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Simulating superluminal propagation of Dirac particles using trapped ions
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Simulating quantum phenomena in extreme spacetimes in the laboratory represents a powerful approach to
explore fundamental physics in the interplay of quantum mechanics, quantum field theory, and general relativity.
Here we propose to simulate the movement of a Dirac particle propagating with a superluminal velocity caused
by the emergent Alcubierre warp drive spacetime using trapped ions. We demonstrate that the platform allows for
observing the tilted light cone that manifests as a superluminal velocity, which is in agreement with the prediction
of general relativity. Furthermore, the Zitterbewegung effect arising from relativistic quantum mechanics persists
with the superluminal propagation and is experimentally measurable. The present scheme can be extended to
simulate the Dirac equation in other exotic curved spacetimes, thus providing a versatile tool to gain insights
into the fundamental limit of these extreme spacetimes.
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I. INTRODUCTION

Quantum field theory in curved spacetime [1–3], as a semi-
classical approach to study the movement of quantized matter
fields in a fixed gravitational background, has predicted many
striking phenomena such as the famous Hawking radiation
and cosmological particle production. However, confirmation
of those extremely weak quantum effects in real gravity ex-
periments remains highly unlikely with present technology
[4,5]. Following Unruh’s pioneering work [6], much attention
has turned into sound waves traveling against the classical
[7] and quantum fluids [8–19], or light in nonlinear optical
platforms [20–23] to effectively emulate quantum field the-
ory in curved spacetime. Remarkably, these relevant analog
experiments among many others [24,25] have brought us a
better understanding of the relationship between the classical
spacetime structure and the quantum theory [26–28].

Furthermore, recent developments of precise and flexi-
ble quantum control also facilitate a quantum simulation of
related relativistic phenomena [29–40], and the theoretical
solutions can thereby be detailed tested. As a representative
example, intriguing quantum dynamics related to a Dirac par-
ticle moving in curved spacetime has increasingly attracted
investigations via the particularly promising trapped-ion plat-
form [41–44]. The exceptional controllability of quantum
simulators makes it feasible to emulate a Dirac particle in
“exotic” curved spacetimes [43]. As a particularly impor-
tant example, the Alcubierre warp drive, consistent with the
framework of general relativity, can result in faster-than-light
propulsion of a spaceship [45]. Compared to the extreme
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difficulty in realizing such a time-machine model (i.e., creat-
ing warp bubbles) in the actual world [46–48], observation of
analog phenomenon with well-controllable quantum simula-
tors in the laboratory should be more accessible. In particular,
although the Alcubierre metric is an exact solution to the Ein-
stein field equations, the corresponding matter source violates
the energy conditions in classical theory. However, quan-
tum mechanics allows negative energy densities and certain
quantum fields violate the energy conditions. The question
about the energy conditions remains under debate [49–52].
Interestingly, some kinematical analogs of the superluminal-
traveling spacetime do not require the energy conditions [53].
Similarly, quantum simulating exotic spacetime structures
may also serve as starting points to shed new light on the
energy conditions from the distinctive perspective of quan-
tum mechanics. Besides, merging of fundamental concepts
from different fields when implementing such novel quantum
simulation, including gravitation, quantum squeezing, and
quantum entanglement, would provide a fruitful way to reveal
unique features of quantum effects in both the exotic curved
spacetimes [43] and the basic light-matter interaction models
[42].

In this article, we propose a trapped-ion quantum simu-
lation of a Dirac particle propagating with a superluminal
velocity caused by the emergent Alcubierre warp drive space-
time [45] (see Fig. 1). The Hamiltonian from the Dirac
equation in the Alcubierre (1+1)-dimensional universe is
mapped onto a spin-boson interaction quantum model, which
can be further realized by a combination of sideband drives
and a periodic modulation of the trapping potential. Remark-
ably, the tunability of system parameters in the well-controlled
trapped-ion platform allows us to access the crossover from
flat to curved spacetimes. Using exact numerical simulations,
we demonstrate that, in this platform, one is able to observe
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FIG. 1. Schematic illustration of the light cones for Dirac parti-
cles in the Alcubierre warp drive spacetime which can be simulated
by a trapped-ion system. The key ingredients include (I) the qubit-
motion coupling �0 which is implemented by blue and red sideband
drives at frequencies ωb and ωr , respectively, and (II) the modulation
of the confining potential on resonance with the ion-trapping fre-
quency ν, the amplitude of which is given by the parametric coupling
strength �p. The tilt of the light cones increases as the parametric
coupling strength �p and thereby the Alcubierre metric parameter
vs becomes larger, which results in a superluminal velocity. The
tunability of the control parameters within the state-of-the-art exper-
iments makes it feasible to simulate the tilted Dirac equation in the
Alcubierre metric in different parameter regions.

some counterintuitive quantum relativistic features such as
analog superluminal travel of Dirac particles in the tilted
light cones, as well as the Zitterbewegung effect of mas-
sive Dirac particles incorporating the tilt of the Dirac cone.
The present work may pave the way for future research on
simulating the Dirac equation in more general exotic curved
spacetimes to explore intriguing phenomena arising from the
interplay of quantum field theory and general relativity in
well-controllable quantum experiments in the laboratory.

II. SIMULATION OF ALCUBIERRE METRIC USING
TRAPPED IONS

We start by first introducing the Alcubierre metric [45,54],
which is given by

ds2 = c2dt2 − [dx − vs(t )dt]2 − dy2 − dz2, (1)

where vs(t ) ≡ dxs(t )/dt is the dimensionless velocity value
associated with a certain trajectory xs(t ). In the (1+1)-
dimensional case, the light cones at a point in the t-x plane are
specified by the curves emerging from the point with ds2 = 0,
namely

1

c

dx

dt
= vs(t ) ± 1. (2)

If vs(t ) = 0, then the spacetime is flat. Otherwise, the corre-
sponding light cones are tipped over and the particle traveling
inside the light cone can have a velocity faster than the light
speed in the flat spacetime, which is theoretically consistent
with the framework of general relativity [45].

Extension of the Dirac equation into curved spacetimes
successfully merges quantum mechanics with the general rel-
ativity. In the (1+1)-dimensional spacetime with signature
(+,−), the Dirac equation reads [41,55][

ih̄γ aeμ
(a)∂μ + ih̄

2
γ a 1√−g

∂μ

(√−geμ
(a)

) − mc

]
ψ = 0, (3)

where the Greek letter μ and the Latin letter a denote the coor-
dinates of curved spacetime and local rest frame, respectively,
m is the mass of the quantized field, g is the determinant of
the metric tensor gμν , and eμ

(a) is the vielbein allowing the
constant Dirac matrices γ a to act at each spacetime point.
Here, we choose the chiral representation such that γ 0 = σx

and γ 1 = −iσy, with σ the Pauli matrices. In the specific case
of the Alcubierre spacetime, the metric tensor is given by

gμν =
(

1 − vs(t )2 vs(t )
vs(t ) −1

)
, (4)

and the vielbein can be set as

eμ
(a) =

( −1 0
−vs(t ) −1

)
, (5)

with a and μ the column and row indices, respectively. By
multiplying Eq. (A1) with σz, the Dirac equation can be ex-
panded as[

−mc2σz+ih̄σx
∂

∂x
− ih̄σy

(
ivs(t )

∂

∂x
+i

∂

∂ (ct )

)]
ψ (t, x) = 0,

(6)
which can be further rewritten in the form of a Schrödinger
equation as follows:

ih̄∂tψ =
(

−ich̄vs(t )
∂

∂x
− ich̄σz

∂

∂x
− mc2σx

)
ψ, (7)

from which the Hamiltonian H that governs the above dynam-
ical evolution can be written as

H = cAP̂σz + cAP̂vs(t ) − mc2σx. (8)

Here we introduce the operators X̂ and P̂

X̂ ≡ Ax̂, P̂ ≡ −ih̄
∂

∂X
(9)

to rescale the spatial coordinate x of the simulated Dirac
particle by a dimensionless factor A. Note that X̂ and P̂ will be
the observables of the trapped ion in our proposed simulation
platform. We remark that the second term of the Hamiltonian
in Eq. (8), which is linearly dependent on the momentum P̂, is
an evidence of relativistic physics [56]. Based on the standard
commutation relation [X̂ , P̂] = ih̄, the operators X̂ and P̂ can
be further mapped to a bosonic field of frequency ν,

X̂ =
√

h̄

2m0ν
(â + â†), P̂ = −i

√
h̄m0ν

2
(â − â†), (10)

where m0 is a constant with the dimension of mass.
By substituting Eq. (A7) into Eq. (8) and applying

the Hadamard transformation (i.e., σx → σz, σz → σx), the
Hamiltonian can be rewritten as

H = −icA

√
h̄m0ν

2
(â − â†)[σx + vs(t )] − mc2σz. (11)
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To simulate the above Hamiltonian in Eq. (11) with the
tunable parameter vs, we consider a setup of a single ion
trapped above a linear surface electrode radio-frequency trap.
The radial motional mode of the trapped ion with a frequency
ν models a harmonic oscillator and its two internal ground
hyperfine levels with the transition frequency ω0 playing the
role of an effective spin 1/2, denoted as |↑〉 and |↓〉. As an ex-
ample, the present scheme may employ a trapped 25Mg+ ion
hyperfine qubit, with an out-of-phase radial motional mode
frequency ν ≈ 2π × 5.9 MHz [57]. The qubit states are cho-
sen as |↓〉 ≡ |F = 3, mF = 1〉 and |↑〉 ≡ |F = 2, mF = 1〉
[57,58], where F is the total angular momentum and mF is
its projection along the quantization axis.

The spin-harmonic-oscillator coupling of the form in
Eq. (11) can be realized by implementing the Mølmer–
Sørensen interaction [59]

H�0 = h̄�0{|↑〉〈↓| ⊗ [â† sin (ωbt ) − â sin (ωrt )] + H.c.}
(12)

via simultaneous blue and red sideband driving at frequencies
ωb and ωr , respectively, which in real experiments can be gen-
erated by using oscillating near-field magnetic-field gradients
[60]. Here, the frequencies of the blue and red sideband drives
satisfy the condition ωb − ν = ωr + ν = ω0 − 
. In addition,
we introduce a periodic modulation of the single ion’s trap-
ping potential of the strength �p(t ) at frequency ν to obtain
the second term ∼cvs(t )P̂ in Eq. (11). The corresponding
Hamiltonian is given by

H�p = h̄�p(t ) sin(vt )(â + â†)2. (13)

This can be experimentally implemented by applying an os-
cillating potential directly to the radio-frequency trapping
electrodes, as demonstrated in Ref. [57]. Therefore, such a
trapped-ion platform can be characterized by the following
system Hamiltonian as

Hion = h̄ω0

2
σz + h̄vâ†â + H�p + H�0 . (14)

By making a displacement transformation a → a + η and
a† → a† + η (η � 1) with the operator D[η] = eη(a†−a), and
then moving to the interaction picture with respect to H0 =
h̄(ω0 − 
)/2σz + h̄νa†a, the effective Hamiltonian can be
approximated as

HI (t )  h̄


2
σz − 2ih̄η�p(t )(â − â†) + h̄�0

2i
(â − â†)σx (15)

under the conditions of {|
|, |�p(t )|, |�0|} � ν � ω0.
Therefore, it can be seen that the Hamiltonian in Eq. (15)
as implemented in the trapped-ion platform is equivalent
to the Hamiltonian in Eq. (11) that governs the Dirac
equation in the Alcubierre (1+1)-dimensional universe with
the parameter correspondence as vs(t ) ↔ 4η�p(t )/�0, c ↔
(h̄/2m0ν)1/2�0/A, and m ↔ −h̄
/2c2.

We remark that the experimental tunability of the param-
eters {�0,�p,
} in the well-controllable trap-ion platform
allows access to the crossover from flat to curved spacetimes,
namely the tilt of the Dirac equation can be tuned by choos-
ing appropriate values of the parameter �p; see Fig. 1. The
angle of the simulated light cone is given by θ = arctan(vs +

1) − arctan(vs − 1), which decreases for a larger value of vs,
i.e., the velocity of the Dirac particle would be constrained
in a smaller range. In the limit case of extremely large vs,
arctan(vs ± 1) → π/2, and the angle of the light cone θ → 0,
the trajectory of the trapped ion can be seen as a counterpart
of the closed timelike curves.

III. OBSERVATION OF ANALOG
SUPERLUMINAL TRAVEL

To show the effective velocity of the simulated Dirac parti-
cle, we solve the following Heisenberg equation of the trapped
ion system (see Appendix B):

dx̂(t )

dt
= i[H (t ), x̂(t )] = c[vs(t ) + φ̂z(t )], (16)

where x̂(t ) = U †(t )x̂U (t ) represents the position operator of
the Dirac particle and φ̂z(t ) = U †(t )σzU (t ) with U (t ) the
evolution operator from the Hamiltonian H (t ) in Eq. (8). We
remark that Eq. (16) is consistent with the Alcubierre metric,
since the two eigenvalues ±1 of φ̂z(t ) correspond to the two
opposite directions of the velocity. The mechanical degrees of
freedom of the trapped ion X̂ is related to the spatial coordi-
nate of the simulated Dirac particle x̂ by X̂ ≡ Ax̂ [see Eq. (9)];
thus the velocity d〈X̂ 〉/dt is in the range of Ac(vs ± 1).

As an illustrative example, we choose the initial state of the
trapped ion as |ψ0〉 = Nπ−1/4

∫
dX exp(−X 2/2)|X 〉 ⊗ |s〉,

where |X 〉 and |s〉 represent the spatial and internal degrees
of freedom of the trapped ion, respectively. Without loss of
generality, the spatial wave function satisfies a Gaussian dis-
tribution with N the normalization factor. In Figs. 2(a) and
2(b), we show the trajectory 〈x̂(t )〉 (in the unit of c) of the
simulated massless Dirac particle (i.e., m = 0) as a function
of the evolution time. According to Eq. (16), the trajectory
of the evolving states from the initial spin states |↑〉 and |↓〉
(namely the two eigenstates of 〈σz〉 = ±1) specifies the shape
of the simulated light cone. It can be seen that, corresponding
to massless Dirac particles, the light cones for different values
of the parameter vs are consistent with the analytical results
from classical general relativity theory [43]. In particular, the
simulated light cones start to tip over as the parameter vs

increases, which indicates that the spacetime becomes more
curved. These numerical simulation results demonstrate that
the quantum simulation using trapped ions can confirm the
superluminal propagation of Dirac particles in the Alcubierre
warp drive spacetime.

In the cases of initial states with |s〉 = |↑〉 or |↓〉, the
velocity is well defined, and thus the wave packet of the
simulated Dirac particle remains localized, as shown by
the blue line and green circles in Fig. 2(c). In contrast, if
we start from a coherent superposition state |s〉 = (|0〉 +
|1〉)/

√
2, the wave packet of the simulated Dirac particle has

two peaks which correspond to the initial velocities c(vs ± 1),
respectively, resulting in an increase of the variance of the
trajectory; see the orange line in Fig. 2(c).

IV. ZITTERBEWEGUNG EFFECT WITH SUPERLUMINAL
PROPAGATION

In addition to the analog superluminal propagation, we
also find that, for massive Dirac particles with m �= 0, the
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FIG. 2. Dynamics of a trapped-ion simulated massless (m = 0)
Dirac particle in the Alcubierre space-time. (a), (b) The light cones
of the simulated Dirac particle (blue shaded) are illustrated by its
coordinate 〈x̂〉, which is obtained from the average position of the
trapped ion as 〈x̂〉 = 〈X̂ 〉/A for the Alcubierre metrics with (a) vs = 0
(flat space-time) and (b) vs = 2 (curved space-time). (c) The variance
of the simulated Dirac particle’s position 
x as a function of the
evolution time for vs = 2. In (a)–(c), the initial state of the trapped
ion is chosen as |ψ0〉 ∼ Nπ−1/4

∫
dX exp(−X 2/2)|X 〉 ⊗ |s〉, where

|X 〉 and |s〉 denote the spatial and internal degrees of freedom of the
trapped ion. The internal states are chosen as |s〉 = (1, 0)T [blue, or
the upper boundary of the shaded regions in (a), (b) and the flat line
in (c)], |s〉 = (0, 1)T [green, or the lower boundary of the shaded
regions in (a), (b) and the circles in (c)], and |s〉 = 1/

√
2(1, 1)T

[orange, or the middle lines in the shaded regions in (a), (b) and the
increasing line in (c)]. The parameters used in numerical calculations
are �0 = 2π × 1.46 kHz, �p = 2π × 50 kHz, ν = 2π × 5.9 MHz,
and 
 = 0.

Zitterbewegung effect induces an oscillatory behavior in the
trajectory of the trapped ion. This effect is caused by the
quantum superpositions of electron and positron solutions of
the free wave packets [44,56] and may exist in both flat and
curved spacetime [42,56]. The equation of motion for the
expectation value of the position operator x̂(t ) in this case can

be obtained as (see Appendix B)

d2

dt2
〈x̂(t )〉 = −2mc3

h̄

〈
e2iHflatt/h̄σy

〉
, (17)

where Hflat = AcP̂σz − mc2σx represents the Dirac Hamilto-
nian in the flat spacetime. From Eq. (17), one can see that the
oscillatory behavior is induced by the mass m but independent
of the parameter vs and therefore the Zitterbewegung effect
would persist with the superluminal propagation. In Fig. 3(a),
we show that the Zitterbewegung effect can manifest for both
constant and time-dependent vs in the trapped-ion simulator.
As an example, we consider a time-dependent spacetime by
choosing vs such that both the initial and final velocities are
subluminal, which is derived from a trajectory xs(t ) of the sim-
ulated Dirac particle. This result is shown by the gray dashed
line in Fig. 3(a), which clearly exhibits the Zitterbewegung
effect.

In Figs. 3(b) and 3(c), we present the properties of the wave
packet of the simulated Dirac particle during its evolution. As
shown in Fig. 3(b), we do not observe any squeezing of the
density profile caused by the simulated gravity in the trapped-
ion system, which represents a different phenomenon from the
one in Ref. [42]. We remark that the qualitative behavior of the
variance of the position is determined by the mass m and is
independent of the parameter vs. The wave packets at t = 0.3
ms and t = 1.5 ms are shown in Fig. 3(c), which suggests that
the wave packet of the simulated Dirac particle is stretched
and the oscillatory feature becomes more prominent as the
system evolves, due to the Zitterbewegung effect.

V. CONCLUSION

To summarize, we propose a scheme to implement a
trapped-ion quantum simulation of a Dirac particle moving in
the Alcubierre (1+1)-dimensional universe, which is a par-
ticularly important example of extremely curved spacetime
leading to superluminal propagation consistent with general
relativity. We show that the flexibility of control parameters
in such a platform allows one to observe counterintuitive
effects, including the superluminal velocity and the Zitterbe-
wegung effect of the simulated Dirac particle in the Alcubierre
curved spacetime. Our work demonstrates the feasibility to
explore interesting and counterintuitive features of exotic
curved spacetime by quantum simulation of Dirac particles in
the corresponding spacetime geometry. Furthermore, the anal-
ogy between particles in the setting of semiclassical quantum
field theory and basic light-matter interaction quantum models
would further inspire the ideas to investigate intriguing phe-
nomena of general relativity and quantum field theory in a
variety of quantum platforms that are available in laborato-
ries. Besides, our results may serve as the first step towards
experiments to shed new light on the energy condition with
the probe of quantum-mechanics experiments, facilitating the
understanding of the exotic matters that are responsible for
the exotic spacetime geometry. It would also be interesting to
investigate novel phenomena in laboratories that are inspired
and interpreted by the emergent exotic spacetime structures
[61–67] and to discover more materials and phenomena in this
family.
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FIG. 3. Observing Zitterbewegung effect with superluminal
propagation for a trapped-ion simulated massive Dirac particle (m �=
0) in the Alcubierre spacetime. (a) The trajectories of the simulated
Dirac particle with different initial internal states for vs = 0 (flat
spacetime), vs = 2 (curved spacetime), and vs(t ) = ∂t xs(t ) where
xs(t ) = 0.56t + 1346t2 − 642377t3. (b) The variance of the simu-
lated Dirac particle’s position as a function of the evolution time t
for vs = 2. In (a), (b), the internal states are chosen as |s〉 = (1, 0)T

[blue, or the upper boundary of the sets of lines in (a) and the line
overlapping with circles in (b)], |s〉 = (0, 1)T [green, or the lower
boundary of the sets of lines in (a) and the circles in (b)], and
|s〉 = 1/

√
2(1, 1)T [orange, or the middle lines in the sets of lines

in (a) and the separate line not overlapping with circles in (b)].
(c) The wave packets of the trapped ion at t = 0.3 ms and t = 1.5
ms as a function of the coordinate x (in the unit of c). In (a)–(c), the
parameters used in numerical calculations are �0 = 2π × 1.46 kHz,
ν = 2π × 5.9 MHz, and 
 = −2π × 6.1 kHz.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN OF A
TRAPPED-ION SIMULATED DIRAC PARTICLE

In the main text, we propose to simulate a Dirac particle
moving in the (1+1)-dimensional Alcubierre spacetime with
a well-controlled trap-ion quantum simulator. In a semiclas-
sical way, the Dirac particle moving in a fixed gravitational
background, characterized by a general metric tensor gμν , can
be expressed as [41,55][

ih̄γ aeμ
(a)∂μ + ih̄

2
γ a 1√−g

∂μ

(√−geμ
(a)

) − mc2

]
ψ = 0,

(A1)
where the Greek letter μ and the Latin letter a denote the
coordinates of curved spacetime and local rest frame, respec-
tively, m is the mass of the quantized field, g is the determinant
of the metric tensor, and eμ

(a) is the vielbein allowing the
constant Dirac matrices γ a to act at each spacetime point.
Here, we choose the chiral representation such that γ 0 = σx,
γ 1 = −iσy, with σ the Pauli matrices. In the specific case of
the Alcubierre spacetime, the metric tensor of which is given
by

gμν =
(

1 − v2
s vs

vs −1

)
, (A2)

the vielbein can be set as

eμ
(a) =

( −1 0
−vs(t ) −1

)
, (A3)

with a and μ the column and row indices, respectively. By
multiplying Eq. (A1) with σz, the Dirac equation can be ex-
panded as[

−mc2σz+ih̄σx
∂

∂x
− ih̄σy

(
ivs(t )

∂

∂x
+ i

∂

∂ (ct )

)]
ψ (t, x) = 0,

(A4)
which can be further rewritten in the form of a Schrödinger
equation [i.e., Eq. (7) in the main text] as follows:

ih̄∂tψ (t, x) =
(

−ich̄vs(t )
∂

∂x
− ich̄σz

∂

∂x
− mc2σx

)
ψ (t, x).

(A5)

Thus the Hamiltonian of the Dirac particle to be simulated can
be written as

H (t ) = cA[vs(t ) + σz]P̂ − mc2σx, (A6)

with P̂ ≡ −ih̄∂/∂X̂ and X̂ ≡ Ax̂. We remark that the operators
X̂ and P̂, which satisfy the standard commutation relation, i.e.,
[X̂ , P̂] = ih̄, can be related to the position and momentum op-
erators of the trapped ion used to simulate the relativistic Dirac
particle. Thereby, we can rewrite them using the creation and
annihilation operators as

X̂ =
√

h̄

2m0ν
(â + â†), P̂ = −i

√
m0ν

2h̄
(â − â†), (A7)

with m0 the mass and ν the trapping potential of the trapped
ion. In this way, the Hamiltonian of the trapped-ion simulated
Dirac particle can be expressed as

H (t ) = cAh̄

i
√

2
(a − a†)σz + cAvs(t )h̄

i
√

2
(a − a†) − mc2σx, (A8)
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which is equivalent to Eq. (11) in the main text by considering
the Hadamard transformation.

APPENDIX B: QUANTUM DYNAMICS OF THE
TRAPPED-ION SIMULATED DIRAC PARTICLE

In this section, we derive the quantum dynamics of the sim-
ulated Dirac particle in more detail. Based on the Heisenberg
equation, the time evolution of the position and spin operators
is given by

dx̂(t )

dt
= i

h̄
[H̃ (t ), x̂(t )] = c(vs(t ) + φ̂z(t )),

dφ̂z(t )

dt
= −2mc2

h̄
φ̂y(t ),

(B1)

where

x̂(t ) = U †(t )x̂U (t ), φ̂α (t ) = U †(t )σαU (t ), (B2)

with α = x, y, z. The effective Hamiltonian and the evolution
operator are

H̃ (t ) = U †(t )H (t )U (t ), U (t ) = exp

[
−i

∫ t

0
H (τ )dτ/h̄

]
,

(B3)

with H (t ) = cA[vs(t ) + σz]P̂ − mc2σx. In the above deriva-
tion, we have omitted the time-ordering operator in U (t ) due
to the fact that [H (t ), H (t ′)] = 0 for arbitrary t and t ′. From
the above equations, we can obtain

d2x̂(t )

dt2
= i

h̄
[H (t ), cφ̂z(t )] = −2mc3

h̄
φ̂y(t ). (B4)

In order to derive φ̂y(t ), we notice that {σy, H (t )} =
2Acvs(t )P̂σy, which gives σyH (t )σy = −H (t ) + 2Acvs(t )P̂
and further

φ̂y(t ) = exp

(
i
∫

H (t )dt/h̄

)
σy exp

(
−i

∫
H (t )dt/h̄

)

= exp

(
i
∫

H (t )dt/h̄

)
exp

(
−i

∫
σyH (t )σydt/h̄

)
σy

= exp

[
2i

∫ (
H (t ) − Acvs(t )P̂

)
dt

]
σy

≡ exp (2iHflatt/h̄)σy, (B5)

where Hflat = AcP̂σz − mc2σx corresponds to the Dirac
Hamiltonian in the flat spacetime. Hence we have [i.e.,
Eq. (17) in the main text]

d2〈x̂(t )〉
dt2

= −2mc3

h̄

〈
e2iHflatt/h̄σy

〉
. (B6)

APPENDIX C: TRAPPED-ION REALIZATION OF THE
DIRAC HAMILTONIAN

The well-controllable trapped-ion system is a particularly
promising platform for simulating the basic light-matter inter-
action models by exploiting its internal and motional degrees
of freedom. Here we explain in more detail the trapped-ion
setup to simulate the Dirac particle moving in curved space-
time, the Hamiltonian of which [i.e., Eq. (11) in the main text]

has been derived in the above section. We consider the radial
motional mode with frequency ν of the trapped ion to model
the bosonic field and the two internal ground hyperfine levels
with transition frequency ω0 to form an effective spin 1/2,
denoted as |↑〉 and |↓〉. With blue and red sideband drives at
frequencies ωb and ωr , respectively [57,59], which can be gen-
erated by using oscillating near-field magnetic-field gradients
in experiments [60], one is able to realize the spin-harmonic-
oscillator coupling via the Mølmer–Sørensen interaction that
is described as

H�0 = h̄�0{|↑〉〈↓| ⊗ [a† sin (ωbt ) − a sin (ωrt )] + H.c.}.
(C1)

In addition, it is possible to apply an oscillating potential
directly to the radio-frequency trapping electrodes such that
the single ion’s trapping potential is modulated periodically
with an amplitude �p(t ) at frequency ν. The corresponding
Hamiltonian is given by

H�p = h̄�p(t ) sin(vt )(a + a†)2. (C2)

Therefore, the total Hamiltonian of such a trapped-ion setup
is [namely Eq. (C3) in the main text]

Hion = h̄ω0

2
σz + h̄va†a + H�p + H�0 . (C3)

In order to derive the Hamiltonian of Eq. (11) in the main
text, we first make a displace transformation to the above
Hamiltonian with D[η] = eη(a†−a), η � 1, which gives

H ′
ion = D†[η]HionD[η]

= h̄ω0

2
σz + h̄νa†a + h̄νη(a + a†)

+ h̄�0{|↑〉〈↓|[(a† + η) sin(ωbt ) − (a + η) sin(ωrt )] + H.c.}
+ h̄�p

2i
(eiνt − e−iνt )[a2 + a†2 + aa† + a†a

+ 4η(a + a†) + 4η2]. (C4)

Then we move to the interaction picture with respect to H0 =
h̄(ω0 − 
)/2σz + h̄νa†a while requiring ωb − ν = ωr + ν =
ω0 − 
. After applying the rotating-wave approximation un-
der the conditions of {|
|, |�p(t )|, |�0|} � ν � ω0, we are
left with

HI,ion  h̄


2
σz + h̄�0

2i
[|↑〉〈↓|(a − a†) + H.c.]

− 2iηh̄�p(a − a†), (C5)

the form of which is equivalent to the Hamiltonian of Eq. (15)
in the main text by further making the Hadamard transforma-
tion.

APPENDIX D: NUMERICAL SIMULATION OF THE
TRAPPED-ION SIMULATED DIRAC PARTICLE

Without loss of generality, the initial state of the trapped
ion is chosen as

|ψ0〉 = Nπ−1/4
∫

dX exp(−X 2/2)|X 〉|s〉, (D1)

where |X 〉 and |s〉 denote the spatial and internal degrees
of freedom of the trapped ion, respectively, and N is the
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normalization factor of its wave function. Using the following
relation:

〈X |n〉 = (
√

2/2)n(n!)−1/2π−1/4e−X 2/2Hn(X ), (D2)

where Hn(X ) are the Hermite polynomials, we can rewrite the
initial state in the Fock space as

|ψ0〉 =
∑

n

cn|n〉|s〉, (D3)

with cn = Nπ−1/4
∫

dX exp(−X 2/2)〈n|X 〉. Hence the aver-
age position

〈x〉 = 〈ψ0|U †x̂U |ψ0〉 (D4)

and the corresponding variance


x = (〈ψ0|U †x̂2U |ψ0〉 − 〈ψ0|U †x̂U |ψ0〉2)1/2 (D5)

can be obtained with respect to the time-evolved state
U (t )|ψ0〉 in a truncated Fock space with the maximum ex-
citation number nmax = 512. We remark that this truncation is
verified to guarantee converging results, which are shown in
Fig. 2 and Figs. 3(a) and 3(b) in the main text. In addition,
the probability distribution of the wave packet |φ f (x)|2 corre-
sponding to the final state can be obtained by

|φ f (x)|2 = Tr(ρx|x〉〈x|) = Tr

(
ρx

∑
n,n′

|n〉〈n|x〉〈x|n′〉〈n′|
)

,

(D6)

where ρx is the reduced density matrix for the spatial degrees
of freedom by tracing out the spin degree of freedom in the
total final density matrix of the final state U (t )|ψ0〉〈ψ0|U †(t ).
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