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Speed limits for two-qubit gates with weakly anharmonic qubits
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We consider the implementation of two-qubit gates when the physical systems used to realize the qubits
possess additional quantum states in the accessible energy range. We use optimal control theory to determine the
maximum achievable gate speed for two-qubit gates in the qubit subspace of the many-level Hilbert space, and
we analyze the effect of the additional quantum states on the gate speed. We identify two competing mechanisms.
On one hand, higher energy levels are generally more strongly coupled to each other. Under suitable conditions,
this stronger coupling can be utilized to make two-qubit gates significantly faster than the reference value based
on simple qubits. On the other hand, a weak anharmonicity constrains the speed at which the system can be
adequately controlled: according to the intuitive picture, faster operations require stronger control fields, which
are more likely to excite higher levels in a weakly anharmonic system, which in turn leads to faster decoherence
and uncontrolled leakage outside the qubit space. To account for this constraint, we modify the pulse optimization
algorithm to avoid pulses that lead to appreciable population of the higher levels. In this case, we find that
the presence of the higher levels can lead to a significant reduction in the maximum achievable gate speed.
We also compare the optimal-control gate speeds with those obtained using the cross-resonance or selective-
darkening gate protocol. We find that this protocol, with some parameter optimization, can be used to achieve a
relatively fast implementation of the controlled-NOT gate. These results can help the search for optimized gate
implementations in realistic quantum computing architectures, such as those based on superconducting circuits.
They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of
the higher levels to achieve fast quantum gates.

DOI: 10.1103/PhysRevA.105.042614

I. INTRODUCTION

Over the past two decades, superconducting qubits have
made remarkable progress toward the goal of constructing a
large quantum computer [1–3]. As the superconducting qubit
technology matures, it becomes increasingly important to op-
timize the various aspects of their operation, such as their
coherence times and gate speeds. In particular, the question
of speed limits can be expressed as follows: What is the min-
imum amount of time needed to implement a given quantum
gate with the minimum required fidelity, e.g., 99.9%, in a
given setup? There have been several studies on this topic
for multiqubit systems, considering different scenarios as it
relates, for example, to the nature of the control parameters
and qubit-qubit interactions [4]. As a general rule, the speed
limit for a given two-qubit gate is determined by the two-
qubit coupling strength, with a linear proportionality relation
between coupling strength and gate speed.

*Present address: Institute for Photon Science and Technology, The
University of Tokyo, Tokyo 113-0033, Japan.

Some superconducting qubit designs that have long coher-
ence times have weak anharmonicities. In other words, the
device used to realize the qubit has several quantum states
with comparable transition frequencies between them. In the
case of particularly weak anharmonicity, the lowest few en-
ergy levels are almost equally spaced and the device behaves
almost as a harmonic oscillator. Hence, if one applies a drive
signal that is tuned to resonance with the transition between
the two lowest energy levels, which are used to encode the
qubit states, one must consider the possibility that the same
drive signal will induce unwanted near-resonant transitions
from the qubit states to the higher levels. A careful analysis
of the quantum computer operation must therefore include the
higher levels in the modeling of the physical device. Our goal
in this paper is to investigate the effect of these higher levels
on the maximum achievable speed of two-qubit gates.

It is worth mentioning here that weak anharmonicity is not
a new development in the field of superconducting qubits. The
phase qubit [5], which is one of the earliest superconducting
qubit designs, is also weakly anharmonic. Another point to
note is that although the higher energy levels of weakly an-
harmonic qubits are generally thought of as being detrimental
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to the operation of the qubit, e.g., because of the possibility
of unintentionally driving the device outside the space of
qubit states [6], the higher levels can be utilized to enable or
enhance certain qubit operations [7–13].

To determine the speed limits for two-qubit gates, we use
optimal control theory (OCT), which is a powerful tool to find
optimized pulses that can effect various quantum computing
tasks [14], such as two-qubit and multilevel-system control
[15–23]. In particular, by varying the pulse time and observing
changes in the achievable gate fidelity, one can use OCT to
find the minimum time needed to implement a given quantum
gate, e.g., the controlled-NOT (CNOT) gate, with a given
target fidelity. When dealing with simple qubits, e.g., physi-
cal systems for which two-qubit states can be identified and
manipulated with negligible leakage to other quantum states,
OCT algorithms can be applied directly and produce accurate
results for the speed limits on quantum gates.

Weakly anharmonic qubits have two properties that com-
plicate the application of standard OCT algorithms. First, if
we focus on performing information processing in the qubit
space, any unitary operator that implements the desired op-
eration in the qubit space is equally acceptable, regardless of
how the additional quantum states are transformed. In other
words, there are infinitely many unitary operators that qualify
as equally valid choices for the target quantum gate. Another
complication is that higher levels of weakly anhamonic qubits
are commonly more prone to decoherence and further leakage
to other quantum states. As a result, even if these states are
present and can be occupied at intermediate times during
the implementation of the quantum gate, it can be desirable
to avoid populating them as much as possible. The weaker
the anharmonicity, the more important this consideration be-
comes. In this paper, we implement a modified version of an
OCT algorithm with adjustments designed to deal with these
two complications.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the physical setup of two coupled weakly
anharmonic qubits. In Sec. III, we describe the OCT algorithm
used in this paper. In Sec. IV, we give the parameters used
in our numerical calculations. In Sec. V, we present the re-
sults of our numerical OCT calculations. For comparison, we
present gate time and fidelity results for the cross-resonance or
selective-darkening (CRSD) protocol in Sec. VI. Section VII
contains concluding remarks.

II. TWO COUPLED WEAKLY ANHARMONIC QUBITS

We consider a system composed of two coupled qubits.
With superconducting qubits in mind, we think of each qubit
as being a multilevel quantum system (which can also be
called a qudit) and the lowest two energy levels are used to
encode qubit states |0〉 and |1〉.

The Hamiltonian of a driven multilevel system whose low-
est two levels are used as a qubit can often be expressed
as

Ĥ =
N−1∑
j=0

ω j�̂ j +
N−1∑
j=1

ε(t )λ j (σ̂
+
j + σ̂−

j ), (1)

where the index j enumerates the N energy eigenstates of
the multilevel system (evaluated in the absence of driving)
that are kept in the theoretical model (with the ground state
labeled by the index j = 0), ω j are the energies of the different
states (and we shall set ω0 = 0), �̂ j are the projectors for the
different states j (�̂ j = | j〉〈 j|), ε(t ) is the time-dependent
amplitude of the driving field, λ j are coefficients that set
the relation between the driving-induced coupling matrix ele-
ments of the different transitions, σ̂+

j = | j〉〈 j − 1| and σ̂−
j =

| j − 1〉〈 j|. It should be noted that the most important piece
of information about λ j is the relation between the different
coefficients, i.e., not each coefficient separately, because they
are all multiplied by the common driving field amplitude ε(t ).
Throughout this paper, we shall use the same units for energy
and frequency, i.e., we set h̄ = 1.

Although our interest and results will not be limited to the
case of extremely weak anharmonicity, we use a model of a
truncated weakly harmonic oscillator for our calculations. In
particular, we set λ j = √

j as an approximation. This behavior
is exact for a harmonic oscillator. Experimental results show
that it remains a good approximation for weakly anharmonic
superconducting qubit devices such as the phase qubit [5] and
transmon [24]. With the approximation of near-harmonicity,
we also ignore direct coupling between states | j〉 and | j ± m〉
with m �= 1. We emphasize that even when the devices devi-
ate substantially from the harmonic oscillator approximation,
general relations such as the increase of λ j with increasing j
tend to remain valid. This property is related to the fact that
the extension of wave functions generally increases as we go
to higher energy levels. With increasing extension of the mul-
tilevel system’s wave functions, the coupling to external fields
becomes stronger, which corresponds to increasing values
of λ j .

Using the harmonic oscillator relations described above,
we can simplify the notation by defining the operator

â =
N−1∑
j=1

√
jσ̂−

j ,

â† =
N−1∑
j=1

√
jσ̂+

j . (2)

These operators are the harmonic oscillator annihilation
and creation operators truncated to the lowest N energy
levels.

In this paper, we shall not make the rotating wave approxi-
mation, which could speed up our calculations but would also
ignore the so-called counter-rotating terms in the Hamilto-
nian. These terms could lead to some non-negligible effects
when dealing with high-bandwidth or high-power driving
fields. We wish our calculations to capture any such effects if
they arise in the dynamics resulting from the optimized pulses
that we obtain in the calculations.

In present-day designs of superconducting qubits, since the
coupling between neighboring qubits is typically mediated
by mechanisms similar to those that describe the coupling
to external driving fields, we expect the same operators to
appear in the driving and coupling terms in the Hamiltonian.
As a result, we approximate the two-qubit coupling term in
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the Hamiltonian by

ĤC = g(â1 + â†
1) ⊗ (â2 + â†

2), (3)

where g is the coupling strength and the subscripts 1 and 2
label the two qubits. In this paper, we assume that g is fixed,
which is a common situation in experiments.

To help separate different phenomena that can be at play
in the system under consideration, we shall take g to be much
smaller than the anharmonicity parameters (which are defined
as η j = ω j − jω1) and we take the anharmonicity parameters
to be much smaller than the single-qubit Larmor frequencies,
i.e., the frequency ω1 for each qubit. The detuning between
the two qubits ω

(1)
1 − ω

(2)
1 is typically designed to be much

smaller than ω
(1)
1 and ω

(2)
1 but much larger than g, because a

large detuning leads to slower two-qubit gates in practical se-
tups, and a small detuning leads to frequency crowding. Since
the Larmor frequencies and coupling strengths are typically
separated by only two orders of magnitude, the interqubit
detuning and the anharmonicity will be at the same scale.
This ordering of energy scales does, in fact, correspond to
commonly used systems of superconducting qubits [25,26].
The coupling strength is usually not much smaller than the
anharmonicity. However, we expect that this fact does not
affect our main conclusions. Furthermore, the interpretation
of our numerical results can be straightforwardly applied to
more general situations, such as the case of qubits with strong
anharmonicity.

Another point worth noting here is that the coupling term
mixes the computational basis states, e.g., |01〉 and |10〉, caus-
ing the energy eigenstates to be superpositions of these states.
One might intuitively think that this mixing will reduce the
fidelity of any operation. However, in practice, all operations
are performed in the basis of energy eigenstates, and the small
perturbations in these states caused by the coupling term are
naturally absorbed into the definition of the computational
basis states. As such, these perturbations do not in themselves
constitute an error in any given protocol. In fact, the mixing
in the energy eigenstates can be seen as the mechanism that
enables certain two-qubit gate protocols [27].

In the absence of higher levels, and assuming that there
are no constraints on the control fields ε(t ), there are several
standard methods for implementing various two-qubit quan-
tum gates, such as the CNOT gate, which is described by the
unitary operator

UCNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ (4)

in the basis {|00〉, |01〉, |10〉, |11〉}, where the first and second
indices represent the states of the control and target qubits, re-
spectively. These methods can in general be applied to weakly
anharmonic qubits, although additional care needs to be taken
to deal with the higher energy levels. One such method is the
CRSD gate [27,28], which we shall use for comparison with
some of our OCT results below.

In the absence of higher levels, the minimum time required
to perform the CNOT gate is T0 = π/(4g), as explained in
Ref. [4]. This gate time can be achieved by setting the qubit

bias fields ε(t ) to large values to implement a controlled phase
gate. With the proper phase value, the controlled phase gate
is equivalent to the CNOT gate, up to single-qubit rotations.
This speed limit can also be approached when using strong
driving with ac-based implementations such as the CRSD
gate. For definiteness, we shall focus on the CNOT gate in
our analysis below and compare the minimum gate time for
weakly anharmonic qubits with the π/(4g) time mentioned
above.

In experimental realizations of quantum gates, one usually
expects a small amount of error to remain even after opti-
mization. These errors are typically a result of imperfections
in the experimental implementation. We note that in OCT
calculations with a sufficiently large number of adjustable
parameters, as is the case in our zero-loss OCT calculations,
there exist pulses that lead to perfect gate implementations in
theory. We shall therefore not analyze small residual errors in
relation to OCT calculations. Besides, these small errors are
unrelated to the question of the speed limits that is the main
topic of this paper.

III. PULSE OPTIMIZATION ALGORITHM

We use numerical OCT techniques to search for control
pulses that effect a given target unitary operator. As mentioned
above, we use the CNOT gate as a representative target gate
in our analysis of two-qubit gates. We expect that our general
conclusions regarding the role of the higher levels in speeding
up or slowing down two-qubit gates is not specific to our
choice of the CNOT gate. An alternative approach is to leave
the target gate unspecified and instead let the optimization
algorithm accept any perfect entangler to maximize the fi-
delity for a given set of system parameters, as explained in
Ref. [19]. As our pulse search method, we use the gradient
ascent pulse engineering (GRAPE) algorithm [29], which has
the advantage of being fast even for large numbers of control
parameters.

In OCT algorithms for finding the optimal pulse for imple-
menting a unitary operator, the goal typically is to maximize
the fidelity

F =
∣∣∣∣∣Tr

{
U †

targetU (T )
}

d

∣∣∣∣∣
2

, (5)

where Utarget is the desired target operator, U (T ) is the
candidate operator that is implemented by the numerically
calculated pulse (which is updated and improved by the algo-
rithm), and the factor d in the denominator is the dimension of
the Hilbert space (d = 4 for a two-qubit system). The fidelity
F quantifies the overlap between U (T ) and Utarget. When these
two operators are identical, Eq. (5) gives F = 1. When dealing
with weakly anharmonic qubits and expanded Hilbert spaces,
we shall define the operators in such a way that the maximum
value of the fidelity is F = 1 in this case as well.

In the GRAPE algorithm [29], the pulse is assumed to be
piecewise constant with the total pulse time divided into N
time steps. The operator U (T ) is therefore given by

U (T ) = UNUN−1 · · ·U2U1, (6)
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where Uj is the unitary operator that describes the evolution
in the jth time step:

Uj = exp

{
−i	t

(
Ĥ0 +

m∑
k=1

uk ( j)Ĥk

)}
. (7)

	t is the duration of the time step, Ĥ0 is the fixed part of the
Hamiltonian, m is the number of control parameters, uk ( j) is
the value of the kth control parameter in the jth time step,
and Ĥk is the kth control Hamiltonian. In each iteration of
the optimization procedure, the calculation proceeds by first
calculating the operators

Xj = Uj · · ·U2U1 (8)

and

Pj = U †
j+1 · · ·U †

N−1U
†
NUtarget (9)

for all values of j. The pulse update is then determined by
calculating the derivatives of the fidelity with respect to the
different control parameters uk ( j) in the different time steps
j:

dF

duk ( j)
= −1

8
Re[i	tTr{P†

j ĤkXj}Tr{X †
j Pj}]. (10)

With this information at hand, one can update the control
parameters uk ( j) by moving along the direction of the gradient
of F to maximize the fidelity improvement in each iteration.
Importantly, it has been shown that for typical control prob-
lems there are no local maxima in F that could prevent the
algorithm from finding the absolute maximum [30].

We now consider what modifications we need to make to
apply the GRAPE algorithm to multilevel systems that contain
the qubit space as well as additional quantum states outside
the computational space. First, we consider the fact that we
are looking for a certain unitary operator in the qubit space,
regardless of what transformation is effected in the remainder
of the Hilbert space. This situation means that the fidelity
should be the same for all the equivalent operators that differ
only in their effect on initial states outside the qubit space.
In other words, there should not be any cost associated with
the part of U (T ) that describes the transformation of states
in the irrelevant subspace of the Hilbert space. This goal can
be achieved by using as the target operator a matrix that has
the desired matrix elements in the relevant subspace and zero
matrix elements for the rest of the matrix. Such a matrix would
not be a unitary operator. It just serves the purpose of guiding
the search to the space of acceptable (and equivalent) target
operators without favoring any member of this set over any
other. Note that a special case of this technique was used in the
study of single-qubit optimal control in a three-level quantum
system [31].

The other consideration that we would like to incorporate
into the algorithm is the desire to avoid going too high in the
energy-level ladder outside the qubit space, even at intermedi-
ate times during the dynamics. This condition is motivated by
the fact that these higher energy levels tend to be associated
with increased dissipation and can be prone to further leakage
that causes information loss. We therefore need to include
some penalty for populating these states during the dynamics.
This goal can be achieved by introducing a loss factor that

shrinks the matrix elements in the dynamical evolution oper-
ator that correspond to the higher levels. Such a factor can
be included by replacing the operator product in the fidelity
[Eq. (5)] by

U †
targetLUN LUN−1 · · · LU2LU1, (11)

where

L = exp {−
	t}, (12)


 =

⎛
⎜⎜⎜⎜⎝

γ1 0 0 · · · 0
0 γ2 0 0
0 0 γ3 0
...

. . .
...

0 0 0 · · · γM

⎞
⎟⎟⎟⎟⎠, (13)

γl are loss rates for the different quantum states. Note that
although we are using this loss factor as a computational
tool to steer the optimization algorithm away from solutions
that involve occupying certain quantum states, this loss model
does in fact have a physical meaning. It can describe a real
dissipative loss of probability from the physical subspace
under study, and it corresponds to non-hermitian stochastic
dynamics [32]. A similar modeling of loss in an OCT prob-
lem was used in Ref. [33]. In our optimization algorithm,
populating the undesired states would lead to a reduction in
the corresponding matrix elements in the evolution operator,
which would propagate to other matrix elements and lead to
a reduced fidelity at the final time. As a result, the search
algorithm moves away from such situations and toward pulses
that keep the system as much as possible in the nondecaying
subspace. To implement this change in the GRAPE algorithm,
we replace the definitions in Eqs. (8) and (9) by

Xj = LUj · · · LU2LU1,

Pj = U †
j+1L · · ·U †

N−1LU †
N LUtarget. (14)

With this modification, we can use Eq. (10) to update the con-
trol parameters uk ( j) and hence optimize the control pulses
with this additional consideration incorporated into the algo-
rithm. We note here that this modification to the algorithm can
be used to suppress occupying any state, possibly for reasons
other than decoherence. We also note that one could alterna-
tively add to the algorithm specific decoherence terms, e.g.,
in Lindblad form. However, the proper description of deco-
herence in an open quantum system would require us to work
with objects that are more general than unitary operators, e.g.,
completely positive maps, which would somewhat complicate
the calculations without any benefit for our purposes, and we
do not do so here.

In the scenario that we analyze in this paper, the fixed part
of the Hamiltonian is

Ĥ0 =
2∑

k=1

N−1∑
j=1

ω
(k)
j �̂

(k)
j + g(â1 + â†

1) ⊗ (â2 + â†
2), (15)

and there are two control Hamiltonians,

Ĥk = âk + â†
k, (16)

with k = 1, 2, and the control parameters uk ( j) are the values
of the two drive fields εk (t ) in the N time steps.
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IV. CALCULATION PARAMETERS

In presenting the results below, we shall use the first qubit’s
Larmor frequency ω

(1)
1 as the reference energy. In other words,

all the energies and frequencies below are given in dimen-
sionless form and should be understood as being divided by
this energy unit. The time unit is accordingly 2π/ω

(1)
1 . We

shall, however, present most of the results relative to the
minimum CNOT gate time for two simple qubits, namely,
T0 = π/(4g). In all the calculations, we set the second qubit’s
Larmor frequency to ω

(2)
1 = 0.9. The coupling strength is set

to g = 0.0025.
The anharmonicities η

(k)
j = ω

(k)
j − jω(k)

1 are set to η
(1)
2 =

η
(2)
2 = −0.11, η

(1)
3 = η

(2)
3 = −0.19 and η

(1)
4 = η

(2)
4 = −0.28,

unless otherwise stated. We choose negative values with mag-
nitudes that grow as we go up the energy level ladder in
accordance with the basic behavior of phase qubit and trans-
mon energy level structures. The anharmonicity of a phase
qubit or transmon grows as η j = ( j2 − j) × η2/2 to lowest
order, which gives η3 = 3η2 and η4 = 6η2. We do not use this
formula, because it would make η

(k)
j on the order of ω

(k)
1 for

j = 4, meaning that the formula cannot be a good approxi-
mation for j � 4. As we shall discuss in Sec. V, there are
intuitive explanations for various aspects of our results, and
the exact functional dependence of η j on j does not seriously
complicate the interpretation of our results. Note also that the
value |η(k)

2 | = 0.11 is close to the detuning between the two
qubits (ω(1)

1 − ω
(2)
1 = 0.1). By varying the anharmonicity, we

shall see in the next two sections that this choice does not
seem to have a noticeable effect on the OCT results, but it can
drastically affect the CRSD protocol.

The relaxation rates of nearly harmonic superconduct-
ing qudits grow approximately as 
 j→ j−1 = j
1→0, where

 j→ j−1 is the relaxation rate from state | j〉 to state | j − 1〉.
It might therefore seem logical to set the loss rates γ j = jγ1.
However, since our focus is on the question of how higher
levels affect speed limits, and we use the loss rates γ j as a
computational tool rather than to simulate a real relaxation
process, we do not use the formula for 
 j→ j−1 to set the values
of γ j . Instead, we set γ1 = 0 and use various combinations of
values for the loss rates of the higher levels.

The number of time steps was set to N = 103 for pulse
times up to 50, N = 104 for pulse times between 50 and
400, and N = 2 × 104 for pulse times longer than 400. These
parameters were chosen to balance between the desire to keep
the computation time relatively short and making sure that the
results do not change if we increase the number of time steps.
We verified that with the above parameters the number of time
steps is large enough to make further increases unnecessary.
For all simulations, 104 iterations were used.

For the initial guess for the driving fields, we used ran-
domly generated, and therefore highly noisy, signals taken
from four different distributions. These distributions are all
uniform, i.e., they produce uniformly distributed random
numbers for each one of the parameters uk ( j). The four
distributions are defined by two criteria: the width is ei-
ther 1 or 10, and the distribution either is centered or
starts at 0. Each calculation with the parameters described
above takes about one day on a single core of a personal
computer.

V. RESULTS

The presence of additional quantum states outside the qubit
space opens new channels for the system dynamics. This
modification to the system brings both positive and negative
aspects. On one hand, the new channels for the dynamics
allow new possibilities that could be useful if one can find
ways to harness them. On the other hand, they create new
channels for leakage of the quantum state outside the qubit
space, which leads to deviations from the intended dynamics,
unless care is taken to suppress the leakage. We shall see in
this section that the additional states can speed up or slow
down the implementation of two-qubit gates, depending on
the details of the situation being considered.

First, we perform calculations in the case where we do
not assign any penalty to occupying higher levels. In other
words, we treat them as harmless additional energy levels,
as long as one makes sure to return to the qubit space at
the end of the controlled operation. Even with no explicitly
assigned penalty for occupying the higher levels, it is not
obvious that refocusing the quantum state back into the qubit
space is a simple task. One might therefore expect that the
mere presence of the additional quantum states could lead to
a reduced gate speed. We shall see shortly that, in general, the
opposite is true. It should also be emphasized that we start
our analysis with the implicit assumption that the truncated
oscillator model provides a good approximation for the sys-
tem. Our results will soon show that we must remain cautious
about this assumption when dealing with weakly anharmonic
qubits.

The CNOT gate fidelity as a function of allowed pulse
time for different total numbers of energy levels is shown
in Fig. 1(a). Perhaps counterintuitively, the presence of the
higher levels allows faster implementations of the gate. Taking
into consideration that the minimum gate time for the case
of simple qubits is T0, the addition of a third level per qubit
reduces the minimum gate time by a factor of 2. Increasing
the number of additional levels that we include in the sim-
ulations leads to faster gates. This trend slows down and is
barely visible when comparing the four- and five-level sim-
ulations. The speedup with increasing number of levels can
be understood by noting that the bottleneck for the two-qubit
gate speed is the photon-exchange dynamics induced by the
coupling term in the Hamiltonian. Opening extra channels
for the photon exchange can speed up the completion of the
two-qubit gate operation. Importantly, because the coupling
strength increases as we go to higher energy levels, it is in
fact advantageous to let the photon exchange occur through
the higher levels. One mechanism that can stop the increase
in gate speed with increasing Hilbert space size is the time
needed to excite the system from the qubit space to the high
levels and bring them back to the qubit space at the end.
Studies on this process have shown that it requires a mini-
mum pulse time that scales inversely with the anharmonicity,
with a power close to one [34,35]. With our parameters, i.e.,
ηk

j ∼ 0.1ω
(k)
1 , this mechanism would become a limiting factor

when the number of states per qubit is around five, which
could partly explain the stagnation in the speedup seen in
Fig. 1.

To illustrate the role of the higher levels in the gate dy-
namics, we take the optimized pulse for one of the data points
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FIG. 1. (a) The fidelity F of the CNOT gate implemented with
the optimal numerically obtained pulse as a function of the allowed
time T [measured in units of the minimum CNOT gate time for
simple qubits T0 = π/(4g)] in the absence of a loss factor in the sim-
ulations. The red squares, green circles, blue triangles, and magenta
diamonds correspond, respectively, to having a total of two, three,
four, or five energy levels for each qubit. The system parameters are
described in Sec. IV. (b) Populations P in the different subspaces
as functions of time for the blue triangle at T/T0 = 0.36 in (a). The
populations are averaged over the four computational basis states,
i.e., {|00〉, |01〉, |10〉, |11〉}, as initial states. The thick red line shows
the probability to be in the qubit space (QS). The medium-width
green line corresponds to having at least one qubit in state |2〉 but
no qubits in state |3〉. The thin blue line corresponds to having at
least one qubit in state |3〉

in Fig. 1(a) and plot the populations of different parts of the
Hilbert space as functions of time Fig. 1(b). It is clear that the
population leaves the qubit space during the gate dynamics but
returns to the qubit space at the final time. To avoid crowding
the figure, we have averaged the population results over four
initial states corresponding to the four computational basis
states in the qubit space. For the initial states |00〉 and |01〉,
about 50% of the population remains in the qubit space at
intermediate times, while for the initial states |10〉 and |11〉
the population in the qubit space is below 10% for most of
the pulse duration. The highest energy level has the highest
average population at intermediate times. We note here that
there is a reason why we chose a data point whose T value is

just below the minimum gate time in Fig. 1(a). In particular,
we avoid longer pulse times because long pulse times allow
an infinite number of pulses that all lead to fidelity values
above any threshold that we set. In other words, if we use
a long pulse time, we can take a long and winding path in
unitary-operator space and still reach the target gate at the final
time. The search algorithm does not favor any path over any
other, as long as they reach the target gate at the final time. We
can then expect to obtain more irregular dynamics compared
to those shown in Fig. 1(b). In contrast, for pulse times below
the minimum gate time, we expect that there will be a unique
optimal pulse that utilizes the available quantum states in an
optimal manner.

We performed similar calculations for the fidelity as a
function of pulse time with the anharmonicities all set to zero.
The results remained unchanged to within the margin of com-
putational fluctuations. This result might seem paradoxical;
zero anharmonicity suggests that the qubits become harmonic
oscillators and it should be impossible to perform inherently
quantum operations, such as the CNOT gate, on harmonic
oscillators with bilinear coupling. However, the truncation
of the Hilbert space creates an anharmonicity and makes it
possible to perform quantum operations on the system.

The above results demonstrate the limitations of the
truncated oscillator approximation and the importance of in-
cluding a penalty term in the cost function to avoid pulses
that lead to populating higher energy levels. In the absence
of any such term and considering weakly anharmonic qubits
with a large number of extra quantum states from which we
keep a few levels in the OCT calculation, the calculation will
generally produce the result that the fastest two-qubit gate
implementation involves exciting the device to the highest
levels at intermediate times. However, if we keep N levels in
the theoretical approximation of a weakly anharmonic qubit
and find that the optimal pulse drives the population up to
the highest level during the gate dynamics, this result would
be an indication that the approximation (i.e., the truncation
of the energy levels) was not justified. The approximation
is only justified if the populations of the highest levels that
are kept in the theoretical model remain small, meaning that
the ignored levels would have even smaller populations and
ideally a negligible effect on the final results. Instead, if we
find that the N th level is significantly populated, we have
to keep the (N + 1)th level in the theoretical model as well.
These complications do not arise if the anharmonicity is large
enough that individual control of each qudit’s transitions can
be performed significantly faster than the two-qubit gate time.
However, for anharmonicitiy values that are so small that
full single-qudit control cannot be performed significantly
faster than the CNOT gate time T0, our results based on the
truncated model become suspect. One apparent solution to
this difficulty is to use a more accurate model with a large
number of energy levels per qudit. However, with present-day
superconducting circuits, one cannot realistically utilize more
than a few energy levels without having serious detrimental
effects of dissipation. Even if future devices have good co-
herence properties extending to many excited states, one must
still worry about uncontrolled leakage to very high levels if
one attempts fast control with weak anharmonicity. Besides,
characterizing and properly modeling higher levels becomes
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increasingly difficult for a realistic setup. Instead of dealing
with these complications, an alternative approach is to avoid
pulses that drive the system too high up the energy level
ladder. We achieve this goal by adding a penalty to occupying
higher levels in our calculations. We emphasize that the role
of the penalty term is to make the pulse search algorithm,
i.e., the OCT algorithm, look for pulses that avoid exciting
higher levels. Adding this term to the OCT calculation does
not necessarily reflect a change in the physical parameters
of the system. We also emphasize that the anharmonicity of
superconducting qubits generally increases as we go up the
energy-level ladder. In some cases, the anharmonicity be-
comes strong after the first few energy levels, which would
naturally eliminate the need to worry about uncontrolled leak-
age to higher levels. We shall come back to this point at the
end of this section.

We now calculate the fidelity as a function of pulse time
with a loss factor added to the simulations. The results for a
number of loss rate combinations are shown in Fig. 2(a). We
note here that we set γ1 = 0 in all our simulations, because
we are using the loss factor to discourage population of higher
energy levels rather than to accurately model a physical dissi-
pation process. In all data sets in Fig. 2(a), the fidelity reaches
a maximum value, after which it either remains flat or starts to
decrease. The main feature that we emphasize in this figure is
that the pulse time at which the maximum is first reached is
comparable for all data sets, all in the range 4 < T/T0 < 8.
In particular, the three data sets that have γ2 = 0 all seem to
become flat starting around T/T0 = 4. The value T ≈ 4T0 can
therefore be identified as the realistic minimum gate time for
this combination of anharmonicity values. It clearly represents
a significant slowdown relative to the one that we obtained in
the zero-loss calculations (T ≈ 0.4T0). It is also longer than
the minimum gate time for simple qubits (T0). This slowdown
is what one would intuitively expect based on the consider-
ation that the desire to avoid leakage imposes a constraint
on the control signals and limits them to the weak-driving
regime. We also note that, especially when γ2 is not negligibly
small, the maximum fidelity is reduced as a result of adding
the loss factor. The higher the loss rates, the lower the max-
imum fidelity. This effect is at least partly physical, because
exciting higher levels can be minimized but not completely
eliminated, except in the infinite-time limit. After the fidelity
reaches its maximum value, the figure shows a slow decline
in fidelity with increasing pulse time. This feature must be a
computational artifact. Such a reduction in fidelity can occur if
the GRAPE time step 	t is not much shorter than the qubits’
Larmor periods, i.e., if ω

(1)
1 	t is not much smaller than 1,

because piecewise-constant functions cannot approximate res-
onant driving signals in this case. However, we do not believe
this effect has a significant impact on our data. At the largest
value of T in Fig. 2, ω(1)

1 	t = 25. To confirm that this number
is not too small, we performed additional simulations in which
we reduced N in the GRAPE algorithm by a factor of 2. The
fidelity decreased by only about 1% at large T values, which
means that we cannot expect a significant increase in fidelity
by increasing N . As a result, we suspect that the decrease in
fidelity is caused mainly by slower convergence for the cases
with longer pulse times. We note again that we set γ1 = 0 in
all of our simulations. A finite value of γ1 would describe loss
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FIG. 2. (a) Maximum fidelity as a function of pulse time, as in
Fig. 1(a), but including the loss factor L and varying the loss rates.
In all cases, we keep four energy levels per qubit. The red squares,
green circles, blue triangles, magenta diamonds, and cyan pentagons
correspond, respectively, to the loss rate combinations (γ2, γ3) =
(0, 10−2), (0, 10−1), (0,1), (10−3, 10−1), and (10−2, 10−1). The same
values of the loss rates are used for both qubits. All the data sets
reach their maximum or saturation values around the same value of
T . (b) Populations P in the different subspaces as functions of time,
as in Fig. 1(b), for the green circle at T/T0 = 4 in (a). The population
of state |3〉 is very low, making the blue line barely visible.

within the qubit space and would naturally lead to a reduction
in fidelity at long times. However, this effect does not occur in
our simulations.

To illustrate that the loss factor is serving its intended pur-
pose, we show one example of the gate dynamics in Fig. 2(b).
In contrast to the dynamics in the zero-loss case [Fig. 1(b)],
now we can see that the population remains mostly in the qubit
space and the higher-level population is suppressed. State |3〉,
which is the only decaying state in this simulation, is almost
not populated at all. Here we note that it was not desirable for
the plot in Fig. 2(b) to take a pulse time that is much shorter
than the minimum gate time. If we take a very short pulse
time, the algorithm might find pulses that populate higher
levels even in the presence of the loss factor, as the penalty
from occupying the higher levels might be offset by the gain in
gate speed when utilizing those higher levels. For this reason
and the one described in relation to Fig. 1(b), choosing a
pulse time that is at the speed limit is ideal for illustrating
the different mechanisms at play during the gate dynamics.
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FIG. 3. Absolute values of the Fourier coefficients ε̃k (ω) of the
optimized pulses εk (t ) for the two qubits (k = 1, 2) as functions of
frequency ω for the case shown in Fig. 2(b). We plot only the positive
frequencies because the Fourier transform is symmetric with respect
to the sign of ω. The red + symbols are obtained with our standard
104 optimization iterations, while the green × symbols are obtained
after 5 × 104 iterations. The insets show magnified views of the low-
frequency part of the spectrum: In both insets, the x-axis range is
[0,2], while the y-axis range is [0,0.3] in (a) and [0,4] in (b).

In Fig. 3, we plot the Fourier transforms of the driving
fields that correspond to Fig. 2(b). We do not plot the signals
as functions of time, i.e., εk (t ), because they look like noise
signals with no discernible features. For the pulse that pro-
duces Fig. 1(b), both the time-domain signals and their Fourier
transforms are almost featureless. The Fourier transforms of
the initial, randomly generated pulses also look like white-
noise signals.

Figure 3 shows peaks (with some internal features) in the
frequency range 0.9–1, i.e., at the scale of the qubit Larmor
frequencies. Such peaks are to be expected for a system
manipulated by resonant driving of its various transitions.
An interesting observation here is that the peak in |ε̃2(ω)| is
about five times higher than the peak in |ε̃1(ω)|. This result
appears to be inconsistent with the driving conditions needed
for the CRSD gate, in which the driving amplitude applied
to the control qubit is significantly larger than that applied
to the target qubit. We shall return to this point in Sec. VI
and show that this relation between the two signals has a
possible logical explanation. If we move slightly away from
the peaks, the Fourier coefficients of the control pulses are

particularly small. Then, if we move farther away from the
peaks, the Fourier coefficients become large again. In fact,
their magnitude far away from the peaks is essentially the
same as that in the initial guess pulse. This pattern indicates
that the optimization algorithm is most effective in shaping the
control pulse at relatively low frequencies, especially around
the frequencies of the various transitions in the system. To
demonstrate this point further, we continue the pulse opti-
mization procedure for a total of 5 × 104 iterations. Especially
in Fig. 3(a), the low-frequency nonresonant components are
significantly suppressed by the additional optimization, while
the higher-frequency components are barely affected. This
behavior is not too surprising, considering that the high-
frequency components have a small effect on the long-time
dynamics, such that they are given a low priority for refine-
ment by the optimization algorithm. We expect that if we
increase the number of iterations, the algorithm will eventu-
ally suppress the high-frequency components of the signal and
generate rather smooth control signals. However, achieving
this goal using the GRAPE algorithm can take a prohibitively
long computation time. In this context, it is worth noting that
the fidelity after 104 iterations is 98.47%, and it rises only
slightly (to 98.73%) after 5 × 104 iterations, which shows
that for the purpose of determining the speed limit, it is not
necessary to obtain smooth pulses. For practical realizations
of quantum gates in experiments, it is of course necessary
to identify easily implementable pulses. Considering our dis-
cussion above about the minimal effect of high-frequency
components, one can intuitively expect that taking the con-
trol signals in Fig. 3 and filtering out the high-frequency
components can quickly generate greatly optimized pulses.
We filtered out low- and high-frequency components with
varying cutoff frequency combinations. The fidelity generally
remained high when we filtered out frequency components
with ω � 1.3 ω

(1)
1 . The fidelity was more sensitive to filtering

out low-frequency components. We do not show any of the
resulting time-domain pulses here, because the pulses that
gave high fidelities consistently looked noisy for our choice
of system parameters.

Next we analyze the dependence of the speed limit on
anharmonicity. In Fig. 4, we plot the fidelity as a function
of pulse time for different sets of anharmonicity values. For
weak anharmonicities below 0.1, the minimum gate time
is roughly inversely proportional to the anharmonicity. This
trend is indeed what one might intuitively expect because
weak anharmonicity makes it more difficult to address tran-
sitions among the lowest levels separately from transitions
to higher levels. This trend is also consistent with past re-
sults on performing two-qubit gates with weakly anharmonic
qubits [35,36]. In the extreme case of zero anharmonicity, it
becomes practically impossible to achieve high-fidelity gates
because any driving that induces the |0〉 ↔ |1〉 transition of a
harmonic oscillator will also excite the system to higher levels
where loss occurs. This dependence on the anharmonicity
also contrasts with the near absence of any dependence on
anharmonicity that we found in the calculations with no loss
factor. The dependence on anharmonicity becomes weaker as
the anharmonicity increases, which is also to be expected as
stronger anharmonicities gradually make it increasingly easy
to isolate the qubit space from the rest of the Hilbert space.
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FIG. 4. Maximum fidelity as a function of pulse time, as in
Fig. 1(a), but including the loss factor and varying the anharmonicity.
In all cases, we keep four energy levels per qubit. The red squares,
green circles, blue triangles, magenta diamonds, cyan pentagons and
black + symbols correspond, respectively, to anharmonicity combi-
nations (η3, η4) = (−0.11, −0.19) × η with η = 0, 0.25, 0.5, 0.75, 1
and 2. We use (γ3, γ4) = (0, 10−2) for all data sets. The same values
of loss rate and anharmonicity are used for both qubits.

Before closing this section, we reconsider our results from
a more general circuit design perspective. The existence of the
additional quantum states opens new channels for the dynam-
ics and enables the possibility of achieving faster quantum
gates. The weak anharmonicity can complicate the targeted
control of the different transitions in the energy-level ladder.
It is therefore desirable to have qubits that have additional
energy levels in the realistically accessible range, e.g., with
transition frequencies on the scale of a few GHz for super-
conducting qubits, but are not weakly anharmonic. For this
purpose, qubit designs such as the capacitively shunted flux
qubit [37–39] or the fluxonium [40] can provide an advantage
in terms of the achievable gate speed, because these qubit
designs are more strongly anharmonic than the phase qubit
and transmon designs. As a result, they can allow a more
controlled utilization of any additional quantum states out-
side the qubit space, as demonstrated recently in experiments
on qutrit control in a capacitively shunted flux qubit device
[41,42]. As mentioned above, higher energy levels generally
correspond to more delocalized states when considering the
wave functions in terms of the circuit variables. It can there-
fore be expected that higher levels will generally lead to
stronger coupling than the lowest energy levels. With these
considerations in mind, the ability to utilize higher levels to
speed up quantum operations can serve as an additional metric
when assessing new qubit designs.

VI. CROSS-RESONANCE OR
SELECTIVE-DARKENING GATE

There are a few studies in the literature on the effect of
higher levels on specific implementations of two-qubit gates
[35,36,43–47]. These previous studies have generally consid-
ered the effect of leakage to the higher levels and energy level
shifts caused by the combination of driving and higher levels.
In fact, these energy-level shifts can be highly non-negligible,

as was shown in recent experiments on qutrit gates [41]. It can
be expected that the deleterious effects of the higher levels
worsen with increasing driving strength, which is intuitively
associated with faster gates. We shall see below that, although
this trend is obtained for unoptimized pulses, relatively simple
optimization of the parameters can in some cases lead to a
significant improvement in the gate fidelity with speeds not
far below the speed limits.

For comparison with the OCT results presented in Sec. V,
we perform calculations similar to those reported in Ref. [36]
to analyze the performance metrics, including the gate speed,
of the CRSD gate with the system parameters used in this
paper. The picture that one would expect from this kind of
calculation is as follows: As we increase the driving strength,
the gate speed increases while the fidelity decreases. The
increase in gate speed follows from the increase in the rel-
evant transition matrix element, which is proportional to the
driving amplitude. The decrease in fidelity is expected be-
cause the driving protocol is designed with the assumption
that there are only two energy levels per qubit, and there is
no correction mechanism in the driving protocol to deal with
higher levels. The leakage and energy-level shifts caused by
the higher energy levels then result in deviations from the
desired gate dynamics, which leads to lower gate fidelities.
In such a situation, where faster gates correlate with lower
fidelities, one typically decides in advance what minimum
fidelity is required or desired, and one chooses the gate speed
that corresponds to this minimum fidelity.

The first set of calculations in this section proceed sim-
ilarly to those of Ref. [36]. We perform simulations of the
driven system dynamics, keeping either three or four energy
levels for each qubit. In the CRSD protocol, the system is
driven at the frequency of the target qubit, which we take
to be qubit 2. With a properly chosen combination of pulse
amplitude and duration, a CNOT gate (or an equivalent two-
qubit gate) is obtained. We use the SD implementation of
the gate, i.e., the two qubits are driven simultaneously such
that the |00〉 ↔ |01〉 transition is completely suppressed. We
assume a pulse envelope shaped as the sine function sin(x)
from x = 0 to x = π . In other words, the driving fields are
given by ε1(t ) = εmax sin(πt/T ) cos(ω(2)

1 t ) and ε2(t ) calcu-
lated accordingly, where εmax is the maximum value of the
driving field amplitude on qubit 1 and is used to quantify
the driving strength, and T is the pulse duration. For each
value of driving strength, we first estimate the corresponding
pulse duration Te based on the matrix element for the CNOT
gate transition. The matrix element is obtained by numerically
diagonalizing the 9 × 9 or 16 × 16 Hamiltonian, depending
on whether we keep three or four energy levels per qubit.
We then simulate the driven dynamics for 200 values of the
pulse duration ranging from zero to 6Te. For each one of these
values for the pulse duration, we evaluate the fidelity of the
implemented unitary operator with the ideal CNOT gate. For
the fidelity calculation, we search the space of single-qubit
unitary operators for operations that can be applied before
and/or after the CNOT gate pulse to maximize the fidelity.
With 200 pulse duration values and their corresponding fi-
delity values at hand, we inspect the fidelity values starting
from zero pulse duration and moving up. The fidelity exhibits
oscillatory behavior, characterized by a sequence of peaks and
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FIG. 5. Gate speed T0/T and fidelity F as functions of driving
strength εmax (measured relative to ω

(1)
1 ) for the CRSD gate. The red

squares, green circles, and blue triangles correspond, respectively,
to η3 = −0.11, −0.22, and −0.055. The open symbols correspond
to keeping three energy levels per qubit, while the closed symbols
correspond to keeping four levels per qubit. The ratio T0/T is used
as the gate speed quantifier because it is equal to 1 at the speed limit
for simple qubits.

dips, as a function of pulse duration. If we reach a peak in the
fidelity that is above 0.99, we identify the peak location as
the gate time. In some cases, especially when some undesired
resonance occurs, no high-fidelity peak is encountered in the
range of pulse durations from zero to 6Te. In these cases, we
take the pulse duration that corresponds to the highest fidelity
and use it as the gate time.

The results for the gate speed and the corresponding gate
fidelity are shown in Fig. 5. It might look surprising that in
the data sets for η3 = −0.055 and η3 = −0.22, the fidelity
remains close to 1 and does not decrease with increasing
driving strength. The reason behind these high fidelities is that
in this calculation we have allowed for numerically optimized
single-qubit rotations to be applied before and after the CRSD
gate pulse, in addition to varying the pulse duration and choos-
ing the value that gives the highest fidelity. This procedure
amounts to performing a pulse optimization algorithm, with
a much smaller number of variable parameters compared to
GRAPE but with simple pulses that are guaranteed to be
easily implementable. If we simply follow the basic theoreti-
cal formulas for the CRSD pulse parameters when designing

the CNOT gate pulse, e.g., as in Refs. [27,28], the fidelity
would remain low throughout the plotted range. Even for
weak driving, where leakage can be avoided, the energy level
shifts caused by the higher levels prevent a straightforward
implementation of the CRSD gate in its basic form.

The results in the case η3 = −0.11 partly follow the simple
picture described at the beginning of this section, namely, an
increase in gate speed accompanied by a decrease in fidelity.
While the gate speed increases and approaches the simple-
qubit speed limit, the fidelity drops significantly below 1,
making these fast gates of little value for practical use in a
quantum computing device. The fast deterioration of fidelity
in this case can be understood by noting that the frequency
ω

(1)
2 − ω

(1)
1 = 0.89, which corresponds to a leakage transi-

tion that takes the system outside the computational space,
is very close to the CRSD driving frequency ω

(2)
1 = 0.9. As

a result, the standard CRSD protocol fails badly. Somewhat
surprisingly, the other two values of anharmonicity used in
these calculations do not suffer a serious deterioration in the
fidelity. This feature could be due to the slow rise and fall
in the gate pulse amplitude, which can lead to an adiabatic
population and depopulation of the higher levels over the
course of the gate dynamics. There are, however, localized
resonances where the fidelity exhibits dips at certain values of
the driving strength.

Another unexpected feature is seen most clearly for the
three-level simulations with η3 = −0.11. The gate speed does
not vanish when the driving amplitude is reduced to zero, even
though no driving-induced oscillations occur in this case. The
cause of this undriven gate dynamics is that the higher levels
cause qubit-state-dependent energy-level shifts in the qubit
space, and these shifts can induce entangling dynamics even
in the absence of driving [36]. As a result, one can obtain a
two-qubit transformation that is equivalent to a CNOT gate
in a finite amount of time even with no external driving.
To establish a system for universal quantum computing, one
must be able to suppress this always-on entangling dynamics
when it is not needed. Otherwise, it would be an especially
serious issue for performing quantum information protocols
using systems with strong coupling. Using OCT methods,
it was shown in Ref. [33] that one can controllably activate
and suppress the entangling dynamics in these systems, such
that universal quantum computing is possible once the pulses
needed to implement the different operations are determined
and properly applied.

We can now use Fig. 5 to infer information about the speed
limit for the CRSD gate. By looking for the largest value of
T0/T that corresponds to a high fidelity, one can extract a
minimum gate time for each set of system parameters. In spite
of the differences between the different data sets in Fig. 5,
the maximum value of T0/T that is associated with a high
fidelity is consistently around 0.15–0.25. The minimum gate
time in these cases is therefore ∼4-6T0, which is an order of
magnitude longer than the minimum gate times obtained in
Sec. V in the zero-loss case (∼T0/2).

Another feature that we can see in Fig. 5 is the substantial
difference between the three- and four-level results, which
indicates that the higher levels are significantly populated dur-
ing the dynamics. We confirm this behavior in the population
dynamics (not shown in the figure). As in Sec. V, we must
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FIG. 6. Same as in Fig. 5, but including loss from the higher
levels. Here only four-level simulations are performed, with decay
rates (γ2, γ3) = (0, 0.01). The + symbols plotted for low values
of εmax are obtained by driving the qubits with an amplitude ratio
designed to darken the |11〉 ↔ |21〉 transition and hence suppress the
leakage through that transition. To make the comparison between the
squares and + symbols clear, there are more of these symbols than
circles and triangles at low values of εmax. Some data points seem to
be missing in the gate speed plot. These points lie outside the plot
range, i.e., they have T0/T > 1, and they are ignored because they
correspond to low fidelities.

be cautious when interpreting simulation results that involve
a significant population in the highest levels, which would
indicate that even higher levels might need to be included in
the simulation. To deal with complications that could arise
in this case, we perform further simulations where we now
include loss from the highest levels, such that any gate im-
plementation that involves a significant population of these
levels would result in a low fidelity and be disqualified in
the search for optimal gate implementations. The results are
shown in Fig. 6. We can see clearly that the fidelity is high
only when the driving is weak. In the case η3 = −0.11, even
the weakest-driving data point in the figure has a low fidelity.
Considering only the high-fidelity cases (e.g., F > 0.99), we

obtain a maximum gate speed of about T0/T ∼ 0.07–0.12, i.e.,
a minimum gate time of T ∼ 8–15 T0, for the three data sets
shown in Fig. 6.

It is worth considering the case η3 = −0.11 a little bit
further. The reason for the great reduction in fidelity in this
case is the leakage from state |1〉 to state |2〉 in qubit 1. As
explained in Ref. [36], the CRSD gate can be performed using
any combination of driving amplitudes on the two qubits. We
therefore perform additional simulations where we set the
amplitudes using the condition that the |11〉 ↔ |21〉 transition
is darkened to suppress the leakage through this transition.
To achieve complete darkening of the |11〉 ↔ |21〉 transition,
the ratio between the driving amplitudes ε2(t )/ε1(t ) should
be set to −3.4. This ratio is comparable to that obtained
from the OCT calculations that produced Fig. 3, which could
provide a logical interpretation for the amplitude ratio in the
OCT results. With the ratio −3.4 used for the CRSD driv-
ing amplitudes, we find that the fidelity deterioration with
increasing driving amplitude is slowed down, such that we can
achieve a gate time comparable to those obtained for the other
anharmonicity values.

As expected, the results obtained in this section when
avoiding higher level excitation give slower gates (∼10T0

with parameter dependent variations) compared to those ob-
tained using OCT (∼4T0 with variations). However, the
difference (a factor of 2–3) is not as large as one might
have expected, taking into consideration the much larger
amount of freedom in designing pulses in OCT. This result
means that, in general, one can to some extent approach
the speed limit using the CRSD protocol with a relatively
simple pulse optimization procedure. Further improvements
with the simple gate implementation could be obtained by
incorporating leakage-suppression techniques such as DRAG.
One clear exception where we did not obtain high fidelity
gates with simple pulses is when we encountered undesired
resonances. The OCT results did not exhibit any resonance
features as in Fig. 5 and possibly Fig. 6, which is to be
expected because OCT methods naturally recognize pulses
that lead to unintended leakage resonances and move the
search away from such pulses. As a result, even in the case
η3 = −0.11, OCT shows that we can achieve typical gate
speeds with arbitrarily high fidelities when using optimized
pulses.

VII. CONCLUSION

In conclusion, we have investigated the application of OCT
methods to the problem of implementing two-qubit gates with
weakly anharmonic qubits, in which case the search for opti-
mal pulses allows the dynamics to involve the irrelevant part
of the Hilbert space at intermediate times but can also be
programed to discourage the population of specific states. We
have found that, depending on whether higher energy levels
can be controlled at high speeds and with low loss or not, the
presence of these extra levels can either speed up or slow down
the implementation of two-qubit gates. Whether the higher
levels are useful channels for faster gates or harmful leakage
channels depends in part on the magnitude of the anharmonic-
ity. More specifically, a moderately strong anharmonicity that
is typical for some superconducting qubit designs could allow
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the controlled utilization of the higher levels, pointing to a
potential advantage of such qubit designs for achieving fast
quantum gates. By comparing the results of OCT with a rel-
atively simple optimization procedure for the CRSD gate, we
found that the latter can give high-fidelity gates with speeds
not far below the speed limit, indicating that one can approach
the speed limit with relatively simple control pulses.

The methods and results presented in this paper can help
guide future studies aiming to find optimal approaches to
implement various operations in systems of weakly anhar-
monic qubits. They can also be adapted and utilized for the
optimization of qudit operations in weakly anharmonic qu-
dits [48]. From a broader perspective, the idea of utilizing
states outside the computational space to speed up quantum

operation is based on general physical principles. It is there-
fore not limited to superconducting systems and could be
applied in other quantum computing platforms.
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