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Application of Pontryagin’s maximum principle to quantum metrology in dissipative systems
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Optimal control theory, also known as Pontryagin’s maximum principle, is applied to the quantum parameter
estimation in the presence of decoherence. An efficient procedure is devised to compute the gradient of quantum
Fisher information with respect to the control parameters and is used to construct the optimal control protocol.
The proposed procedure keeps the control problem in the time-invariant form so that both first-order and second-
order optimality conditions derived from Pontryagin’s maximum principle apply; the second-order condition
turns out to be crucial when the optimal control contains singular arcs. Concretely we look for the optimal
control that maximizes quantum Fisher information for the “twist and turn” problem. We find that the optimal
control is singular without dissipation but can become unbounded once the quantum decoherence is introduced.
An amplitude constraint is needed to guarantee a bounded solution. With quantum decoherence, the maximum
quantum Fisher information happens at a finite time due to the decoherence, and the asymptotic value depends
on the specific decoherence channel and the control of consideration.
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I. INTRODUCTION

Open-loop optimal control theory, also known as Pontrya-
gin’s maximum principle (PMP) [1–4], is a powerful tool in
classical control theory. It deals with minimizing a termi-
nal cost function conditioned on the dynamics that contains
control variables parametrized as a function of time. The
core of PMP is the calculus of variations. In particular, it
provides a computationally efficient procedure to evaluate
the gradient of the terminal cost with respect to the control
variables, as well as optimality conditions that constrain the
general behavior of an optimal control. Many problems in
modern quantum technology [5–10] naturally fit this frame-
work. Important examples include quantum state preparation
[11–17] where the terminal cost is the overlap to the known
target state, the “continuous-time” variation-principle-based
quantum computation [18–22] where the terminal cost is
the ground-state energy, and quantum parameter estimation
(quantum metrology) [23–37] where the cost function is the
Fisher information. In a more general context, optimal control
has applied to the stabilization of ultracold molecules [38] and
cooling of quantum systems [39–41].

Maximal quantum Fisher information (QFI) has been used
for optimal estimation of Hamiltonian parameters [42–45].
Numerically, the Fisher information can be optimized by e.g.,
gradient ascent pulse engineering (GRAPE) [46] both for
single- and multiple-parameter estimations in the presence of
noise [47–50]. Recently we provide an alternate procedure
[51] to compute the gradient of quantum and classical Fisher
information for closed quantum systems. In this work, we
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extend our previous work to take the quantum decoherence
into account. To consider the decoherence effect requires den-
sity matrix (DM) as dynamical variables, and the evaluation
of QFI becomes more involved compared with that based
on wave functions. As a first step we develop an efficient
procedure based on the augmented dynamics [51] that allows
us to stably compute the quantities introduced by PMP. With
this numerical tool, we investigate the decoherence effect by
solving the “twist and turn” problem [31,44,52] under various
decoherence channels. In the presence of quantum decoher-
ence, there are competing mechanisms for QFI. On the one
hand, QFI increases upon elongated interrogation which fa-
vors a long evolution time. On the other hand, QFI decreases
upon reduced coherence, which favors a short evolution time.
One naturally expects a finite optimal evolution time that gives
the maximum QFI—this is roughly true but a more precise
answer hinges on the interplay between the decoherence-free
subspace [53] and the control of consideration. In terms of
control, we find that the optimal control is singular without
decoherence, and an amplitude constraint turns out to be nec-
essary for a bounded solution in the presence of decoherence.

The paper is organized as follows: In Sec. II we present
the problem and provide the analysis framework based on
PMP. First-order and second-order necessary conditions are
explicitly stated. The procedure that efficiently computes the
switching function is described in detail. In Sec. III, we
give the optimal controls and the corresponding QFI for
the two-spin problems under different dissipation channels.
The numerical solutions are checked against the first- and
second-order optimality conditions. Conclusions are given in
Sec. IV. Appendices are provided to fill some intermediate
steps skipped in the main text.
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II. PROBLEM STATEMENT AND OPTIMAL CONTROL

A. Twist and turn Hamiltonian and quantum
Fisher information

The master equation of the density matrix ρ̂ for the most
general type of Markovian and time-homogeneous systems
can be expressed as

∂

∂t
ρ̂ = −i[Ĥ (t ), ρ̂] +

{
d ρ̂

dt

}
channel

, (1)

which contains a unitary and a dissipative part. The
unitary dynamics considered here is the twist and turn
Hamiltonian [31,44,52]

Ĥ (t ) = χ Ĵ2
z + ωĴz + u(t )Ĵx, (2)

with [Ĵi, Ĵ j] = iεi jk Ĵk (i = x, y, z). The initial state is chosen
to be the nonentangled maximum-eigenvalue state of Ĵx, also
known as the spin coherent state, and will be denoted |�coh-x〉.
The relevant physical realizations include interacting (gener-
alized) spins [32,43], the two-arm interferometer [54,55], and
superradiance [56,57]. In this work Eq. (2) will be represented
by a set of N all-to-all interacting spins where Ĵi = ∑N

n=1
σi
2

(i = x, y, z and the σ are Pauli matrices). The dissipative part
{ d ρ̂

dt }channel is classified by the “decoherence channel” whose
explicit form will be specified shortly. In Eq. (2), Ĵ2

z is the
source of entanglement and referred to as the “twist” term; Ĵx

is the external control and the “turn” term; ω is the parameter
to estimate. The optimal control problem is to find a u(t ) that
maximizes the QFI, which is defined as

QFI(T ) = Tr
[
ρ̂(T )L̂2

ω(T )
] ≡ −CQ (3)

at a given evolution time T , with the symmetric logarithmic
derivative L̂ω,

∂ωρ̂ ≡ 1
2 (L̂ωρ̂ + ρ̂L̂ω ). (4)

In Eq. (3), the negative QFI is used as the terminal cost func-
tion CQ to minimize. In the diagonal basis of ρ̂, where ρ̂|i〉 =
λi|i〉, L̂ω = ∑′

i, j
2〈i|∂ωρ̂| j〉

λi+λ j
, where the

∑′ is over nonzero λi +
λ j .

The twist and turn problem without quantum decoher-
ence is studied extensively [31] and two important limits are
provided. If the initial state is the spin coherent state, then
QFI = QFISQL = Nt2 is referred to as the standard quantum
limit (SQL) which is the largest QFI without entanglement. If
the initial state is a Heisenberg-limit (HL) state (also known
as a GHZ state) where

|ψHL〉 = 1√
2

[∣∣∣mz = N

2

〉
+

∣∣∣mz = −N

2

〉]
, (5)

then QFI = QFIHL = N2t2 which is the largest QFI one can
get [25]. Our problem setup follows Ref. [44] where the time
required to reach an entangled state is counted as the cost.
As explicitly shown in Ref. [51], in the large-χ limit, the
optimal control steers the system to HL state and then stops;
the resulting QFI is approaching QFIHL upon increasing the
evolution time. In the presence of decoherence, there appears
no general statements about the QFI bound to our knowledge
but a super-SQL N4/3 scaling is found by using continuous

nondemolition measurements [58]. The PMP formalism can-
not guarantee the global maximum QFI, but it does provide
statements about the optimal control protocol.

B. Decoherence channels and decoherence-free subspace

With Eq. (2) represented by N interacting spins, the quan-
tum decoherence is described by{

d ρ̂

dt

}
channel

= γ
∑

i

(
L̂iρ̂L̂†

i − 1

2
{L̂†

i L̂i, ρ̂}
)

. (6)

L̂ is the Lindblad operator whose explicit form specifies the
decoherence channel. The decoherence on each spin is as-
sumed to be identical in the N-spin system. We use i to label
the spin and consider three standard decoherence channels:
the depolarization channel where

{
d ρ̂

dt

}
σ0

= γ

3

N∑
i=1

∑
α=x,y,z

(
L̂i,αρ̂L̂†

i,α− 1

2

{
L̂†

i,αL̂i,α, ρ̂
})

L̂i,α= σ
(i)
α
2

,

(7)

the dephasing channel where

{
d ρ̂

dt

}
σz

= γ

N∑
i=1

(
L̂iρ̂L̂†

i − 1

2
{L̂†

i L̂i, ρ̂}
)

L̂i= σ
(i)
z
2

, (8)

and the flipping channel where

{
d ρ̂

dt

}
σx

= γ

N∑
i=1

(
L̂iρ̂L̂†

i − 1

2
{L̂†

i L̂i, ρ̂}
)

L̂i= σ
(i)
x
2

. (9)

In Eqs. (7) to (9), σ (i)
α acts only on the ith spin and should

be formally written as a tensor product σ (i)
α ⊗ ( j �=i ⊗ σ

( j)
0 )

with σ0 ≡ I being the 2 × 2 identity matrix. All eigenvalues
of { d ρ̂

dt }channel are nonpositive; the subspace of zero eigen-
value, excluding the identity i ⊗ σ0, is referred to as the
decoherence-free (DF) subspace because any state within this
subspace does not dissipate. The DF space is channel depen-
dent and is the only allowed nonunity component of ρ̂ in the
long-time limit. Given that the unity component of ρ̂ has zero
sensing capability, the DF subspace plays a very crucial role
in the asymptotic nonzero QFI; this will be concretely seen in
Sec. III.

Because neither the dynamics nor the initial state distin-
guishes individual spins, the DM only contains the symmetric
permutation of tensor products. We introduce the “bar” no-
tation to represent the summation of all permutations. For
example,

σx(⊗σz )2 = σx ⊗ σz ⊗ σz + σz ⊗ σx ⊗ σz + σz ⊗ σz ⊗ σx.

(10)

This notation will be used for the rest of discussion.

C. Dynamics and important quantities from Pontryagin’s
maximum principle

In this section we summarize expressions relevant for the
metrology application, and details of applying PMP to quan-
tum problems can be found in many references [11,51,59,60].
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Following Ref. [51], we regard ρ̂ and ∂ωρ̂ ≡ ρ̂ω as indepen-
dent dynamical variables. The dynamics for the augmented
system composed of (ρ̂, ρ̂ω ) is{

∂
∂t ρ̂ = −i[Ĥ0 + u(t )Ĥ1, ρ̂] + { d ρ̂

dt

}
,

∂
∂t ρ̂ω = −i[Ĥ0 + u(t )Ĥ1, ρ̂ω] − i[∂ωĤ , ρ̂] + { d ρ̂ω

dt

}
,

(11)

where the initial conditions are ρ̂(0) = |�coh-x〉〈�coh-x| and
ρ̂ω(0) = 0. We note that ρ̂ does not depend on ρ̂ω; −i[∂ωĤ , ρ̂]
is the source term of ρ̂ω. In optimal control theory, the
control system described by Eqs. (11) is referred to be “time-
invariant” because the time dependence of dynamics is exclu-
sively through the control u(t ); it is referred to be “control-
affine” because the dynamics depends linearly on u(t ).

For a given dynamical system, PMP introduces an auxiliary
problem for costate variables that satisfy similar dynamics for
the original dynamical variables; by doing so the necessary
conditions for an optimal solution can be compactly expressed
and thus efficiently computed. With the augmented dynamics
(11), we denote the corresponding costate variables as λ̂ ↔ ρ̂

and λ̂ω ↔ ρ̂ω. The control-Hamiltonian (c-Hamiltonian, Hoc)
is defined as

Hoc = Tr{λ̂(∂t ρ̂ )} + Tr{λ̂ω(∂t ρ̂ω )} ∼ ∂CQ

∂T
, (12)

which is a scalar corresponding to the time derivative of the
terminal cost (negative of QFI). Negative (positive) Hoc thus
indicates an increase (decrease) of QFI(T ) upon increasing T .
The switching function � is

�(t ) = −iTr{λ̂[Ĥ1, ρ̂]} − iTr{λ̂ω[Ĥ1, ρ̂ω]} ∼ ∂CQ

∂u(t )
,

(13)
which corresponds to the gradient of the terminal cost func-
tion with respect to the control and has been used to obtain
the numerical solution in the gradient-based optimization al-
gorithm [51]. The costate equations of motion obtained by
∂
∂t λ̂ = − ∂Hoc

∂ρ̂
and ∂

∂t λ̂ω = − ∂Hoc
∂ρ̂ω

are

{
∂
∂t λ̂ = −i[Ĥ0 + u(t )Ĥ1, λ̂] − i[∂ωĤ , λ̂ω] − {

dλ̂
dt

}
,

∂
∂t λ̂ω = −i[Ĥ0 + u(t )Ĥ1, λ̂ω] − { dλ̂ω

dt

}
.

(14)

We have used L̂i = L̂†
i in the derivation. The boundary condi-

tions for costate variables λ̂ and λ̂ω and can be symbolically
described as λ̂(T ) = + ∂CQ

∂ρ̂† , λ̂ω(T ) = + ∂CQ

∂ρ̂
†
ω

. Due to its prac-
tical importance the derivations will be provided shortly in
Sec. II D. Once ρ̂(t ), ρ̂ω(t ), λ̂(t ), and λ̂ω(t ) are solved, Hoc(t )
and �(t ) can be evaluated. It is worth mentioning that while
PMP is designed for real-valued dynamical variables [4], the
formalism provided here preserves the dynamics in its natural
Lindblad form with complex-valued dynamical and costate
variables (i.e., ρ̂ and λ̂) and at the same time guarantees a
real-valued switching function and c-Hamiltonian.

According to PMP, the first-order necessary conditions for
an optimal control u∗(t ) are such that

u∗(t ) =
⎧⎨
⎩

|umax| �(t ) < 0
−|umax| �(t ) > 0
undetermined �(t ) = 0,

(15a)

Hoc(t ) = const. (15b)

Conditions (15) can be used to quantify the quality of
a solution. When � �= 0, controls take the extreme values
and are referred to as “bang” control. When � = 0 over a
finite range of time, the control values cannot be determined
from the first-order condition; the resulting optimal control is
referred to as “singular” control.

Assuming the control is singular over a finite time interval,
then all time derivatives of � have to vanish, including the
second derivative

�̈ ≡ u(t )〈[g, [ f , g]]〉(t ) + 〈[ f , [ f , g]]〉(t ). (16)

Here 〈[g, [ f , g]]〉(t ) and 〈[ f , [ f , g]]〉(t ) simply represent two
real-valued functions of time which can be straightforwardly
computed for a given control u(t ) [61]. Expressions for flip-
ping channels will be provided in the Appendix A [Eq. (A3)].
According to PMP, a singular control requires

using(t ) = −〈[ f , [ f , g]]〉(t )

〈[g, [ f , g]]〉(t )
, (17a)

〈[g, [ f , g]]〉(t ) � 0. (17b)

Equation (17b) is known as the Legendre-Clebsch condi-
tion and is the second-order necessary condition for optimal
controls (see Chap. 4 of Ref. [4]). If gradient-based method
finds the vanishing �(t ) over a time interval, the corre-
sponding control should be numerically close to Eq. (17a).
Moreover, if we know that the optimal control is singular,
Eq. (17a) provides a self-consistency equation for determin-
ing u∗(t ). Equation (17a) has been applied to the dissipative
qubit system [53] and continuous-time quantum computation
[62]. Equation (17b) is seldom applied to any realistic control
systems due to its complexity but we shall use it to locate the
onset of instability beyond which bang controls are intrinsi-
cally needed for a bounded solution [see Sec. III C].

D. Costate boundary condition

To avoid ambiguities, we will write the costate boundary
conditions (at the evolution time T ) in component forms. The
symmetric logarithm derivative L̂ω is defined as

2ρω,i j =
∑

k

(ρikLω,k j + Lω,ikρk j ). (18)

We will need δLω,i j

δρab
and δLω,i j

δρω,ab
which in component form in-

clude four indices.

2
∂ρω,i j

∂ρab
= 0 =

∑
k

(
ρik

∂Lω,k j

∂ρab
+ ∂Lω,ik

∂ρab
ρk j

)

+ (δiaLω,b j + Lω,iaδb j ),

2
∂ρω,i j

∂ρω,ab
= 2δiaδ jb =

∑
k

(
ρik

∂Lω,k j

∂ρω,ab
+ ∂Lω,ik

∂ρω,ab
ρk j

)
. (19)

Equations (19) allow us to solve δLω,i j

δρab
and δLω,i j

δρω,ab
; the eas-

iest way is to solve them in the eigenbasis of ρ̂ and then
transform them back [see the expression below Eq. (4)]. ρi j

and ρω,i j are independent and their partial derivatives vanish.

Also, we solve δLω,i j

δρab
for all i, j and given a, b; similarly

for δLω,i j

δρω,ab
. Although δLω,i j

δρab
has N4 components (each i, j, a, b

can go from 1 to N) and in principle requires N4 linear
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TABLE I. Important quantities and their symbols. ω is the external parameter to be estimated.

Classification Symbol Description

Quantities ρ̂ Density matrix, main dynamical variables
from ρ̂ω ∂ωρ̂, complex-valued matrix, augmented dynamical variable
original L̂ω ρ̂ω = 1

2 {ρ̂, L̂ω} symmetric logarithm derivative
problem QFI Tr(ρ̂L̂2

ω ), quantum Fisher information, terminal cost to maximize
Quantities λ̂ Complex-valued matrix, costate variable
introduced λ̂ω ∂ωλ̂, complex-valued matrix, augmented costate variable
by PMP � Switching function, a real-valued scalar, 0 for singular control

Hoc Control Hamiltonian, a real-valued scalar, constant for optimal solution
〈[g, [ f , g]]〉 �̈ ≡ 〈[g, [ f , g]]〉u(t ) + 〈[ f , [ f , g]]〉, real-valued scalar, negative for singular control

Dynamics Ĥ (t ) Hamiltonian, complex valued matrix describing the unitary dynamics
specification { dρ̂

dt }channel Operator describing quantum decoherence, subscript indicating dissipation channel

equations, one practically decomposes them into N × N de-
coupled subproblems, with each subproblem having N × N
variables.

Defining the terminal cost function as the negative of QFI,
i.e., CQ = −∑

i j ρi j (L̂2
ω ) ji we get the boundary conditions for

costates as

λba = λ∗
ab = − ∂

∂ρab
Tr

(
ρ̂L̂2

ω

) = −
⎡
⎣(

L̂2
ω

)
ba

+
∑
i jk

ρi j

(
δLω, jk

δρab
Lω,ki + Lω, jk

δLω,ki

δρab

)⎤
⎦,

λω,ba = λ∗
ω,ab = − ∂

∂ρω,ab
Tr

(
ρ̂L̂2

ω

) = −
⎡
⎣∑

i jk

ρi j

(
δLω, jk

δρω,ab
Lω,ki + Lω, jk

δLω,ki

δρω,ab

)⎤
⎦. (20)

Beware of the transpose relationship between the costate ma-
trix and the partial derivative that takes the complex-valued
dynamical variables into account. Expressions for classical
Fisher information are provided in Appendix B.

E. Short summary and advantages of augmentation

As the notations are a bit involved, in Table I we summarize
the main variables and their primary roles. We distinguish
the variables of the original dynamics (the density matrix and
its derivatives) from those introduced by PMP. In addition to
costate variables, PMP introduces at least three relevant scalar
functions. The switching function � serves as the gradient
of terminal cost with respect to control u(t ) and is the most
crucial practical step in numerical optimization. The gradient-
based optimization procedure reads

u(n+1)(t ) ← u(n)(t ) − learning rate × �(t ). (21)

The condition (15a) is intuitive as optimality implies a van-
ishing gradient. The c-Hamiltonian Hoc corresponds to ∂CQ

∂T
and is a constant during the entire evolution for an optimal
solution [Eq. (15b)]. The latter may not be intuitive and the
flatness of Hoc(t ) can be an indicator of the solution quality
no matter the controls are bang or singular (recall bang con-
trol implies nonzero �). Finally, 〈[g, [ f , g]]〉 and 〈[ f , [ f , g]]〉
are relevant for singular controls, which seem prevalent in
quantum problems [51,53,63]. In particular, Eq. (17a) directly
gives the values on the singular controls and can be used in
determining optimal solutions.

The augmented dynamics (11) is designed to keep the re-
sulting control problem time-invariant and we now elaborate
its advantages in both obtaining the solution and quantifying
the solution quality. For obtaining the solution, it greatly
reduces the computational cost of evaluating the gradient
�(t ) ∼ δC

δu(t ) because Eq. (13) only requires u(t ) at a single

time point t . In contrast, evaluating δC
δu(t ) using the straight-

forward GRAPE algorithm [46,47] would need the history of
u(t ′) with 0 � t ′ � t (see the Appendix in Ref. [47]). Cer-
tainly once a proper augmented dynamics is identified, the
GRAPE algorithm and PMP are equivalent in computing the
gradient. In this sense what PMP provides is the criterion (i.e.,
to make the control problem time-invariant) of the suitable
augmented dynamics which is terminal-cost specific. Once the
control system is kept time-invariant and control-affine, PMP
offers two additional optimality conditions, i.e., Eq. (15b)
and Eqs. (17), that are beyond the gradient and can be used
to further constrain the optimal solution. For example the
flatness of c-Hamiltonian has been used to quantify the dis-
cretization error [51]. As will be shown in Sec. III, applying
the second-order conditions [Eqs. (17)] reveal that the optimal
control has to contain the bang segments to be bounded in
some dissipation channel.

III. RESULTS FOR TWO-SPIN SYSTEMS

A. Overview and depolarization channel

In this section we provide detailed results for two-spin
systems under three dissipation channels. We focus on the
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FIG. 1. (a) Reference problem for two-spin, χ = 10, T = 1. All
necessary conditions are satisfied: |�(t )| is small (note its values are
multiplied by 100) in the plot; Hoc(t ) is flat; 〈[g, [ f , g]]〉 is negative;
the optimal control based on gradient is close to that obtained from
Eq. (17a). Tr[ρ̂HLρ̂(t )] approaches unity around t = 0.2, indicating
that the system is steered to the HL state. (b) The QFI for depolar-
ization channel as a function of evolution time. QFI with control is
larger than that without control. The maximum QFI(T ) corresponds
to vanishing Hoc.

strong-coupling limit where the dimensionless parameter
NχT  1 (χ has the dimension of energy and h̄ ≡ 1 is used);
specific parameters used in this section are N = 2, χ = 10,
ω = 0, γ = 1.5. The choice of γ , which has the dimension of
1/time, is such that the decoherence effect can be observed
around T = 1–4. As a reference, Fig. 1(a) gives the optimal
control without decoherence (γ = 0) for T = 1. All first-
order and second-order necessary conditions are numerically
satisfied (see figure caption for details). Without decoherence,
the control in this limit brings the system quickly to the HL
state [Eq. (5)] during the early evolution and stops [51]. This
is explicitly shown in Fig. 1(a) as Tr[ρ̂HLρ̂(t )] approaches
unity around t = 0.2; here ρ̂HL is the DM corresponding to
the two-spin HL state:

ρ̂HL = 1
4 [σ0 ⊗ σ0 + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz]. (22)

With decoherence, we shall use the DF subspace and the
HL-state to understand some qualitative behavior. For the
depolarization channel, there is no DF subspace so ρ̂ →
1
4σ0 ⊗ σ0 and ρ̂ω → 0 in the long-time limit. We expect and

indeed see that the QFI(t ) is peaked at a finite T and decays
to zero as shown in Fig. 1(b). Numerically we explicitly show
that QFI with control is larger than that without control, and
the optimal evolution time [i.e., maximum QFI(T )] occurs at
Hoc = 0.

Both the dephasing and flipping channels have nonzero
DF subspace so the asymptotic QFI can be nonzero. Let us
discuss the qualitative impact of a decoherence channel by
considering its effect on the HL state—the best sensing state
without decoherence. Recall that the two-spin HL-state for is

1√
2
(| ↑↑〉 + | ↓↓〉). A decoherence channel can be regarded

as an unwanted measurement done by the environment. The
dephasing channel projects the local spin to the eigenbasis of
σz. As a result, one measurement collapses the HL-state to
either | ↑↑〉 or | ↓↓〉, which is completely insensitive to Ĵz.
The flipping channel projects the local spin to the eigenbasis
of σx. As a result one measurement collapses the HL-state to
1
2 (| ↑〉 ± | ↓〉) ⊗ (| ↑〉 ± | ↓〉) which is still sensitive to Ĵz. We
thus expect that the QFI under the flipping channel is larger
than that under the dephasing channel. As will be shown in
the following sections, simulations are consistent with this
expectation.

B. Dephasing channel

For the dephasing channel, the nontrivial (excluding the
identity matrix) DF subspace is σz ⊗ σz and σ0 ⊗ σz. Given
that −i[Ĵz, σz ⊗ σz] = −i[Ĵz, σ0 ⊗ σz] = 0, when ρ̂ is in the
DF-subspace, it cannot be the source for ρ̂ω. In the long-time
limit, both ρ̂ and ρ̂ω are in DF subspace and we have

ρ̂ = 1
4 [σ0 ⊗ σ0 + azσz ⊗ σz], ρ̂ω = bzσ0 ⊗ σz. (23)

Using Eq. (4), L̂ω = 4bz

1+az
σ0 ⊗ σz and the asymptotic QFI

32b2
z

1+az
> 0. The values of az, and bz depend on the control and

have to be determined numerically. We also note that the QFI
cannot decrease in the long-time limit because QFI(T0 + dt )
is at least as large as QFI(T0) without control and therefore a
saturation is expected.

Figure 2(a) shows QFI(T ), and we indeed see that it sat-
urates to a finite value around 0.678 in the long-time limit.
Numerically we determine az ≈ 0.0786 and bz ≈ −0.151.
Hoc approaching zero from the negative side is consistent
with the saturation behavior. The obtained optimal controls
for T = 4, 3, 2 are provided in Fig. 2(b). For T = 4, Eq. (17a)
is used to confirm its optimality. An oscillation is developed
to fight the decoherence. We find that there can be several
numerical solutions that give similar QFI(T ) and small |�(t )|,
especially when T is long. In this sense the value of optimal
QFI(T ) is more robust than the numerically obtained optimal
control.

C. Flipping channel

The flipping channel is the most interesting case be-
cause it allows the largest maximum QFI. For the flipping
channel, the nontrivial DF subspace is σx ⊗ σx and σ0 ⊗ σx.
[Ĥ (t ), σx ⊗ σx] = 0 further indicates that the component of
σx ⊗ σx does not change during the entire evolution. Be-
cause −i[Ĵz, σx ⊗ σx] = σx ⊗ σy, the σx ⊗ σx component of
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FIG. 2. (a) The QFI for dephasing channel as a function of evo-
lution time: it saturates to a nonzero value in the long-time limit.
QFI with control is larger than that without control. The maximum
QFI(T ) corresponds to vanishing Hoc. (b) Obtained optimal controls
for T = 4, 3, 2. For T = 4, the singular control using Eq. (17a) is
also given and it practically coincides with that obtained by the
gradient-based method.

ρ̂ injects σx ⊗ σy into ρ̂ω, and this can last forever. Assuming
ρ̂ω = b(t )σx ⊗ σy and ρ̂ = 1

4 [σ0 ⊗ σ0 + axσx ⊗ σx], one gets
an equation for ḃ = ax

4 − γ

2 b whose steady-state solution is
b∞ = ax

2γ
, i.e., ρ̂ω = ax

2γ
σx ⊗ σy in the long-time limit. L̂ω =

2ax
γ

σx ⊗ σy from Eq. (4) and the asymptotic QFI is

QFI∞ = 8a2
x

γ 2
. (24)

When |�coh-x〉 is the initial state ax = 1 and QFI∞ = 8
γ 2 .

For γ = 1.5QFI∞ ≈ 3.556. We emphasize that the asymp-
totic value depends only on the initial state via ax because
the σx ⊗ σx component does not change under the flipping
channel.

For reasons which will be presented shortly, the amplitude
constraint is needed to have a finite solution; otherwise the
controls can become unbounded at some time points. We use
two amplitude constraints umax = 10 and 15, and the resulting
QFI(T ) are shown in Fig. 3(a). Compared with QFI without

FIG. 3. Results of N = 2, χ = 10, γ = 1.5 for flipping channel.
(a) Optimal QFI with umax = 15 and 10. Applying controls always
give a greater QFI, but the difference to QFI’s without controls
decreases as T increases. Eventually they converge to the same
asymptotic QFI∞ = 8/γ 2 ≈ 3.556. (b) The optimal control for T =
2 with umax = 15. (c) The optimal control for T = 4 with umax = 15.
In panels (b) and (c), the optimal control includes bang and singular
parts. The singular part of the control agrees well with the second-
order condition (17a).

controls, the QFI with controls is greater but their difference
decreases as T increases because both eventually converge to
the same asymptotic QFI∞ = 8/γ 2 ≈ 3.556. Figures 3(b) and
3(c) present the optimal controls with umax = 15, which con-
tain both bang and singular parts. The necessary conditions
are satisfied to a good approximation. In particular we see that,

042621-6



APPLICATION OF PONTRYAGIN’S MAXIMUM PRINCIPLE … PHYSICAL REVIEW A 105, 042621 (2022)

when the control is singular, the values are very close to those
computed using Eq. (17a) and 〈[g, [ f , g]]〉 is negative, i.e.,
both second-order conditions (17) are well satisfied. For large
T where the decoherence effect dominates, the frequency
of switching between bangs increases. This is similar to the
dynamical decoupling [64] where an oscillation in control can
suppress the decoherence effect.

We now elaborate the need of an amplitude constraint for
a bounded solution. Our numerical simulations suggest that
the onset of instability where the control cannot be singu-
lar during the entire evolution occurs around T = 1.1. As
shown in Fig. 4(a), the indicator of instability is the vanish-
ing 〈[g, [ f , g]]〉 around t = 0.1. Near the onset of instability
at T = 1.3, one can still numerically get a singular control
solution shown in Fig. 4(b). There is a finite time interval
around 0.1 to 0.3 where the Legendre-Clebsch condition (17b)
is violated, indicating that the controls can be unbounded
and an amplitude constraint is needed. Figure 4(c) shows
a solution with an amplitude constraint umax = 15. Around
t = 0.1 to 0.3 the optimal controls are the bangs. Without the
amplitude constraint, the control becomes unbounded upon
iterations of Eq. (21). Near the instability, using first-order
conditions alone is hard to tell if a solution is a local optimum
numerically. It is interesting to note that, when T is small
[Figs. 3(b) and 4] the optimal control at small time is singular,
implying taking the system close to the HL state remains
advantageous. This is not the case anymore when T is long
when the decoherence eventually dominates.

Although the controls appear to be very different between
Figs. 4(b) and 4(c), the resulting QFI values are close. The
QFI for Fig. 4(b) is 2.338, only slightly smaller than 2.341
for Fig. 4(c). Similar results are also observed for longer
T . We conclude that the numerical QFI values obtained by
the gradient-based algorithm are usually reliable, especially
if a few different initial controls lead to close QFI values.
To obtain the optimal control, the second-order conditions
should be used, particularly when the majority of the control
is singular.

IV. CONCLUSION

We have applied Pontryagin’s maximum principle to an-
alyze the parameter estimation for the dissipative quantum
systems. Concretely, we consider twist and turn unitary
dynamics under three different dissipation channels (depo-
larization, dephasing, and spin flipping), and the goal is
to obtain a control protocol that maximizes the QFI at a
given evolution time T . As a general numerical method,
an efficient procedure is devised to compute the switching
function in dissipative systems. The key step is to regard ρ

and ρω as independent dynamical variables; this augments
the dynamical system but keeps the control problem in the
time-invariant form so that the optimality conditions based
on time-invariance hold. Using the augmented dynamics, the
switching function becomes local in time, and this practically
crucial realization allows us to consider complicated controls.
Both the first-order condition (vanishing switching function
and a time-independent control Hamiltonian) and the second-
order Legendre-Clebsch condition (negative 〈[g, [ f , g]]〉 and
vanishing �̈) are used to constrain the searching space of

FIG. 4. Controls near the onset of instability for the flipping
channel (N = 2, χ = 10, γ = 1.5). (a) The onset of instability oc-
curs at T = 1.1 where 〈[g, [ f , g]]〉 is mostly negative but approaches
zero around t = 0.1. (b) T = 1.3 assuming a singular control over
the entire evolution. The Legendre-Clebsch condition (17b) is vio-
lated around t = 0.1 to 0.3. The resulting QFI(T ) = 2.338. (c) A
singular-bang-singular solution with an amplitude constraint umax =
15. QFI(T ) = 2.341. Without amplitude constraint, the control be-
comes unbounded upon iterations of Eq. (21).

optimal controls. The second-order condition turns out to
be crucial and useful for determining the values of singular
control.
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For the specific twist and turn problem, we find that the
optimal control is singular during the entire evolution with-
out dissipation. This result is verified using both first- and
second-order necessary conditions. Once the dissipation is
introduced, the control can become unbounded and an am-
plitude constraint has to be introduced to obtain a finite
solution. The onset of the instability is pinpointed using
the Legendre-Clebsch condition. Three types of dissipation
channels are considered. For the depolarization channel, the
asymptotic QFI is zero as the system eventually goes to
the maximum-entropy state and completely loses coherence.
For the dephasing channel, the asymptotic QFI is a nonzero
value due to the decoherence-free subspace. With the optimal
control, we find that the QFI saturates as T → ∞. For the
flipping channel the asymptotic QFI is also a nonzero value,
and QFI(T ) has a its maximum value at a finite T and then
decays to a nonzero asymptotic value as T → ∞. We believe
this behavior is general and give detailed results for two-spin
systems. Finally, we point out two considerations that appear
general beyond the specific model. First, the ability of the
parameter estimation, quantified by QFI, certainly depends
on the decoherence channel. To gain some intuition about

the system responses, it is instructive to consider how the
HL state collapses under different decoherence channels. In
the twist and turn problem, the HL state collapses to a state
that is completely insensitive to the external parameter under
a dephasing channel but to a state that is still sensitive to
the external parameter under a flipping channel. We therefore
expect and indeed find that the QFI is larger under the flipping
channel. Second, the singular control seems general in quan-
tum problems, and the use of the second-order condition can
be beneficial in determining the optimal control.
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APPENDIX A: TIME DERIVATIVES OF THE
SWITCHING FUNCTION

Explicitly, using ∂ωH = Ĵz, �̇ can be computed as

�̇ =Tr{λ̂[[Ĥ0, Ĥ1], ρ̂]} + Tr{λ̂ω[[Ĥ0, Ĥ1], ρ̂ω]} + Tr{λ̂ω[[Ĵz, Ĥ1], ρ̂]}

+ i

(
Tr

{{
dλ̂

dt

}[
Ĥ1, ρ̂

]} − Tr

{
λ

[
Ĥ1,

{
d ρ̂

dt

}]}
+ Tr

{{
dλ̂ω

dt

}[
Ĥ1, ρ̂ω

]} − Tr

{
λω

[
Ĥ1,

{
d ρ̂ω

dt

}]})
︸ ︷︷ ︸

≡E (t )

. (A1)

Note that the second line, denoted E (t ), corresponds to decoherence and vanishes when Ĥ1 = Ĵx and the flipping channel; we
proceed with this case and use Ĥ0 = χ Ĵ2

z . Defining [Ĵx, {Ĵz, Ĵy}] ≡ Â, [Ĵ2
z , {Ĵz, Ĵy}] ≡ B̂, and [Ĵz, {Ĵz, Ĵy}] ≡ Ê , one can derive

�̈ = u(t )[−χTr{λ̂[Â, ρ̂]} − χTr{λ̂ω[Â, ρ̂ω]} − iTr(λ̂ω[Ĵz, ρ̂])]

− [χ2Tr{λ̂[B̂, ρ̂]} + χ2Tr{λ̂ω[B̂, ρ̂ω]} + χTr(λ̂ω[Ê − i{Ĵz, Ĵx}, ρ̂])] − Ndamp. (A2)

Zero �̈ implies that the singular optimal control is

using(t ) = −χ2Tr{λ̂[B̂, ρ̂]} + χ2Tr{λ̂ω[B̂, ρ̂ω]} + χTr(λ̂ω[Ê − i{Ĵz, Ĵx}, ρ̂]) + Ndamp

χTr{λ̂[Â, ρ̂]} + χTr{λω[Â, ρ̂ω]} + iTr(λ̂ω[Ĵz, ρ̂])

= −−D(t ) + Ndamp

−C(t )
≡ −〈[ f , [ f , g]]〉

〈[g, [ f , g]]〉 . (A3)

With D̂ = {Ĵz, Ĵy}, Ndamp is

Ndamp = iTr

({
dλ̂ω

dt

}
[Ĵy, ρ̂] − λω

[
Ĵy,

{
d ρ̂

dt

}])

+ iχ

(
Tr

{{
dλ̂

dt

}
[D̂, ρ̂]

}
− Tr

{
λ̂

[
D̂,

{
d ρ̂

dt

}]}
+ Tr

{{
dλ̂ω

dt

}
[D̂, ρ̂ω]

}
− Tr

{
λ̂ω

[
D̂,

{
dρ̂ω

dt

}]})
. (A4)

For general channel channels, such as the dephasing, one
needs to compute Ė (t ). We just do it with brute force.

APPENDIX B: COSTATE BOUNDARY CONDITION FOR
CLASSICAL FISHER INFORMATION

For optimal control, the only difference between CFI and
QFI is the terminal cost function, which leads to a differ-
ent costate boundary condition. Once the measuring basis is

chosen, the classical Fisher information is given by

CFI =
∑

m

(∂ω p̃m)2

p̃m
=

∑
m

ρ̃2
ω,mm

ρ̃mm
≡ −CQ, (B1)

where ˆ̃ρ = Ũ †ρ̂Ũ is the DM expressed in the measuring basis.
In component form, ρ̃ ji = ∑

nm(Ũ †) jmρmnŨni where each col-
umn vector of Ũ is an eigenvector of Ĵx. The costate boundary
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conditions are

λ̃mm = ∂CQ

∂ρ̃mm
= ρ̃2

ω,mm

ρ̃2
mm

⇒ λ̂ = Ũ ˆ̃λŨ †,

λ̃ω,mm = ∂CQ

∂ρ̃ω,mm
= −2ρ̃ω,mm

ρ̃mm
⇒ λ̂ω = Ũ ˆ̃λωŨ †. (B2)

In the measuring basis, only diagonal components contribute
to the CFI, negative of the terminal cost function. In the
twist and turn problem, one introduces a phase rotation φ in
the end so that the final density matrix is e−iL̂zφρ̂e+iL̂zφ . In
the measuring basis, ˆ̃ρ(φ) = Ũ †e−iL̂zφρ̂e+iL̂zφŨ and ˆ̃ρω(φ) =
Ũ †e−iL̂zφρ̂ωe+iL̂zφŨ , based on which we get

∂ ˆ̃ρ(φ)

∂φ
= Ũ †e−iL̂zφ (−i[L̂z, ρ̂])e+iL̂zφŨ ,

∂ ˆ̃ρω(φ)

∂φ
= Ũ †e−iL̂zφ (−i[L̂z, ρ̂ω])e+iL̂zφŨ ,

⇒ ∂CQ

∂φ
=

∑
m

[
ρ̃2

ω,mm

ρ̃2
mm

∂ρ̃mm

∂φ
− 2ρ̃ω,mm

ρ̃mm

∂ρ̃ω,mm

∂φ

]
. (B3)

The costate boundary conditions are

λ̂ = e+iL̂zφŨ ˆ̃λŨ †e−iL̂zφ and λ̂ω = e+iL̂zφŨ ˆ̃λωŨ †e−iL̂zφ. (B4)

APPENDIX C: MEASUREMENT FOR SATURATED QFI∞
FOR N-SPIN

We consider a unitary transform ˆ̃ρ(φ) = e−iĴzφρ̂e+iĴzφ . The
asymptotic ρ̂, ρ̂ω are

ρ̂ = 1

2N
[(⊗I)N + (⊗σx )N ],

ρ̂ω = 1

2N−1γ
(⊗σx )N−1 ⊗ σy

CFI ≡
∑

m,ρ̃mm>0

ρ̃2
ω,mm

ρ̃mm
where ˆ̃ρ(φ) = e−iĴzφρ̂e+iĴzφ. (C1)

Keeping the nonzero terms for the measurements in the |mx〉
basis (eigenstates of σx),

ρ̃(φ) ∼ 1

2N
[(⊗σ0)N + cosN (φ)(⊗σx )N + · · · ],

ρ̃ω(φ) ∼ 1

2N−1γ
[N cosN−1(φ) sin(φ)(⊗σx )N + · · · ]. (C2)

The diagonal components of ρ̃2
ω(φ) are all N2[cosN−1(φ) sin(φ)]2

(2N−1 )2γ 2 ;

those of ρ̃(φ) are 1
2N (1 ± cosN φ). The CFI is given by

CFI(φ) = 4

γ 2
N2 tan2 φ

cos2N φ

1 − cos2N φ
⇒

φ⇒0

4N

γ 2
. (C3)

We have used 1 − cos2N φ ≈ Nφ2 for small φ.
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