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Many photonic quantum information tasks employ single photons and linear transformations to create and ma-
nipulate quantum states of light to process information. Integrated optical systems have become useful platforms
to perform these tasks. New technologies introduce new possible processes available for multimode quantum
operations. Here we explore one such setup, motivated by current experiments, which is a nonlinear-waveguide
array system operating in a regime of nondegenerate-frequency down-converted photons. This allows one photon
to act as a herald for the other photon, which is created in a superposition of the individual waveguide channels.
We demonstrate this setup’s ability to generate highly nonclassical states, such as N-photon Fock states and
NOON states.
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I. INTRODUCTION

Photonic states are essential parts for many tasks in quan-
tum information processing (QIP) due to their versatility in
different tasks and ease of generation and detection [1–3].
In particular, single photons are useful due to their highly
non-Gaussian nature, a prerequisite for many quantum com-
putational tasks. Typically, single-photon Fock states are
generated by parametric down-conversion (PDC), where the
photons are created in pairs, one of which is detected to herald
the presence of its twin photon. These heralded photons can
then enter subsequent optical elements that manipulate the
information contained in the photonic degrees of freedom.
These optical elements are generally linear transformations,
with nonlinear transformations difficult to enact upon pho-
tons due to weak coupling between them, although the latter
are necessary for some quantum computational operations.
One way to increase the available operations is to include
postselection, where part of a quantum state is measured and
the remaining modes of the system are kept (for future pro-
cessing) only if the desired measurement result was obtained
(heralding photons is a simple example of this).

To realize these photonic operations there are many plat-
forms that can create and transform quantum states of light.
One particular platform is integrated optics, where minia-
turized optical devices, such as beam splitters and phase
shifters, are built into chips, which minimize losses and grant
higher phase stability in the optical circuit and allow for many
such components on a single chip. Coupled waveguide arrays
(WGA) are an example of such an integrated optical device.
These systems are constructed by altering the refractive index
of an underlying material, creating channels that confine light
within them and constrains it to travel along them. When

*hamilcra@fjfi.cvut.cz

these channels are positioned close to each other, the light
can couple evanescently between the channels, which can be
described by a tight-binding Hamiltonian [4,5].

One version of the WGA combines the linear coupling of
the channels and the nonlinear PDC, such that both processes
happen concurrently (when a classical pump laser is present
in at least one channel) on a single optical chip. The fun-
damental properties of these processes were studied [6–8] in
regimes where the down-converted photons are degenerate in
frequency. Moreover, this platform possesses the flexibility
of waveguide sources, which can generate photons over a
broad range of frequencies ranging from two-color pairs in
different spectral regions [9] to spectrally indistinguishable
pairs in the telecom range [10,11]. It can be driven in either
the low or high gain regime, corresponding to the generation
of probabilistic single pairs or squeezed states and also allows
for low-loss photon operations and each mode is spatially
separated for easy detection setups. State generation in this
nonlinear WGA setup has been considered in the continuous
variable regime of quantum optics [12–17]. There has also
been experimental implementations of this setup [10,18,19].

In this work we explore a nonlinear WGA, consisting of
many coupled channels, in a regime where the PDC photon
pairs are highly nondegenerate in frequency. As the evanes-
cent coupling is frequency dependent, this means that one
photon (per pair) couples to neighboring waveguide channels
and will evolve into a superposition of spatial modes. The
other photon remains confined to the channel where it was
created and is used to herald the creation of the photon pair.

We will show that this allows for the creation of nonlinear
photonic states through the combination of photon generation
and linear coupling and we will investigate the properties of
this transfer matrix and its ability to generate states of light
that are useful for QIP. We will show that this combination
of the state generation and linear coupling allows for these
states to be created with greater efficiency than the traditional
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methods of single photons entering a linear interferometer.
Also, we will show that combining state generation and lin-
ear coupling gives different states when compared to these
traditional methods. When compared against Gaussian states
entering a linear interferometer with postselection at the
output over all modes, this method does not need phase sta-
bilization between the input modes.

Our paper is structured as follows. In Sec. II we briefly
review state generation with linear optics. Next, in Sec. III,
we describe the operation of the nonlinear WGA in detail and
derive the transfer matrix ϒ that connects the properties of the
signal and herald photons. Following that, in Sec. IV, we de-
scribe how to create states useful to QIP protocols. In Sec. V,
we comment on a realistic experimental implementation in the
lithium niobate material platform and consider how scalable
such an approach is. We conclude the paper in Sec. VI.

II. STATE CREATION THROUGH LINEAR OPTICS

Currently one of the most successful methods of creating
quantum optical states is the combination of down-converted
photons and linear interferometers [20,21]. The initial single-
photon state is created by two-mode PDC, where in one
mode a photon is detected, which heralds the presence of a
photon in the other mode. These single photons then enter
a linear interferometer that transforms the input modes to
output modes. This interferometer is represented by unitary
matrix and can be physically realized by a network of beam
splitters and phase shifters when the photons are encoded in
a spatial position. This process has been to used to create
highly entangled states of photons [22–24], which are use-
ful for various information processing tasks. Alongside this
linear transformation, postselection is used in combination
with linear optics to increase the range of states or operations
that can be realized. One major example of this is the KLM
scheme [25] to achieve the control-phase gate using linear
optics, ancilla photons, and postselection.

In the next section we describe a process where we com-
bine the linear coupling of neighboring waveguide channels
and nonlinear down-conversion. The resulting Hamiltonian
is a multimode squeezing Hamiltonian, which can be con-
trolled by pump-shaping and phase-matching processes. This
will allow us to generate multimode entangled states that
are not simply related by linear optics without the need for
postselection.

III. WAVEGUIDE ARRAY HAMILTONIAN

In this section we describe the Hamiltonian of the WGA,
which consists of linear and nonlinear terms that describe the
coupling between channels and the PDC process respectively.
This model is motivated by the availability of a current system
in LiNbO3 [7].

The integrated WGA consists of M coupled waveg-
uide channels, see Fig. 1 where the process of paramet-
ric down-conversion is enabled due to the nonlinearity
of the material and the periodic poling of the struc-
ture [26–28]. Photons can evanescently couple to nearest-
neighbor waveguide channels at a rate that depends upon
their wavelength and the distance between the channels.

System

Z

Nonlinear WGA
Herald

FIG. 1. System sketch. Photons from different pump frequencies
ωp, j decay into a nondegenerate pair of herald (800 nm) and signal
(1550 nm) photons. The photons are then split at a dichroic mir-
ror, whereafter the signal photons have to pass a narrow-band filter
(ωfilter = ω0). Finally the near-infrared photons are used as a herald
for photons in the telecom regime.

This array coupling profile gives rise to a band struc-
ture of eigenfrequencies with corresponding eigenmodes.
The Hamiltonian can be studied by calculating these
eigenmodes of the linear terms (the coupling and free-rotating
terms) and then transforming the PDC terms to this eigenmode
basis. This results in a multimode squeezing Hamiltonian
in the eigenmode basis whose time evolution can then be
solved. The evanescent coupling of light between neighbor-
ing waveguides is heavily wavelength dependent, as shown
experimentally in Ref. [7] (see Appendix A and reference
therein). We will focus on a regime where the PDC photons
are at nondegenerate wavelengths (b̂ modes are at approx.
810 nm and â modes are at 1550 nm, as in de Chatellus et al.
[29]). This means that the herald photons remain confined to a
single waveguide channel whereas the signal photons couple
coherently throughout the array. This regime has already been
demonstrated in a single waveguide channel [9].

The Hamiltonian density of the WGA, which has been
studied extensively in Refs. [6–8], is,

Ĥ (ωa, ωb, z, t )

=
M∑

j=1

βa(ωa)â†
j â j +

M∑
j=1

βb(ωb)b̂†
j b̂ j + Ca

M−1∑
j=1

â†
j â j+1

+
∫

dωp

M∑
j=1

d j (z)� j (ωp, t )â†
j b̂

†
j + H.c.. (1)

Here the first two summations (over all M waveguide
channels) describe the free rotation of the signal and her-
ald fields, the third summation describes the linear coupling
between nearest-neighbor waveguide channels of the signal
fields. The operators â†

j , b̂†
j (â j, b̂ j) are the creation (annihi-

lation) operators for the signal (herald) modes, respectively.
We already assume that the herald field does not couple
to the other waveguide modes to simplify the Hamiltonian.
The propagation constant of the light in a single, uncoupled
waveguide is denoted by βν (ων ), where ων is the frequency
of that light, and Ca is the coupling parameter of the signal
modes (at approximately ωa = 1550 nm). � j (ωp, t ) is the
time-dependent amplitude for the classical pump field, where
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we assume a continuous wave source with frequency ωp in
waveguide j and is thus a delta function δ(ωp). The full
Hamiltonian then involves all frequencies over the length of
the crystal,

H (t ) =
∫ L

0
dz

∫
dωa

∫
dωb Ĥ (ωa, ωb, z, t ). (2)

The function d j (z) represents the periodic poling pattern
of the waveguide channel, which is the domain of up- and
down-poling regions. This enables the quasi-phase-matching
process, which can readily be seen when d (z) is written as a
Fourier series [30],

d (z) =
∞∑

n=1

dnei2nπz/	 (3)

where 	 is the period of the poling. Usually, as an approxima-
tion, only the first term is kept for subsequent analysis. This
poling pattern can be engineered to selectively phase match
different eigenmodes by changing the period of the poling and
in principle can take different patterns for each channel j [13].
We use this to create NOON states, as described in a future
section.

The linear Hamiltonian of the â j modes can be diagonal-
ized by unitary transform to the set of eigenmodes, Âk (which
are superpositions of the individual â operators), with

Âk =
M∑

j=1

μk, j â j =
√

2

M + 1

M∑
j=1

sin

(
π jk

M + 1

)
â j, (4)

The corresponding eigenvalues for the kth eigenmode are
given by


a,k = βa(ωa) + 2Ca cos

(
kπ

M + 1

)
, (5)

which act as modified propagation constants for the eigen-
modes [31]. The Hamiltonian density transformed to the
Â-mode picture is then,

Ĥ (ωa, ωb, z, t )

=
M∑

k=1


a,kÂ†
kÂk +

M∑
j=1

βb(ωb)b̂†
j b̂ j

+
M∑

j=1

d j (z)� j (ωp, t )b̂†
j

M∑
k=1

μ∗
j,kÂ†

k + H.c., (6)

where μ∗
jk the transformation from eigenmode to the physical

basis (â j = ∑M
k=1 μ∗

k, j Âk). We then transform the Hamiltonian
to the interaction picture to remove the free-rotating terms to
arrive at,

Ĥint (ωa, ωb, z, t )

=
M∑

j,k=1

� j (ωp, t ) exp [i(ωp, j − (ωa + ωb))t]

× d j (z) exp [i(βp, j − (
a,k + βb))z] μ∗
k, j Â

†
k b̂†

j + H.c..

(7)

We now integrate Ĥint (z, t ) over the z variable (from 0 to L,
the length of the crystal) which leads to the phase-matching
function �(�β ). If we assume dj (z) can be approximated
with the first-order term ei2πz/	 [30] this integral will yield
the phase-matching function,

�(�β ) =
∫ L

0
dz exp

[
i

(
βp, j − (
a,k + βb) − 2π

	

)
z

]
. (8)

The phase-matching function can be written as,

�(�β ) ∝ sinc

(
�β

L

2

)
e−i�β L

2 , (9)

where

�βk (ωp, ωa, ωb) = βp(ωp) − 
a,k − βb(ωb) − 2π

	
. (10)

Phase-matched terms have �β = 0 and yield a strong signal
as the light evolves through the WGA. Terms that are phase
mismatched oscillate and decay in relative amplitude during
evolution. The desired output state can thus be created by
altering the poling period 	. We will discuss this in the next
section.

The time variable is integrated over, as in Ref. [32], by
extending the limits to ±∞ and we ignore time-ordering
effects [33],∫ ∞

∞
dt exp [i(ωp − ωa − ωb)t] = 2π [δ(ωp − (ωa + ωb)],

(11)

which then yields the energy conservation factor [34]. This
leads to perfect correlation between the signal and herald
photon frequencies and modifies the pump spectral function to
�(ωa + ωb). As we consider a spectral function with narrow
width and filter at the output at a specific frequency we can as-
sume that only two frequencies take part in the dynamics. This
simplifies the Hamiltonian as we can consider the dynamics of
only two specific matching frequencies.

The combination of � j and � will determine which pairs
of modes (Âk, b̂ j) are created within the device and this can be
controlled by pump shapes and periodic poling patterns. After
these integrals are taken, the evolution operator, and the state
at the output of the WGA, can now be written as,

|ψ〉 = exp

[
− i

2h̄
(M̂† + M̂ )

]
|0〉, (12)

where M̂† = ∑
j,k Mj,kÂ†

j b̂
†
k . If we were only interested in

low photon numbers we could simply expand the exponential
operator perturbatively to first order. As we wish to go beyond
first-order terms, we will use operator-ordering techniques
[35] to allow us to write the unitary evolution operator in
(12) in a normally ordered form. This means that the created
state that is a multimode squeezed vacuum state, which can be
written as,

|�〉out = exp

(
− i

h̄

M∑
k=1

M∑
j=1

ϒ j,kÂ†
k b̂†

j

)
|0〉 (13)
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As the exponent is a quadratic operator it can be written as,

1

2
[Â†, b̂†]

[
0 ϒ

ϒ t 0

][
Â†

b̂†

]
= [Â†, b̂†]T

[
Â†

b̂†

]
. (14)

We note that T is a symmetric matrix, as is neces-
sary for the operator-ordering techniques and [Â†, b̂†] =
[Â†

1, . . . , Â†
M , b̂†

1, ..., b̂†
M ] is a vector of the creation operators.

The matrix T is related to M through the operator-ordering
techniques [35].

At the output of the WGA we separate the signal and herald
photons via a dichroic mirror. Photons in the b̂ mode(s) can
then be measured to herald the presence of the photons in the
Â modes, thereby creating states to be used for QIP. In an ex-
perimental realization we can readily implement this scheme
using standard optical components. Afterwards the photons in
the visible regime pass the narrow-band filter (ωfilter = ωb) to
ensure that they are indistinguishable in the frequency domain
and interfere accordingly. In the end, we record the click
patterns of the visible-spectrum photons as a heralding for the
coupling photons in the telecom band.

This arrangement allows for a compact device with no
interfacing losses because both processes are combined in a
single chip. In addition the shorter overall length also reduces
losses, as typically these scale with length.

IV. QUANTUM STATES CREATED BY WGA

In this section we describe various states that can be created
from this process, starting with the direct relation to linear
optics.

1. Single eigenmode per channel

The first case we consider is one designed to recreate the
operation of linear optics, where we generate single-photon
Fock states that are then coupled into different spatial modes
of an interferometer. To do this, we phase match a single
eigenmode per waveguide channel, which means that the pol-
ing period in the jth channel, 	 j , is channel dependent,

	 j = 2π (βp − 
a, j − βb)−1, (15)

which serves to phase match the jth eigenmode to the jth
channel. This means that ϒ is a diagonal matrix,

ϒ =

⎡
⎢⎢⎣

ϒ1,1 0 . . . 0
0 ϒ2,2 . . . 0
...

...
. . .

...

0 0 . . . ϒM,M

⎤
⎥⎥⎦.

This means that each eigenmode only couples to one herald
mode and thus after measuring the herald photons in the set of
modes {k} we have prepared the state of telecom photons,

|ψ〉 = 1

N
∏
{k}

ϒk,kÂ†
k |0〉 →

∏
{k}

Â†
k |0〉, (16)

where N is a normalization constant. The magnitude of each
ϒk,k is not important, as the postselection effect is to remove
these factors after normalization. However, we assume that
the ϒ should be within an order of magnitude of each other
to ensure suitable postselection rates. The signal photons here
are created in the eigenmode basis and not the usual physical

basis and are therefore already in a superposition of physical
modes, which may be useful for QIP depending upon the
transformation μ.

2. N-photon Fock states

We next show how this process can be used to create
N-photon Fock states. These states can be created with linear
optics albeit with a probability that decreases exponentially,
either due to the nature of single-photon generation or inter-
fering multiple noninteracting photons, such that exit in the
same mode [36–38]. Here we present a method that avoids
the latter cost, simply leaving the generation probability of
N photons, which can be increased by pumping multiple
waveguide channels.

We can create N-photon Fock states by phase matching
the same eigenmode, say Â†

1, in each channel, i.e., the poling
period is channel independent, 	 j ≡ 	. This may not be
possible in every channel due to zero overlap between some
channels and the desired eigenmodes, i.e., μ j,k = 0, which
is a function of the coupling configuration. The state at the
output is

|ψ〉 = exp

(
− i

h̄
Â†

1

∑
j

ϒ j b̂
†
j

)
|0〉 , (17)

where ϒ is,

ϒ =

⎡
⎢⎢⎣

ϒ1,1 ϒ1,2 . . . ϒ1,N

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎦.

When we measure photons in any of the b̂ modes we will
have created a photon in the eigenmode Â1 and due to the
nature of the phase matching all the photons created are in this
eigenmode. Photon number resolving detectors may be neces-
sary to properly distinguish the output states and increase the
fidelity of the device, and will also allow for b̂ photons in the
same mode to contribute to the N-photon Fock state. Placing
a multimode interferometer that enacts the transformation μ

at the output of the WGA, the state will be converted from the
eigenmode basis, {Â}, to the physical basis, {â}, yielding the
N-photon Fock state in that basis.

N-photon Fock states can also be created probabilistically
by multiplexing single-photon sources [39] from linear optics.
Using the optimal interferometer [36], it was shown that the
probability to create such a state scales as Pr(N ) ≈ N!/NN ≈
e−N for large N . This ignores the probability to generate the
initial N single-photon states, which will scale as pN , where
p is the probability to generate a photon pair from PDC.
The total probability to generate the output state is therefore
≈ (p/e)N .

We create our desired state after coherent, unitary time
evolution and herald only on photon detection events as op-
posed to both pair creation events and the correct multiplexed
output of photons from the device. The main benefit of this
is that it eliminates the probabilistic creation of the N-photon
state from the N single photons (with e−N scaling), leaving
the generation probability of the N photons. This can be seen
from the Bloch-Messiah decomposition of the matrix T (that
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FIG. 2. Schematic of the Bloch-Messiah decomposition into a
set of single-mode squeezers followed by a linear interferometer.
Ŝ12 is the operator for the SMSS, which have identical squeezing
parameter, r.

describes the state), which shows that it is equivalent to a
two-mode squeezed state, which can create an N-photon Fock
state when conditioned on measuring N herald photons in the
other channel. The difference in our state is that the N herald
photons are spread over more channels.

As the operator, (17), is quadratic we can decompose it
using the Bloch-Messiah decomposition into a set of initial
single-mode squeezed states followed by a linear interfer-
ometer, see Fig. 2. When we decompose this Hamiltonian
we find that it is equivalent to two single-mode squeezed
states (with identical squeezing parameters) followed by a
linear interferometer. This input state can also be written as
a two-mode squeezed state (TMSS), which has recently been
used to create N-photon Fock states [38]. The probability to
generate 2N photons (herald and signal photons) is then given
by the photon number distribution from a TMSS, which is
Pr(2N ) = sinh2N r [40].

3. NOON states

Another class of states that can be created in a similar
fashion are the NOON states,

|φ〉 = |N, 0〉 + |0, N〉 = (
Â† N

1 − Â† N
2

)|0〉, (18)

which can be factorized, into N terms, as,

Â†N
1 − Â†N

2 =
N−1∏
j=0

(Â†
1 + ei j2π/N Â†

2), (19)

where the phases correspond to the N th roots of unity.
This state can be created in the WGA by changing

the periodic poling, dj (z), during the waveguide channel
[13]. One way to achieve this is to phase match the first
eigenmode, Â1, and then change the poling period to phase
match the second eigenmode Â2. This changes the phase-
matching condition and therefore what eigenmodes are
created in the PDC process. The relative phase between each
eigenmode, eiφ j , can be adjusted by shifting the patterns rela-
tive to each other and is different in each channel. The relative
phase of terms between channels [i.e., terms in the expansion
(19)] is not important, in the same way it is not important
between single Fock states entering an interferometer. The
shape of the ϒ matrix is,

ϒ =

⎡
⎢⎢⎣

ϒ1,1 ϒ1,2 0 . . . 0
ϒ2,1 ϒ2,2 0 . . . 0

...
...

. . .
...

ϒN,1 ϒN,2 0 . . . 0

⎤
⎥⎥⎦

with ϒ j,1 = 1 and ϒ j,2 = eiφ′
j .

M̂ =
∑
k, j

ϒk, j Â
†
k b̂†

j

=
∑

j

(Â†
1 + eiφ j Â†

2)b̂†
j .

(20)

When we decompose the matrix � via the Bloch-Messiah
decomposition we find that this requires four single-mode
squeezed states with identical squeezing parameters. As be-
fore with the N-photon states, the NOON state is created in
the eigenmode basis and so we must transform the photons
back to the physical basis.

V. PROSPECTS FOR EXPERIMENTAL
IMPLEMENTATION AND SOURCES OF ERROR

The main challenge for the experimental implementation
of state generation with a nonlinear-waveguide array is the
requirement on the involved pumping scheme, which we need
to create the correct output state. The unique source of error in
the state creation process described above is the production of
other, unwanted eigenmodes of the system that can occur as
these terms have low, nonzero, phase mismatch. These non-
phase-matched terms oscillate in amplitude, which may not
be zero at the output of the device, due to the finite length of
the WGA. This will create extra terms in the Hamiltonian and
thus the matrix ϒ , in addition to the desired phase-matched
terms. These errors stem from the spectral width σp of the
pump function, �(ωp), and the width of the phase-matching
functions �(ka, ωa) for the various eigenmodes. In this
section we investigate the necessary requirements to realize
this scheme using current technology.

To illustrate the source of errors in state creation, we
will consider a WGA chip with constant coupling between
nearest neighbor waveguides, i.e., Cj, j+1 = C and nine WGA
channels. We filter at a particular frequency ωb. The eigen-
frequencies are given by (5), and the spatial, quasimomentum
part that defines the eigenmodes is given by,

2C cos

(
kπ

M + 1

)
. (21)

To ensure that we only pump the desired combination of
signal, herald frequencies (ωa, ωb) and eigenmode(s) in each
waveguide, the width of the phase-matching function, �ωPM

has to be lower than the frequency gap between neighbor-
ing eigenmodes, � j, j+1 = |
 j − 
 j+1|. This can be realized
by having a sufficiently long crystal, as the phase-matching
function � decays with length, as can be seen in Eq. (9).
This condition coupled with a narrow spectral pump function
gives two constraints on the three variables and finally filtering
selects the desired set.

The spectral gap between nearest-neighbor eigenmodes is

� j, j+1 = |β j − β j+1| = 4C sin

(
(2 j+1)π

2(M + 1)

)
sin

(
1

2

π

M + 1

)

≈ 2Cπ

M + 1
sin

(
(2 j + 1)π

2(M + 1)

)
. (22)
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FIG. 3. Challenges for the experimental implementation. In
(a), we sketch a schematic of the phase-matching conditions
for the nonlinear-waveguide array. The finite width of the sin-
gle phase-matching conditions causes an overlap between different
eigenmodes. This limits the possibility to pump single eigenmodes
in different waveguides. In (b), we compare the spectral eigenmode
separation (top) to the expected phase-matching widths (bottom).
The left to right ordering of the peaks in (b) corresponds to the top
to bottom ordering in (a) of the lines. Consequently, (c) shows the
expected overlap between the ( M

2 )th and the ( M
2 + 1)th eigenmode

phase matching in Gaussian approximation. The 5% limit gives a
measure how much we can pump different eigenmodes separately.
For details concerning calculation parameters, see text.

The amplitude of the phase-matching term for the second
eigenmode is then given by sinc(�1,2L/2), where L is the
length of the crystal. The sinc function can be approximated
by a Gaussian ≈ exp[−0.193(�1,2L/2)2] [41]. It can be seen
that when the number of waveguides, M, is increased then
�1,2 decreases and the length of the crystal must be increased
to maintain the phase gap at a constant value.

We illustrate these ideas in a series of figures. We con-
sider an implementation in lithium niobate [10,42], using
the relevant refractive indices and an experimentally feasi-
ble coupling parameter of Cs = 350 m−1. In Fig. 3(a) we

show the phase-matching curves [Eq. (10), �β j = 0 ∀ j] for
each of different eigenmodes. Also shown is a sketch of the
phase-matching functions with spectral width �ωPM for each
eigenmode. We then filter at the frequency ωfilter, which takes
a cross section of the eigenmodes phase-matching functions,
shown in Fig. 3(b). The spectral separation of the different
eigenmodes �1,2 is primarily dependent on the number of
channels in the WGA and secondarily on the band structure
of the array, which is determined by the coupling parameters
of the array. The width of a single phase-matching function
�ωPM, is then determined by this separation � j, j+1 and the
length of the array, L.

In Fig. 3 we have plotted the different eigenmode phase-
matching functions for an array of L = 0.04 m and the
above-mentioned array parameters. From this figure it be-
comes clear that we should expect a significant overlap at least
for the outer phase-matching functions. To quantify this effect
for the inner phase-matching conditions (i.e., the best-case
scenario), we have calculated the overlap between neighbor-
ing phase-matching functions [i.e., the black and violet curve
of Fig. 3(b)] using the Gaussian approximation above.

To illustrate the scalability of our system, we have varied
both the length L of the WGA, as well as the number of
waveguides M, to calculate the overlap, as shown in Fig. 3(c).
As can be seen from the 5% isoline, we have to increase the
length of the sample linearly with the number of waveguides
to keep the overlap between two phase-matching functions
fixed to below a certain value. As current technology restricts
the maximum possible length of the WGA to Lmax ≈ 10 cm,
this analysis suggests 15–20 waveguides could be utilised in
an experimental implementation.

Another factor that contributes to the error of unwanted
mode creation is given by the transformation matrix μ. Ide-
ally the matrix elements μ j,k , which relates the pumped
waveguide channel k to the eigenmodes j, would be zero for
those unwanted modes. Different coupling configurations of
the waveguide channels (Cj, j+1) will have different transfor-
mations matrices μ and thus this is parameter that can be
optimized for any particular experiment.

VI. CONCLUSION

In conclusion, we have proposed the use of a different
arrangement of coupled waveguide array channels with an
intrinsic nonlinearity to create quantum states of light. We
do so by using the nonlinear behavior of the phase-matching
process that occurs during the generation of light in each
channel to create states that are not simply created with linear
optics alone. We showed that our setup has several advantages
compared to previous schemes. The classes of states that can
be generated with our scheme cover higher-order Fock states
as well as NOON states. The experimental implementation at
least for moderate number of waveguides, is possible with
current available technology. In addition, the idea of using
phase matching with postselection will be applicable to other
nonlinear optical systems and platforms.
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