]. The nonadiabatic shielding in H2 and
other molecules can be calculated by means of the DNA
method or NAPT, as presented in this work, while relativistic
corrections are yet to be calculated in a similar way as for
3He. Such results would eventually allow for much-improved
determination of all the nuclear magnetic moments.
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APPENDIX A: OPERATOR MATRIX ELEMENT IN NAPT

Although most of the consideration below will be valid for
an arbitrary molecule, to be more specific, we consider a two-
electron diatomic molecule. The total wave function ψ is a
solution of the stationary Schrödinger equation,

H0 � = E �, (A1)

with the Hamiltonian

H0 = Hel + Hn (A2)

split into the electronic and nuclear parts. In the electronic
Hamiltonian,

Hel = −
∑

a

∇2
a

2 me
+ V, (A3)

where V is the Coulomb interaction potential,

V = − 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+ 1

r12
+ 1

R
, (A4)

the nuclei have fixed positions �RA (proton) and �RB

(deuteron/triton), and �R = �RA − �RB. The nuclear Hamiltonian
is

Hn = − ∇2
A

2 mA
− ∇2

B

2 mB
. (A5)

Because m/mA and m/mB are small, it is customary to assume
that the total wave function of the molecule,

ψ (�r, �R) = φ(�r; �R) χ ( �R), (A6)

is a product of the electronic wave function φ that depends
parametrically on R, and the nuclear wave function χ . The
electronic wave function obeys the clamped nuclei electronic
Schrödinger equation,

[Hel − Eel(R)] |φ〉 = 0, (A7)

while the wave function χ is a solution to the nuclear
Schrödinger equation with the effective potential generated by
electrons,

(H − E ) |χ〉 = 0, (A8)

where

H = − �∇2
R

2 μn
+ Ea(R) + Eel(R). (A9)

The function

Ea(R) = 〈φ|Hn|φ〉el (A10)

is the so-called adiabatic correction, where the subscript “el”
is explained in the following. We shall consider two different
types of matrix elements of an operator � containing differ-
entiation over R, which differ in the range of differentiation.
The first type of the matrix element,

〈φ′|�|φ〉, (A11)

will be understood as an operator acting in the subspace of
rotational and vibrational states χ ,

〈χ ′|〈φ′|�|φ〉|χ〉, (A12)

which means that � acts on both φ and χ . The second type of
the matrix element,

〈φ′|�|φ〉el, (A13)

distinguished by the subscript “el”, has the differentiation
range limited to the single function φ immediately following
�. For example,

〈φ′| �∇R|φ〉el = 〈φ′| �∇Rφ〉. (A14)

To shorten the forthcoming expressions, we define the “left-
hand” differential operator,

〈φ′| �∇R|φ〉el = 〈 �∇Rφ′|φ〉. (A15)

For a clear definition of the scope of action of the R derivative,
we introduce another symbol,

�∇R[Q] ≡ [ �∇R, Q] . (A16)

For example, for arbitrary states φ′, φ, we have

�∇R[〈φ′|φ〉] = 〈φ′| �∇R + �∇R|φ〉el. (A17)

If these states are orthogonal 〈φ′|φ〉 = 0, then

〈φ′| �∇R + �∇R|φ〉el = 0, (A18)
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and the left- and right-hand derivatives differ by sign. If, in
turn, φ′ = φ and φ is a normalized real function (〈φ|φ〉 = 1),
then these derivatives vanish,

〈φ| �∇R|φ〉el = 〈φ| �∇R|φ〉el = 0. (A19)

Therefore, for these states, the matrix element of the nuclear
kinetic energy is

〈φ| �∇2
R |φ〉 = �∇2

R + 〈φ| �∇2
R |φ〉el

= �∇2
R − 〈φ| �∇R �∇R|φ〉el, (A20)

which explains the form of the nuclear Hamiltonian in
Eq. (A9).

We will be using the following type of matrix element with
arbitrary real functions φ and φ′:

�Z ≡ 〈φ′| �∇R|φ〉 + 〈φ| �∇R|φ′〉. (A21)

This expression can be transformed as follows:

�Z = 〈φ′| �∇R|φ〉el + 〈φ| �∇R|φ′〉el + 〈φ′|φ〉 �∇R + �∇R 〈φ|φ′〉
= 2 〈φ′| �∇R|φ〉el − [ �∇R , 〈φ′|φ〉]
= 〈φ′| �∇R − �∇R|φ〉el. (A22)

If, additionally, 〈φ′|φ〉 = 0, then �Z = 2 〈φ′| �∇R|φ〉el.
In the reference frame attached to the geometrical center of

the nuclei, Hn can be written as a sum of two components,

H ′
n = − ∇2

R

2 μn
− ∇2

el

8 μn
, (A23)

H ′′
n = 1

2

(
1

MA
− 1

MB

)
�∇R · �∇el, (A24)

with the first one being even and the second one being odd
with respect to the inversion. In the above, �∇el = ∑

a
�∇a and

μn = (1/MA + 1/MB)−1 is the reduced nuclear mass. Due to
the inversion symmetry of φ with respect to the geometrical
center, 〈φ|H ′′

n |φ〉el = 0 and

Ea(R) = 〈φ|H ′
n|φ〉el

= 1

2 μn

〈
φ
∣∣ �∇R · �∇R

∣∣φ〉
el − 1

8 μn

〈
φ
∣∣ �∇2

el

∣∣φ〉
. (A25)

However, for the determination of the difference in the
shielding of the proton and deuteron magnetic moments, we
shall consider the reference frame centered on one of the
nuclei, say, nucleus A. The nuclear Hamiltonian then becomes

Hn = − ( �∇B + �∇el )2

2 mA
− �∇2

B

2 mB

= H ′
n + H ′′

n , (A26)

where

H ′
n = − �∇2

B

2 μn
, (A27)

H ′′
n = − �∇2

el

2 mA
− �∇el · �∇B

mA
. (A28)

Vectors with the origin at A, pointing at a particle a, will be
denoted by �xa, and �∇B ≡ −�∇R. The diagonal matrix element

of H ′
n,

〈φ|H ′
n|φ〉el = 1

2 μn
〈φ| �∇B · �∇B|φ〉el. (A29)

This term does not contribute to the difference in the nuclear
magnetic shielding because it depends on the reduced nuclear
mass only. The diagonal matrix element of the second term in
H ′′

n is

δE = − 1

mA
〈φ| �∇el · �∇B|φ〉el. (A30)

By acting �∇B on the Schrödinger equation (A7), δE can be
transformed to

δE = − 1

mA
〈φ| �∇el

1

(Eel − Hel )′
�∇B[V − Eel]|φ〉, (A31)

where the notation introduced in Eq. (A16) was applied. To
make formulas more compact, we now introduce an abbrevi-
ated notation 〈. . . 〉 ≡ 〈φ| . . . |φ〉. Because �∇el = me [�xel , Hel],
where �xel = ∑

a �xa, the expectation value (A31) can be rewrit-
ten as

δE = me

mA
〈[�xel , Eel − Hel]

1

(Eel − Hel )′
�∇B[V − Eel]〉

= me

mA
〈�xel (I − |φ〉 〈φ|) �∇B[V − Eel]〉

= me

mA
〈(�xel − 〈�xel〉) �∇B[V − Eel]〉, (A32)

and we note that 〈 �∇B[V − Eel]〉 = 0. It is convenient to define
the following operator:

H̃n ≡ (�xel − 〈�xel〉) �∇B[V − Eel] − �∇2
el

2 me
, (A33)

which will be used in the calculation of the shielding constant
difference. Because the adiabatic energy does not depend on
the reference frame, the diagonal matrix element of H̃n, with
〈�xel〉 = − �R, vanishes:

〈φ|H ′′
n |φ〉el = me

mA
〈H̃n〉 = 0, (A34)

which can be shown by replacing �∇B = ( �∇A + �∇B)/2 +
( �∇B − �∇A)/2. The expectation value of H̃n with the second
term vanishes because the ground state has gerade symmetry,
while the first term can be replaced by −�∇el/2; hence,

〈H̃n〉 =
〈
−1

2
(�xel − 〈�xel〉) [ �∇el , Hel − Eel] − �∇2

el

2 me

〉

=
〈

1

2
[�xel − 〈�xel〉 , Hel − Eel] · �∇el − �∇2

el

2 me

〉
= 0. (A35)

APPENDIX B: DERIVATION OF FINITE NUCLEAR
MASS CORRECTIONS σn

The shielding correction σn is obtained from the leading
one by correcting all matrix elements by H ′′

n in Eq. (A28), and
it is split into two terms, i.e., σn = σn1 + σn2. Consider the
finite nuclear mass corrections to the first BO term,

σn1 = α2

3

[〈
Q0

1

(Eel − Hel )′
H ′′

n

〉
+

〈
H ′′

n
1

(Eel − Hel )′
Q0

〉]
,

(B1)
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where

Q0 =
∑

b

1

xb
. (B2)

�∇2
el, the first term in H ′′

n of Eq. (A28), does not need any further transformation, while the second term does:

δσn1 = − α2

3 mA

[〈
Q0

1

(Eel − Hel )′
�∇B �∇el

〉
+

〈
�∇B �∇el

1

(Eel − Hel )′
Q0

〉]
. (B3)

This is the Z-type matrix element, so

δσn1 = − α2

3 mA

〈
Q0

1

(Eel − Hel )′
( �∇B − �∇B) �∇el

〉
el

= − α2 m

3 mA

〈
Q0

1

(Eel − Hel )′
[Eel − Hel , �xel − 〈�xel〉] ( �∇B − �∇B)

〉
el

= − α2 m

3 mA

〈(
Q0 − 〈

Q0
〉)

(�xel − 〈�xel〉) ( �∇B − �∇B)

〉
el

+ α2 m

3 mA

〈
Q0

1

(Eel − Hel )′
(�xel − 〈�xel ) [Eel − Hel , �∇B − �∇B]

〉
el

= 2 α2 m

3 mA

〈
Q0

1

(Eel − Hel )′
(�xel − 〈�xel ) �∇B[V − Eel]

〉
. (B4)

Therefore,

σn1 = 2 α2

3 mA
〈φ|Q0

1

(Eel − Hel )′
H̃n|φ〉. (B5)

Consider now the finite nuclear mass corrections to the second BO term, and let

�Q1 =
∑

a

�xa × �pa, 〈 �Q1〉 = 0, (B6)

�Q2 =
∑

b

�xb × �pb

x3
b

, 〈 �Q2〉 = 0 . (B7)

Then,

σn2 = α2

3

[〈
H ′′

n
1

(Eel − Hel )′
�Q1

1

(Eel − Hel )′
�Q2

〉
+

〈
�Q1

1

(Eel − Hel )′
H ′′

n
1

(Eel − Hel )′
�Q2

〉
+

〈
�Q1

1

(Eel − Hel )′
�Q2

1

(Eel − Hel )′
H ′′

n

〉]
.

(B8)

One notes that the matrix element due to the second term in H ′′
n is of the Z type, so

δσn2 = − α2

6 mA

[〈
( �∇B − �∇B) �∇el

1

(Eel − Hel )′
�Q1

1

(Eel − Hel )′
�Q2

〉
el

+
〈
�Q1

1

(Eel − Hel )′
( �∇B − �∇B) �∇el

1

(Eel − Hel )′
�Q2

〉
el

+
〈
�Q1

1

(Eel − Hel )′
�Q2

1

(Eel − Hel )′
( �∇B − �∇B) �∇el

〉
el

]
. (B9)

Using commutation relation similar to those for δ1σ , one obtains

σn2 = α2

3

m

mA

[〈
H̃n

1

(Eel − Hel )′
�Q1

1

(Eel − Hel )′
�Q2

〉
+

〈
�Q1

1

(Eel − Hel )′
H̃n

1

(Eel − Hel )′
�Q2

〉

+
〈
�Q1

1

(Eel − Hel )′
�Q2

1

(Eel − Hel )′
H̃n

〉
−

〈
�xel × �pB

1

(Eel − Hel )′
�Q2

〉
el

−
〈

�Q1
1

(Eel − Hel )′
∑

b

�xb

x3
b

× �pB

〉
el

]
, (B10)

where �pB is in the symmetrized form given by Eq. (29). This concludes the derivation of the σn term of Eq. (26).

APPENDIX C: NUMERICAL VALUES
OF δσ(R) FUNCTIONS

Table III contains numerical values of the difference in the
nuclear magnetic shielding δσ (R) in HD and in HT, eval-
uated using a 256-term ECG wave function. Cubic spline

interpolation and an inverse power expression were used
to perform interpolation at short range and long range of
the internuclear distance R, respectively. Interpolated func-
tions were subsequently employed in vibrational and thermal
averaging.
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TABLE III. δσ (HX) = σx (HX) − σp(HX) (in ppm) evaluated
using NAPT for the ground electronic state in the nonrelativistic
approximation; all digits are significant.

R δσ (HD) δσ (HT)

0.1 0.051 718 4 0.076 459 4
0.2 0.046 110 4 0.061 866 2
0.3 0.040 891 0 0.052 832 8
0.4 0.036 764 2 0.046 485 4
0.5 0.033 484 3 0.041 729 0
0.6 0.030 864 4 0.038 063 0
0.8 0.026 956 0 0.032 773 7
1.0 0.024 208 7 0.029 168 6
1.1 0.023 124 0 0.027 769 0
1.2 0.022 182 5 0.026 564 5
1.3 0.021 357 3 0.025 516 3
1.4 0.020 627 9 0.024 595 4
1.5 0.019 976 4 0.023 776 8
1.6 0.019 391 2 0.023 044 2
1.7 0.018 860 3 0.022 381 2
1.8 0.018 374 6 0.021 775 6
1.9 0.017 926 3 0.021 216 5
2.0 0.017 507 8 0.020 693 9
2.1 0.017 115 0 0.020 202 2
2.2 0.016 741 8 0.019 733 0
2.3 0.016 385 1 0.019 282 5

TABLE III. (Continued.)

R δσ (HD) δσ (HT)

2.4 0.016 041 3 0.018 845 6
2.5 0.015 707 4 0.018 418 3
2.6 0.015 381 8 0.017 998 6
2.7 0.015 062 8 0.017 583 8
2.8 0.014 750 4 0.017 174 1
2.9 0.014 444 4 0.016 769 0
3.0 0.014 145 5 0.016 369 6
3.2 0.013 572 0 0.015 592 1
3.4 0.013 041 4 0.014 857 7
3.6 0.012 567 9 0.014 187 7
3.8 0.012 160 1 0.013 596 7
4.0 0.011 822 0 0.013 094 8
4.2 0.011 549 7 0.012 680 1
4.4 0.011 338 2 0.012 349 5
4.6 0.011 177 3 0.012 090 8
4.8 0.011 056 7 0.011 892 3
5.0 0.010 968 1 0.011 742 6
5.2 0.010 903 4 0.011 630 4
5.4 0.010 856 9 0.011 547 4
5.6 0.010 823 3 0.011 485 8
5.8 0.010 799 5 0.011 441 4
6.0 0.010 782 8 0.011 408 9
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