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Squeezing by critical speeding up: Applications in quantum metrology
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We present an alternative protocol allowing for the preparation of critical states that instead of suffering from
the critical slowing down benefits from the critical speeding up. Paradoxically, we prepare these states by going
away from the critical point which allows for the speed-up. We apply the protocol to the paradigmatic quantum
Rabi model and its classical oscillator limit as well as the Lipkin-Meshkov-Glick model. Subsequently, we
discuss the application of the adiabatic speed-up protocol in quantum metrology and compare its performance
with critical quantum metrology. We show that critical quantum metrology with the Lipkin-Meshkov-Glick
model cannot even overcome the standard quantum limit, and we argue that, even though critical metrology
protocols can overcome it in some cases, critical metrology is a suboptimal metrological strategy. Finally,
we conclude that systems exhibiting a phase transition are indeed interesting from the viewpoint of quantum
technologies; however, it may not be the critical point that should attract the most attention.

DOI: 10.1103/PhysRevA.105.042620

I. INTRODUCTION

The recent experimental progress in isolating and ma-
nipulating quantum systems has brought us to the verge of
entering the era of quantum technologies. One of its key
aspects will be the reliable and robust preparation of quantum
states. Especially, high-fidelity preparation of critical ground
states—ground states close to a critical point of a quantum
phase transition [ 1]—has been identified as a key ingredient in
many quantum technologies such as quantum metrology [2—6]
and quantum heat engines [7,8]. The reason behind the univer-
sality of these states is mainly the high level of nonclassical
correlations. These correlations may come in the form of
squeezing, spin squeezing, and entanglement. Therefore the
critical states might be also used to study fundamental aspects
of quantum mechanics. Unfortunately, the critical ground
states are also difficult to prepare. This is typically caused by
the closing of the energy gap between the ground state and the
excited states near a critical point. If an adiabatic process—a
process during which the instantaneous state is the eigenstate
of the system—is used to create the critical ground state,
its duration will be very long. This is a consequence of the
adiabatic theorem which states that in order to remain in the
instantaneous ground state, the rate at which the Hamiltonian
is being changed has to be much smaller than the instan-
taneous energy gap. Therefore if the energy gap decreases,
the rate at which the Hamiltonian changes has to decrease as
well. Moreover, close to the critical point, instability of the
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adiabatic ramp might push the system beyond the critical point
and a phase transition will occur. To circumvent the critical
slowing down, one can resort to the shortcuts to adiabatic-
ity [9,10]. This approach involves a number of techniques.
One of the most effective is the counterdiabatic driving [11]
which relies on adding an extra term to the Hamiltonian of the
system and canceling the contributions from the excited states.
As a consequence, the instantaneous state remains the ground
state throughout the entire process. In principle, the counter-
diabatic driving might be used to prepare critical ground states
in arbitrarily short times; however, the energy cost of such
a protocol might be very high [12]. This can be intuitively
understood as a manifestation of the time-energy uncertainty
relation. Alternative protocols rely on the so-called bang-bang
protocols [13]. This approach is based on sudden changes of
Hamiltonian parameters and often exploits squeezing follow-
ing a nonequilibrium phase transition. Despite their simplicity,
they allow for a high-fidelity ground-state preparation in rel-
atively short times. The drawback of bang-bang techniques
is the requirement to abruptly change parameters and very
precise moments of (some) bangs. Sudden quenches may
often destroy the physical systems—for instance, due to the
heating as in the atom-cavity experiments—while the inability
to apply the bangs at the right moment will deteriorate the
fidelity quickly as the evolution following a sudden quench is
typically very fast.

In this work, we present an alternative method for the
preparation of critical ground states that relies on adiabatic
driving the system away from the critical point. Such a tech-
nique allows us to open the energy gap as we approach the
target state, which results in the critical speeding up. In fact,
this method is based on the preparation of rotated—rotation in
a phase space—critical ground states which can be then trans-
formed into the true critical ground states through a simple
7 /2 rotation in the phase space picture. The speed-up protocol
is a combination of an adiabatic protocol and (optionally) a
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bang-bang protocol but eliminates some of their drawbacks.
We show how it can be used in the paradigmatic quantum Rabi
model and the Lipkin-Meshkov-Glick model. Subsequently,
we discuss the application of the adiabatic speed-up protocol
in quantum metrology, we compare it with critical quantum
metrology, and we argue that critical metrology is a subop-
timal metrological strategy as it exploits an ineffective way
of creating nonclassical correlations. In particular, we show
that critical metrology with the Lipkin-Meshkov-Glick model
cannot even overcome the standard quantum limit. Finally, we
discuss the possibility of harnessing the speed-up protocol in
other systems exhibiting quantum phase transitions and using
it in other quantum technologies.

II. ADIABATIC CRITICAL SPEEDING UP

In this section, we explain the operating mechanism of
the critical speeding up. The starting point is the classical
oscillator limit of the quantum Rabi model. Subsequently,
we discuss the general quantum Rabi model and finally the
Lipkin-Meshkov-Glick model.

A. Quantum Rabi model

Quantum Rabi model is a paradigmatic model describing
a harmonic oscillator with frequency @ coupled to a spin-1/2
with frequency 2 (we set i = 1 throughout the entire paper)

A aia S 8 .n | atia
Horm = wa a—i—EUZ—}—E(a—i-a )6, €))

where g is the coupling strength. Here we have introduced
creation and annihilation operators of the harmonic oscillator,
a' and 4, and Pauli matrices 6;. The quantum Rabi model ex-
hibits a (superradiant) phase transition if & > o from a single
minimum phase (g < g. = /@) to a double minimum phase
(g > g = Vo), where g. is the critical coupling strength.
In the equivalent of the thermodynamic limit w/2 — O (the
classical oscillator limit [14,15]) the energy gap closes at the
critical point and the Hamiltonian can be described by

; s R & i,
Horm = wa'a + EO'Z + E(a +a"%s,. 2)
If (6,) < —g?/g*, the above Hamiltonian does not have an
equilbrium state in the critical phase. This becomes apparent

when we rewrite it using the position and momentum opera-
tors, X = (@a+a")/v2and P = (a — a")/v/ =2,

H, Opry L5 L@ 1+ng X2 3)
= — —6,+ — =0, .
QRM = 5 70t 3 2%

The lack of the equilibrium state is often discussed as the
limitation of the above approach; however, in the limit of
w/2 — 0 the ground-state energy in the double minimum
phase tends to —oo and the Hamiltonian describes an inverted
harmonic oscillator [16]. In order to find the ground state for
/2 < 1, the Hamiltonian is typically displaced to one of the
minima in the critical phase [15] and the effective Hamiltonian
resembles that from Eq. (3). In this work, however, we focus
only on the single minimum phase.

The ground state of Hamiltonian (3) can be easily found to
be

IGS)orm = S(€)I0) ® | ), 4

where S(£) = exp{(&/2)(a")? — (£*/2)a*} is the squeeze
operator with & = —}Tln{l — (g/gc)*} being the squeezing
parameter which is real only for g < g.. In the above equa-
tion |0) is the vacuum state of the harmonic oscillator and | | )
is the spin-down state (the ground state of &,). The energy gap
can be easily read from Eq. (3) and is equal to w/1 — g%/g>
which vanishes at g = g.. This can be easily understood be-
cause for g = g, the Hamiltonian describes a particle moving
in a free space. The free particle eigenstates are eigenstates
of the momentum operator, which are extremely nonclassical
states. They saturate the Heisenberg position-momentum rela-
tion AX AP = 1/2 but are extremely squeezed AP/AX — 0.
Once we understand that, we open the way for the adiabatic
critical ground state preparation. Since the critical ground
states are simply squeezed, if we were able to increase the
frequency of the harmonic oscillator from Eq. (3), we could
prepare a squeezed state in position instead of momentum. In
this case, the energy gap would open, which would allow for
critical speeding up of the adiabatic process. Transforming a
state squeezed in position to a state squeezed in momentum
would amount to setting g = 0 and waiting for time wt = 7 /2
and performing a sudden quench (bang) to a desired g for
which the rotated state is the ground state. The intuitive de-
piction of this mechanism is presented in Fig. 1.

Unfortunately, the coupling parameter enters Hamilto-
nian (3) in the second power which suggests that in order to
go away from the critical point one would have to make the
coupling strength imaginary. However if the initial state is not
the spin-down state but the spin-up state—so the excited state
of the spin—the Hamiltonian becomes

At o w a0 w g2 52
HQRM = EP + 5(1 + E)X 5
instead of
A _ w a0 w g2 590
HQRM = EP + E(l — —%>X . (6)

This means that simply by flipping the spin it is possible to
increase the frequency of the effective harmonic oscillator
instead of decreasing it. Since flipping a spin is a standard and
well-understood tool in quantum technologies, critical speed-
ing up could be achieved by a tiny modification of the standard
protocols involving the quantum Rabi model. The state whose
spin is excited but the part describing the harmonic oscillator
is in its ground state is

[ES)orm = $(£)10) ® [ 1), )

where 8(¢) = exp{(¢/2)(@")? — (¢*/2)a%} is the squeeze
operator with ¢ = —}1 In{1 + (g/g.)*} being the squeezing
parameter which is always real. The energy gap can be easily
read from Eq. (5) and is equal to w./1 + g?/g2. Therefore,
in order to obtain an equally squeezed state by closing or
opening the energy gap, the squeezing parameter £ has to be
equal to inverse of the squeezing parameter ¢, which leads to
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FIG. 1. In the quantum Rabi model, the same amount of squeezing (visible in the Husimi function [17]) of a classical state (b) can be
achieved by going to the critical state (c) or going away from the critical state (a). In the latter case, the initial spin has to flip before increasing
the coupling strength. Panels (d), (e), and (f) depict effective position (solid black line) and momentum (dashed red line) potentials associated
with states from (a), (b), and (c), respectively. Panels (a) and (c) [(d) and (f)] are related by a simple rotation in the phase space (Fourier

transform) whose generator is a'a.

the following condition:

®)

where g¢ < g and g, is the coupling strength for the spin-
down and spin-up case, respectively. Here we can identify a
possible drawback of the speed-up protocol. The price paid
for opening the energy gap might be the necessity to increase
the coupling far beyond the critical value. The condition from
the Eq. (8) is presented in Fig. 2.

So far we have discussed the classical oscillator limit of
the quantum Rabi model. However, we have to consider the

10-2 103 10" 106

1 —g¢/9ge

100 10-1

FIG. 2. Condition from Eq. (8). The same amount of squeezing
can be created by approaching the critical point g. or departing
from it.

quantum Rabi model in a general case. This is a slightly
more difficult task because we do not have an analytical (and
suitable) form of the eigenstates. Nevertheless, by performing
numerical calculations and observing how the results con-
verge to the analytical results in the classical oscillator limit,
we can build up a physical intuition and phenomenologically
understand what is happening. In order to do that, we will
calculate standard deviations

AO =,/(0%) — (0)? ©)
of X and P operators as a function of g/g. and w/Q for
the ground state of the system as well as a state for which
the spin is in its excited state and the harmonic oscillator is
in its ground state. The results of the numerical simulations
(exact diagonalization) for the ground state are presented in
Fig. 3.

The results from Fig. 3 mean that for every Q2/w there is
a limit of how much the state can be squeezed. This suggests

In order to find these conditions, we will apply the Schrieffer-
USW —exp{t—— (10)

that the classical oscillator limit can be applied to the quantum
Rabi model under extra conditions that relate 2/w and g/g..
Wolff transformation defined as

LA }

8 VQ 2
This transformation rotates the spin around the y axis by an
angle —»—(aT + a) and displaces the state of the harmonic

oscillator by i£ 2%

o Vo 5. By applying this transformation to the
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FIG. 3. Characterizing the ground state of the Rabi model as a function of /w and 1 — g/g.. Panels (a), (b), and (c) show AX, AP, and

AX AP, respectively. The ground state is almost always a perfectly squeezed vacuum, i.e., AXAP =

quantum Rabi Hamiltonian (1), we obtain

ool 185

+ 3|:co (:C \/\/:(AT + ))a

8O Gy &)) ax}

o 11
51n<gf (11)

+ g(&T +a) [cos (5%\/_\/2(&% + &))@
+ sin (5}57“/:(&* + &))az]

It gﬁ% « 1 the above expression can be expanded in the
Taylor series (the trigonometric functions have to be expanded

to the second order thus £ ‘; <« 11is too stringent) to give

N N VIR wg2
Horm = wa*a+50z+2g—2( +a)%6,, (12)

C
which is the classical oscillator limit from Eq. (2). This
£ w <« 1, we can use the classical

suggests that whenever .
oscillator limit Hamlltoman to easily find the spectrum.
According to the calculation above, we can also use the
classical oscillator limit of the quantum Rabi model to find the
state which is an excited state of the spin and the ground state

1/2.

of the harmonic oscillator once i & < 1. This time, however,
not satisfying this condition by increasing further g means that
the energies of the spin-up sector can no longer be separated
from the spin-down sector. This will result in a possibility
of transition from the spin-up to the spin-down state, and the
squeezing will be perturbed (see Sec. III A for more details).
Therefore, we now find the excited state of the spin and the
ground state of the harmonic oscillator as a function of g/g.
and w/S2, but only for 52 < 0.05 (as we want to see the
breaking of the approximation). The results of the numerical
simulations (exact diagonalization) are presented in Fig. 4.
These results resemble very much the results presented in
Fig. 3, but AX behaves as AP [Figs. 3(a) and 4(b)] and AP
behaves as AX [Figs. 3(b) and 4(a)], as expected from the
classical oscillator limit.

So far we have shown that it is possible to create the
(rotated) ground state of the quantum Rabi model by going
away from the critical point. Now we will show that the same
is also possible in the context of the Lipkin-Meshkov-Glick
model.

B. Lipkin-Meshkov-Glick model

Lipkin-Meshkov-Glick model [18] is a paradigmatic model
originally proposed to describe shape phase transitions in
atomic nuclei. This model can be also used to describe
two-mode systems of interacting bosons such as spinor con-
densates or two-site Bose-Hubbard model and turns out to be

(2)
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FIG. 4. Characterizing the eigenstate of the quantum Rabi model whose spin is excited, but the harmonic oscillator is in the ground state

as a function of ©/w and g/g. under the condition of £ - & < 0.05. Panels (a), (b), and (c) show AX, AP, and AX AP, respectively. The state

is always a perfectly squeezed vacuum if £ « 1. The white color blocks are the regions where the spin-up sector starts to mix with the
spin-down sector as can be seen in (c). See F1g 3 for comparison.
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the fast-oscillator limit of the Dicke model [14]. The Lipkin-
Meshkov-Glick Hamiltonian can be expressed as

Hing = oS, — st, (13)
where §; = vazl 6i/2 are the collective spin operators. Here
w is the energy separation between the levels of a single spin
and g is the interaction strength. The Lipkin-Meshkov-Glick
model exhibits a phase transition from a single minimum
phase to a double minimum phase for g. = w. This can be
easily seen if we apply the Holstein-Primakoff transformation.
Under this transformation the collective spin operators can be
expressed in terms of a single bosonic mode

S, =da'VN—aia, §_ =+/N-—aaa,
$0= 564 +30) (14)
For

(a'ay/N <« 1 (15)

the square roots can be expanded in the Taylor series to give

S, = */Tﬁ(aﬁ +a). (16)

Plugging the above approximated operators into Eq. (13) and
omitting the terms proportional to identity operator, we obtain

A = wi'a — f(&T +ay, 17)
which describes a harmonic oscillator
Aive = 5P+ (1= )R (1)
2 2 w

with a frequency (equivalently energy as i = 1) w+/1 — g/w
which becomes imaginary once g > w. If g > 0, the above
Hamiltonian is equivalent to Hamiltonian (6); and if g < O,
it corresponds to Hamiltonian (5). According to the results
from the previous section, we can expect that by going away
from the critical point, it should be possible to create a rotated
critical state exploiting the speed-up protocol.

Before we continue, let us closely examine the condition
from Eq. (15). It naively seems that in the thermodynamic
limit defined as N — oo this condition always holds. How-
ever, in the previous section we have seen that close to the
critical point (&) — oo. Therefore, close to the critical point
we cannot use the approximation [19,20]. Let us have a look,
however, at its limitations. Using the approximation, the num-
ber of excitations (afa) can be easily calculated. For g > 0
(slowing down) it becomes

s
(@'a) = —/——, (19)
4/1-%

which suggests that the approximation can be applied when-
ever
1 g 16N — 1

N L 20
KN = 2 < — (20)

=
—
|

8 oo

For g < 0 (speeding up) it becomes

(@a) =, 1+|g| @1

which suggests that the approximation can be applied when-

cver
Z‘/ |g| <N — |g| < 16N? — (22)

In order to determine the limits of applicability of the
approximation in the speeding-up case, let us now take a
step back and consider the Lipkin-Meshkov-Glick Hamilto-
nian (13). In this case, near the critical point, we expect the
state to be squeezed in S‘ direction and antisqueezed in S,
direction. Using the speed up protocol, we will prepare a
state squeezed in the S, direction and antisqueezed in the S
direction. This can be seen in Fig. 5.

First, let us calculate the amount of (anti) squeezing in the
critical state as a function of N. The results of the numeri-
cal simulations for AS; as a function of N for g = 0.9w is
presented in Fig. 6 (the bar notation indicates the recurring
decimal). As we can see, the spin is indeed squeezed as
expected but not maximally contrary to the approximation to
the Holstein-Primakoff transformation. It can be shown that at
the critical point (up to the leading order in N) AS, = N*/3/2
so less than linearly with N (see Refs. [21-23] for a rigorous
derivation).

Once we know the critical state at g = 0.9w, we can find
the corresponding g which will lead to an equally squeezed
state but rotated by 7 /2. Unfortunately, we do not have an
analytical form of the wave function as in the case of the
quantum Rabi model, and we have to numerically find the
conditions. We do this by finding the ground state as a function
of N and g/w, rotating it by 7 /2 around the z axis, calculating
the overlap (fidelity) with the critical ground state, and finding
its maximum. The results of the numerical simulations (exact
diagonalization) are presented in Fig. 7.

First, we see that by increasing N the fidelity defined as

F=1(GS(eo)lexp (i38.)IGS@E  (23)

where |GS(ge)) and |GS(g;)) are the ground states with the
same amount of squeezing but rotated by 7 /2 on the general-
ized Bloch sphere, saturates around F ~ 1-1073. Although
we perform calculations for maximally N = 2'4, it seems
very unlikely that the fidelity will approach 1 once we fur-
ther increase N. Second, similarly as for the quantum Rabi
model, creating squeezing among larger number of particles
requires higher interactions strengths [see Fig. 7(b)]. Note that
by eliminating N from the Lipkin-Meshkov-Glick model—
i.e., making the model extensive—the interactions strength
actually decreases. The numerical fit reveals that in order to
prepare a rotated ground state one has to satisfy

g 17 2/3

Pt ON . (24)
The former together will the inability of creating a perfectly
squeezed state is a confirmation of invalidity of the Holstein-
Primakoff approximation close to the critical point. However,
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FIG. 5. Mercator projections of ground-state SU (2) Husimi functions [17] of the Lipkin-Meshkov-Glick model. Panels (a), (b), (c), and (d),
depict the critical ground state, the ground state for g = 0, the rotated critical ground state for g = — %N 2/3w, and the maximally squeezed state,
respectively. Here we have set N = 100. The parametrization of the generalized Bloch sphere is such that 0 = 7 /2 and ¢ = 0 corresponds to
the collective spin-down state, and vertical and horizontal axes are x and y axes, respectively. See Fig. 1 for comparison.

plugging the condition from Eq. (24) to Eq. (22) yields

1 17
— 14 =N3> <N,
AT

which means that by increasing N we can use the approxima-
tion for the speed-up protocol.

What is more, we can now use the condition from Eq. (24),
to find the approximate ground state at the critical point. We
know that at the critical point the number of excitations is

(25)

1 1 17
(a'a) = ——=—=~ 2\ [ 1+ =N, (26)
A simple calculation yields
17N?/3
g 27

1IN 207

100 10" 105 109
N

100 102

FIG. 6. Spin (anti-) squeezing at the critical point of the Lipkin-
Meshkov-Glick model as a function of N for various components of
the spin. The purple dashed line represents the maximally squeezed
state.

for which (the seemingly irrelevant 20 is very important here)

(a'a) ~ 0.23N'3 « N. (28)
Moreover, we can now calculate the (anti-) squeezing
N N
A’S, = —(E|(@" + a)*|E) = — exp(28)
4 4
N 1 N?
ML (29)
4 1 _ 8 4
(a)
—3] e0o000 0000
10 o° "’
ko104
|
— 10—5-
10704
0t 102 108 10t
N
(b)
17 A72/3 9~
102, w0 t”
2 l
> 1 e~
[ 10"+ o®
"
1004 @
10° 10t 102 100 10t
N

FIG. 7. Generating critical states by speed-up protocol. Panel
(a) shows infidelity, 1 — JF, as a function of N, and (b) shows relation
between coupling strength and w required for the protocol to work.
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where  |B) = exp{(E/2)a"* — (E*/2)a*}|0) with E =
—% log{l — g/w}. Plugging in the condition from Eq. (27)

yields
.. 1 [17IN%3 N?

Now we are in the position to check whether this result pre-
dicts the correct amount of (anti-) squeezing at the critical
point. Up to the leading order with N, AS, = N?/3/2 at the
critical point. For large N, the expression from Eq. (30) be-
comes

AS, ~ 0.48N%0 — 0.48N2/3. 31)

which is in a very good agreement (see also results from
Refs. [21-23]). The above discussion indicates that the ap-
proximation to the Holstein Primakoff transformation can be
applied to the Lipkin-Meshkov-Glick model under additional
constraints, and the speed-up protocol can also be used. How-
ever, the fidelity of creating the critical state in this way seems
to be limited to F ~ 1-1073,

So far, we have shown that in the case of the quantum
Rabi model and Lipkin-Meshkov-Glick model it is possible to
create a rotated critical state by going away from the critical
point. With these results at hand we can proceed to finding the
ramp that satisfies the adiabatic conditions and calculate the
speed up.

III. ADIABATIC QUENCH

In this section, we derive the form of the ramp that satisfies
the adiabatic condition (see the Appendix) for the quantum
Rabi model and the Lipkin-Meshkov-Glick model.

A. Quantum Rabi model

For the quantum Rabi model in the classical oscillator
limit, gﬁ & < 1, the spin-up sector is separated from the spin-
down sector and the transition of spin is forbidden. This can be

explicitly seen by calculating H. A straightforward calculation
yields

A= %gmgm(a +ah?e,. (32)

The above term does not couple spin-up and the spin-down
sector since it depends only on &,. This argument is valid,
however, only for g < g.. In the regime of g > g. the spin-
down sector gets modified (double minimum phase); however,
the symmetry of the wave function still does not allow for
a transition from the spin-up to the spin-down sector once
ég & 1 is satisfied. The ground state in the superradiant
phase is a combination of |a) ® |[+) and | — o) ® |—), where
|B) is a coherent state of the harmonic oscillator and |+£) is the
eigenstate of &,. The symmetric superposition of these states
gives a spin that points up, and an asymmetric superposition of
these states gives a zero overlap with the symmetric squeezed
state. Hence, there is no coupling between the sectors.
Having this result at hand, we can proceed to the calcula-
tion of the quench that satisfies the adiabatic condition [see
Eq. (A10) in the Appendix]. Assuming k = O for the ground
state of the harmonic oscillator, a straightforward calculation

yields

(Yl H ()

1 g(t)g() g(t)?
=F— _ o [1F 22
E, — E; 2821 3 £0 &>

8¢

. (33)

c

where the F sign stands for the spin-down and the spin-up
sector. Now we will want to find a g(¢) that satisfies

2yog [ g2<r>]3/2
1 9
g(t) * g

where y < 1 (in agreement with reference [24] but derived
rigorously). A straightforward calculation yields

2g8./ytw(yto + 1
g(t) = =% 2V vio+ 1) (35)
yto+1

&) = (34)

for the spin-down case, and

2g. /7T = yia)
o) = =L t_wéytwytw) (36)

for the spin-up case, which becomes infinite for r = 1/2wy.
The total time of the protocols can be calculated to be

8 1
T§=/ B a— (37)
0

.t_
8() o /1_;;%_

for the spin-down case (again in agreement with Ref. [24])

and
2
JI+5 -1
& d & 1
= e — <3 %)
1)
o8 2yw 1+§—2§ Y

for the spin-up case. By using the condition from Eq. (8), we
can calculate the speed up

(39)

which is always greater than 1.

B. Lipkin-Meshkov-Glick model

In the case of the Lipkin-Meshkov-Glick model, adapting
the calculations from the case of the quantum Rabi model we
immediately arrive at

2 32
o) = yT“’(l + %) . (40)

If g(¢) approaches the critical point, the solution is given by

_ yto*(4 + ytw)

)= et 2p

) (41)
whereas if g(¢) departs from the critical point, the solution is

(42)
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The total time of the protocols can be calculated to be (E
indicates the slow-down protocol)

82 dg 2 1
Te=| S - 2| —— 1
o &) yo 1 — &

ge~w 2 1
~ o — — 43)
Yy 1— &

for the ramping towards the critical point, and (A indicates the
speed-up protocol)

o dg 2 1 2
Th = — = 1— <= 4
0

i) yo [oto | yo
w

for the ramping away from the critical point. For the Lipkin-
Meshkov-Glick model, the condition for preparing equally
squeezed state becomes

8a 8E

= ) (45)
w z—w
and the speed-up turns out to be
Tz 1
SR — (46)
Ty 1_ g

which is always greater than 1.

These results prove that by adiabatically going away from
the critical point it is possible to build up the same amount
of correlations in a shorter time. In both cases, driving the
system away from the critical point will generate a rotated
critical ground state. In order to make the true critical ground
state out of it, one would have to set g = 0 and wait for a 77 /2
rotation in the phase space which will last wt = 7 /2.

IV. APPLICATIONS IN QUANTUM METROLOGY

In this section, we present an application of the critical
speeding-up protocol in quantum metrology and compare its
performance with critical metrology. The starting point is a
brief review of quantum metrology and critical metrology.
Subsequently, we focus on the quantum Rabi model, and
finally, we look at the Lipkin-Meshkov-Glick model.

A. Quantum metrology

Quantum metrology is a modern branch of physics
that focuses on utilizing resources provided by quantum
mechanics—such as nonclassical correlations—to overcome
the standard quantum limit of precision [25,26]. This limita-
tion arises from the fact that if a system of N uncorrelated
particles is used in a measurement protocol, it is as if one was
performing N independent measurements on a single-particle
system. In this case, the optimal measurement sensitivity of
Hamiltonian parameter estimation, here w, will be Aw =
1//NT, where T is the time of the process which imprints
the information about the unknown parameter on the initial
state. By correlating the particles in the system, it is pos-
sible to substantially increase the sensitivity and reach the
ultimate Heisenberg limit. In the two-level systems [SU(2)
systems], such as two-mode Bose-Einstein condensates, this

limit becomes Aw = 1/NT, and in single-mode systems,
such as single-mode radiation field, this limit becomes Aw =
1/4/8({n) + (n)2)T, where (n) is the average number of pho-
tons. In order to reach these quantum-enhanced bounds, one
has to first prepare a suitable initial state. However, as this
might be complicated in certain cases, it is possible to build
the correlations simultaneously with imprinting the informa-
tion about the unknown parameter. One such example which
attracted much attention in recent years is the critical quantum
metrology.

Critical metrology relies on driving the system in the vicin-
ity of the critical point of a phase transition. Assuming that
driving is adiabatic, the final (critical) ground state will de-
pend on the unknown parameter. This approach is motivated
by the fact that critical states exhibit a high level of nonclassi-
cality (squeezing or spin squeezing). Although these protocols
can, in principle, exhibit Heisenberg or even super-Heisenberg
scaling—this is a sensitivity that scales quadratically or even
higher than quadratically with the number of particles or
time—they will typically operate above the Heisenberg limit
rendering them in fact in most of the cases impractical (it is
very important to distinguish between the Heisenberg limit,
which is a number deriving from the Heisenberg uncertainty
principle, and the Heisenberg scaling, which is a quadratic
scaling in time and the number of particles). This happens
because reaching the Heisenberg limit requires having the op-
timal state from the beginning of the protocol. As the starting
state of the critical metrology protocols is uncorrelated, crit-
ical metrology cannot reach the Heisenberg limit [27]. What
is more, such protocols might last for a very long time since
they are focused on approaching the critical points where the
gap closes.

Note that we do not use critical systems to first create a
nonclassical state and use it subsequently to imprint the infor-
mation about an unknown parameter of some other process.
The unknown parameter is a part of the Hamiltonian that
we use to create the critical state. In this sense, we create
correlations simultaneously with imprinting the information
about the unknown parameter.

B. Quantum Fisher information

An essential tool in quantum metrology is the quantum
Fisher information as it is related to the sensitivity of a mea-
surement of an unknown parameter, which we assume to be
w, through the Cramér-Rao bound

1
VT,
where 7, is the quantum Fisher information defined as

L, = 400V |0¥) — (D |¥)?), (48)
with 9, = 0/dw. If the Hamiltonian is composed solely of
the term that imprints the information about the unknown
parameter, for example, a'a in single-mode systems or S, in
two-mode systems, finding the optimal state and maximum
value of the quantum Fisher information is a straightforward
exercise. In the case of the single-mode field, the quantum
Fisher information becomes

T, =4T*A%a 4, (49)

Aw > A7)
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which putting a restriction on the average number of excita-
tions (aa) = (f) is maximized for a squeezed vacuum state
and gives [28]

7, = 8T*({A)* + (A)). (50)

In the case of a two-mode system, the quantum Fisher
information becomes

T, =4T>A%S., (51)

which is maximized for a maximally entangled Greenberger-
Horne-Zeilinger state and gives

T, = T>N>. (52)

The above equations for Z, set out the Heisenberg limit for
single- and two-mode systems. Most importantly, these two
quantum Fisher informations can be increased by either in-
creasing the time 7" or increasing the number of particles or
excitations.

For a more generic Hamiltonian

H =wH, + H,®), (53)

where H,(t) represents a general unknown-parameter-
independent term of the Hamiltonian while wH,, is the term
imprinting the information about e (H,, itself does not depend
on w), it can be shown that the quantum Fisher information is
upper bounded by [29]

T, = 4 1R 1Y) — (Ylhly)?)
< 4T2rr|1¢a>x ((plHZ1$) — (D|HL19)7). (54)

In the above expression, |¢) is the initial state that does
not depend on the unknown parameter, and h =il TawU
with U being the time evolution operator. According to the
above expression, critical metrology protocols cannot reach
the Heisenberg limit [27] as the instantaneous eigenstate |y/)
cannot be the same as the optimal state |¢). This, however,
should not be seen as a major drawback as the derivation of
the Heisenberg limit assumes instantaneous generation of an
optimal state. Rather, the Heisenberg limit should be treated
as a benchmark for a real protocol that takes into account the
preparation of the initial state. However, a drawback of critical
metrology protocol is a very slow generation of correlations
(and excitations), which is a result of the closing of the energy
gap. Therefore, the metrological resources are not exploited
optimally as we will further see in the next sections.

C. Quantum Rabi model

We begin with calculating the quantum Fisher information
for the classical oscillator limit of the quantum Rabi model. A
straightforward calculation yields

1

o= 55> (55)
8a)2(1 — g—f)z

4
8

gt
From this expression, we see that near the critical point the
quantum Fisher information is extremely large. However, let
us have a detailed look at the origin of this apparent critical
enhancement. First, due to the squeezing, this quantum Fisher
information should scale quadratically with the number of

(instantaneous) excitations, which can be easily calculated to
be

(A) = sinh?(&) ~ ;. (56)

af1-5
Second, this quantum Fisher information should also scale
quadratically with time, which, close to the critical point, is
given by

1- 5

2yw o
A straightforward calculation shows that near the critical
point the quantum Fisher information becomes

L, = 8y* ()17, (58)

with y < 1 as also shown in Ref. [24] [see Eq. (51) for
comparison with the Heisenberg limit]. While the above quan-
tum Fisher information exhibits Heisenberg scaling, it can
overcome the standard quantum limit only once (n) > 1/y2.
Assuming y = 0.01, this corresponds to (i1) = 10000 pho-
tons that can be achieved for g:/g. ~ 0.9999999997, which
would require an extraordinary control over the coupling pa-
rameter.
An equally straightforward calculation for the speed-up
protocol yields
T, L& ! 59
T g1+ 5) 8 8e? o2

As expected, the quantum Fisher information is limited and
cannot be further enhanced by creating a more squeezed
state. This happens because the speed-up protocol focuses on
the creation of squeezing and not imprinting the information
about the unknown parameter.

We want now to find out which strategy is better: simulta-
neous creation of correlations and imprinting the information
about the unknown parameter experiencing slowing down
(critical quantum metrology), or creating first correlations and
then imprinting the information about the unknown parameter
exploiting critical speeding up (regular quantum metrology).
To this end, we assume that we have a full control over the
Hamiltonian parameters but a limited time which we set to
T =35.4/ywo, for which g¢/g. = 0.9999 and (71) ~ 17.7. In
the critical metrology approach, the quantum Fisher informa-
tion can be calculated to be (we set y = 0.01)

T, ~ % x 100, (60)
1)

In the protocol using the speed-up effect (alternatively using
the bang-bang protocol), during the same amount of time,
we can prepare an arbitrary number of photons and use the
rest of the time to imprint the information about the unknown
parameter on such a prepared state. Assuming we prepare at
least (7) ~ 17.7 photons (g, /g. ~ 70.7), the quantum Fisher
information is

3.5
I, > =5 x 10°, (61)
w
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which is three orders of magnitude higher than the quantum
Fisher information in the critical metrology approach. Keep
in mind that it can be easily increased further by creating
more photons, hence the inequality sign. Such an improve-
ment is possible because in the critical approach to quantum
metrology the correlations are being prepared very slowly.
Therefore, critical quantum metrology is a suboptimal metro-
logical strategy. Knowing that the approach exploiting fast
generation of the correlated state first and then imprinting
the information about the unknown parameter is superior to
creating the correlated state very slowly and imprinting the
information about the unknown parameter simultaneously, we
can proceed to the discussion of the Lipkin-Meshkov-Glick
model.

D. Lipkin-Meshkov-Glick model

In the context of critical quantum metrology, the Lipkin-
Meshkov-Glick is typically considered in the thermodynamic
limit approximation of the Holstein-Primakoff transformation
(see, for instance, Ref. [30]). However, the approximation
is invalid close to the critical point as then the number of
excitations (a'@) becomes infinite. Therefore it seems that
the results derived for the critical quantum metrology in the
Lipkin-Meshkov-Glick model might be incorrect. Since the
squeezing of the critical state is not maximal as we showed in
Sec. II B (see Fig. 6) and scales only as AS, o« N%/3, critical
quantum metrology with the Lipkin-Meshkov-Glick model
cannot reach the Heisenberg scaling (as it requires AS; o N).
Also, using the adiabatic speed-up and creating the rotated
(equally) squeezed state but much faster would not allow for
the Heisenberg scaling. In order to see this, we begin now
with the calculation of the quantum Fisher information. A
calculation similar to that in the previous section shows

T, = ;zéz (62)
8a?(1— )"
On the other hand, the quantum Fisher information for the
Lipkin-Meshkov-Glick model cannot be larger than [29]

T, = 4A%S,T?. (63)

Therefore, we should expect to express the Eq. (62) in a
similar form to Eq. (63). In order to do this, we have to first
calculate A2S,. An elementary calculation shows

N\? N
A2S. = (E|<&Ta - 5) |Z) — (E|(&Ta _ 5)|

g

)2

[1]

= 64
87 (1— %) o
By using expressions from Eqgs. (43) and (64), we get
2
7, = ZAZSZTEZ, (65)

as expected. Now at the critical point, it can be shown that the
quantum Fisher information scales as

T, < y*N*PT2, (66)

which is in fact always below the standard quantum limit.
Although a slight manipulation of this expression can lead to
sub-Heisenberg scaling with the number of spins (N*/?) by

10 === ~ N3 »

FIG. 8. Quantum Fisher information calculated at the critical
point of the Lipkin-Meshkov-Glick model. Even though it exhibits
greater than linear scaling with N it is actually below the standard
quantum limit. This happens because the critical state of the Lipkin-
Meshkov-Glick model is only weakly squeezed as can be seen in
Fig. 5(a), but the time of the protocol scales with N which elevates
the scaling.

expressing the total time 7z as a function of N,

N4/3
L, x y*N*PTE o« — ox y* 0T, (67)
w

it is still below the standard quantum limit [expressing N as a
function of 7z would lead to a super-Heisenberg scaling with
time (TE4 )]. The results of the numerical simulations of the
quantum Fisher information as a function of N at the critical
point are presented in Fig. 8.

On the other hand, using the speed-up protocol, one could
easily prepare a very squeezed state in a short time and
overcome the standard quantum limit. In an extreme case
of preparing a maximally squeezed state [see Fig. 5(d)] it
is possible to achieve the Heisenberg scaling of precision.
However, from the practical point of view, the best strategy
seems to be the very well-known quench beyond the critical
point to create a spin-squeezed state [31] and then imprint the
information about the unknown parameter.

V. CONCLUSIONS AND OUTLOOK

In this work we have presented an alternative protocol
allowing for the preparation of critical (or squeezed) states
that benefits from the opening of the energy gap and therefore
is much faster than known adiabatic protocols. As the crit-
ical states are typically (anti-) squeezed along certain phase
space direction, the protocol relies on squeezing the initial
state along an orthogonal direction in the phase space and
(optional) rotation in the phase space by m /2. In this sense,
the protocol drives the system away from the critical point,
which opens the energy gap and allows for the speed-up.
Subsequently, we have derived the form of the adiabatic ramp
that would allow for the speed-up in the quantum Rabi model
and the Lipkin-Meshkov-Glick model, and show that the
speed-up protocol is always superior to the adiabatic protocols
relying on driving the system in the vicinity of the critical
point. However, the limitation of the speed-up protocol might
be inevitability of reaching couplings far beyond the critical
point. The presented protocol should be possible to apply in
other physical systems exhibiting criticality, in particular, in
the Dicke model whose two limits are the classical oscillator
limit from Eq. (3), and the fast oscillator limit equivalent to the
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Lipkin-Meshkov-Glick Hamiltonian (13). However, we defer
this topic for a future investigation.

Next, we have applied the adiabatic speed-up protocol in
quantum metrology and compared it with critical metrology
protocols which have attracted much attention in recent years.
We showed that the adiabatic metrology exploiting the speed-
up effect is superior to adiabatic critical quantum metrology.
This can be easily explained as the critical quantum metrol-
ogy relies on creating quantum resources (squeezing, spin
squeezing, or entanglement) very slowly, which means that
it is a suboptimal metrological strategy. Even though critical
quantum metrology can exhibit various scalings with 7 and N
including Heisenberg and super-Heisenberg scaling [32,33],
the ultimate precision will be always below the Heisenberg
limit, and it might be also below the standard quantum limit.
After all, “it should be clear that scaling of the sensitivity is
not per se a desideratum. Any given instrument or measure-
ment is judged by its sensitivity, not the scaling thereof” [34].
In particular, we have shown that although critical quantum
metrology with the Lipkin-Meshkov-Glick model can reach
the super-Heisenberg scaling with 7' (or greater than linear
scaling with N), the absolute sensitivity is lower than the
standard quantum limit. The optimal metrological strategies
should create the quantum resources quickly, for example, by
exploiting quenches into the critical phase to first prepare a
suitable initial state and then to imprint the information about
the unknown parameter or do it at the same time [35]. As a
matter of fact, quenches in the Lipkin-Meshkov-Glick model
are a common way of preparing spin squeezing [36,37] which
can be later used in a metrological task [38].

In the context of quantum metrology, we discussed only
the quantum Fisher information and did not calculate its clas-
sical version. However, as the states studied in this work are
(Gaussian) squeezed vacuums, it can be easily shown that a
standard homodyne detection scheme or the measurements of
spin components are the optimal measurements [39] for which
classical and quantum Fisher informations are equal.

The presented protocol could be used, in general, to create
squeezed and spin-squeezed states and harness them subse-
quently for various other tasks. One of the most promising
applications could be testing the performance of quantum heat
engines exploiting the adiabatic speed-up protocol [7,8].
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APPENDIX: ADIABATIC CONDITION

For the sake of completeness we derive the adiabatic con-
dition. Following a textbook derivation, we consider a family
of instantaneous eigenstates

HO)Ya(0)) = En(0)|¥a (1)) (AL)

Any given state can be decomposed in this basis according to

W) =) ca®)Pn(®)). (A2)
Inserting this state into the Schrodinger equation yields [for
the sake of brevity, we drop the explicit time dependence

f@)=f]

iy Calym) +calVia)) =D cuBultn),  (A3)

where the dot notation denotes a time derivative. Applying
(Y| from the left side results in

ity = Exci — iy (Yln)cn, (A4)

which can be rewritten factoring out the kth term from the sum
in the following way:

ice = (Bx — i(Welyadex — i Y (Wlyden. (A5)
n#k
Taking the time derivative of Eq. (A1) yields
H{Y) + A1) = Eal ) + Ealin). (A6)
Applying (| with k # n from the left side gives
(WlH V) + Ec(Yil¥n) = Ealiltn). (A7)
and after rearranging the terms
)
n) = ——— A8
(Weliin) =~ — (A8)
Plugging the above equation into (AS5) yields
y o AL
= (Ex — — ——Cy. A9
icx = (Ex — iynlv))ex z% E g o A9

It can be shown that in the quantum Rabi model (also in the
Lipkin-Meshkov-Glick model) (y|y) = 0, therefore if

y Wl

n#k E,, - Ek

E > ; (A10)

all the |cg| are constant throughout the entire process, and
hence the evolution is adiabatic.
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