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Optical quantum memory for noble-gas spins based on spin-exchange collisions
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Optical quantum memories, which store and preserve the quantum state of photons, rely on a coherent mapping
of the photonic state onto matter states that are optically accessible. Here we outline and characterize schemes to
map the state of photons onto long-lived but optically inaccessible collective states of noble-gas spins. The
mapping employs coherent spin-exchange interaction arising from random collisions with alkali vapor. We
propose efficient storage strategies in two operating regimes and analyze their performance for several proposed
experimental configurations.
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I. INTRODUCTION

Optical quantum memories enable the storage and retrieval
of an optical signal while preserving its quantum properties.
In quantum information science, they can function as variable
delay lines, leaving a quantum state unchanged during the
memory operation [1]. Optical quantum memories are vital
for applications such as quantum repeaters in long-distance
quantum communication [2–5], conversion of heralded pho-
tons to on-demand single photons [6–8], synchronization of
optical quantum computation [9], distribution of entanglement
[10,11], and metrology beyond the standard quantum limit
[12–16].

Existing quantum memories are based on actual delay lines
and cavities [1] or on a reversible mapping onto coherent
excitations in matter [17]. The latter relies on strong light-
matter coupling, known as the cooperativity (or the collective
cooperativity in ensembles) which determines the memory
efficiency [18–20]. The mapping process employs a variety of
schemes, including electromagnetically induced transparency
(EIT) [21–24], off-resonant Raman interaction [25–27], tele-
portation via the Faraday interaction [28–30], and a range
of echo techniques [31,32]. Different media can be utilized
for the memory, including solid media, such as defects in
diamonds and rare-earth-doped crystals [33–35], as well as
gaseous medium, primarily cold or warm atomic alkali-metal
atoms [36–41].

The length of time for which the memory can store the
information (memory lifetime) is governed by the isolation
of the matter excitation from the environment. Crystals doped
with rare-earth ions have demonstrated lifetimes up to a mil-
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lisecond for storage of nonclassical light [42–44] and up to an
hour for storage of coherent light, with subpercent efficiency
and at cryogenic temperatures [34,45]. As some ions feature
direct optical access and hours-long coherence times [45,46],
they can potentially be utilized as quantum memories with
hours-long lifetimes once their efficiency is improved.

Optical memories based on atomic spin gases are an-
other prominent candidate for optical quantum memories.
They use the collective states of alkali spin ensembles, which
feature collective strong coupling to light and strong re-
silience to local depolarization of individual atoms [12,28,47–
52]. This technology has demonstrated storage, generation,
and retrieval of nonclassical light despite thermal mo-
tion [8,11,12,16,28,37,53–59], imperfect initial polarization
[12,28], and collisions of the alkali atoms with buffer gas
[11,37,53]. These experiments are commonly described by the
Heisenberg-Bloch-Langevin model, which captures the irre-
versible nature of the relaxation processes and quantifies the
effect of noise on the quantum memory [47,48,50,51,60,61].
Yet, the lifetime of alkali-based memories is limited by the
coupling of the valence electron’s spin to the environment,
which typically sets the lifetime in the range of microseconds
to hundreds of milliseconds [38,62], except for special config-
urations that potentially enable efficient storage for up to tens
of seconds [41,63].

Rare isotopes of noble gases, such as 3He, possess nonzero
nuclear spins, which are isolated from the environment due
to the enclosing, complete, electronic shells. These spins
exhibit hours- to days-long lifetimes at or above room tem-
perature [64–66] and are employed for medical lung imaging
[67,68], for precision magnetometers and NMR [69–72],
for neutron spin filters [73], and for searches of beyond-
standard-model physics [74–79]. Unfortunately, these spins
are optically inaccessible and are thus extremely hard to pre-
pare, interface, and monitor. They are accessible, however,
through collisions with other optically active atoms, either
metastable helium atoms via strong metastable-exchange
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collisions [64,80] or alkali-metal atoms via weak spin-
exchange collisions [64,81–84].

The first proposal to utilize noble-gas spins as a quantum
memory was based on the former, with metastable helium
population sustained by electric discharge [85]. Metastable
exchange collisions rely on the strong electrostatic exchange
interaction, leading to a complete transfer of the electronic
configuration in a single collision (hence the terminology
“strong” collision). The ground-state atom may be excited
to the metastable state, and the metastable atom is then de-
excited to the electronic ground state, but both atoms maintain
their nuclear states, and thus these collisions act to equilibrate
the nuclear spin between the metastable and ground-state
populations. A memory scheme relying on metastable ex-
change necessitates high collective optical cooperativity of
the metastable population, which in turn requires either high-
finesse cavities or higher helium densities (practically limited
by Penning collisions), and the scheme has never been demon-
strated.

Spin-exchange collisions between alkali and noble-gas
atoms, on the other hand, involve the weak isotropic hyper-
fine interaction, where only a small fraction (10−4 − 10−6)
of the spin orientation is transferred in a single collision
[81]. Numerous collisions can then accumulate to a collec-
tive, coherent evolution of the two spin ensembles, leading
to an exchange of collective excitations that is free from
excess thermalization and quantum noise [61]. Unlike with
metastable helium, alkali vapor density (determined by the
temperature of the enclosing cell) is independent of noble-
gas density (determined by pressure). It is therefore feasible
to increase alkali density and reach high optical coopera-
tivity. At the same time, the coherent coupling between the
collective alkali and collective noble-gas spins can be made
efficient and controllable with external fields, as demonstrated
in Refs. [86,87]. A coherent bi-direcitonal coupling between
light and noble-gas spins was demonstrated in Ref. [88] in
a continuous spectroscopic measurement, and this coupling
was also proposed to generate two-mode spin squeezed states
between two distant noble-gas cells [89]. However, reversible,
time-dependent mapping of nonclassical optical signals onto
noble-gas spins using the spin-exchange interaction has never
been studied.

In this paper, we propose a mechanism for mapping the
quantum state of photons onto the macroscopic spin state
of noble gases via spin-exchange collisions. We derive the
equations of motion of the system in a Bloch-Heisenberg-
Langevin framework. The derivation includes various factors
affecting the memory performance, such as the atomic thermal
motion, nonuniform spatial profile of the optical fields, possi-
ble spin relaxations at the cell walls, and noise induced by
imperfect polarization of the spin ensembles or by incoherent
excitations. Subsequently, we present two exemplary storage
protocols that result in efficient mapping for low- and high-
bandwidth optical pulses, respectively. We investigate several
feasible experimental conditions for realizing such memories,
including various alkali-metal and noble-gas mixtures, and
a range of temperatures, coatings, and gas pressures. This
paper can thus be used to design and realize viable quantum
memories using the macroscopic quantum states of noble-gas
spins.

II. OVERVIEW OF MAIN RESULTS

In Sec. III, we present the system under study and derive
Eqs. (20)–(24). These equations describe the coupling of the
input and output signal light fields to the alkali spins, based on
the dipole interaction and the model of Ref. [18], as well as the
local coherent spin-exchange interaction between the alkali
and noble-gas spins, based on Ref. [61]. Owing to thermal mo-
tion of the atoms, the dynamics is best represented by nonlocal
collective spin modes. In Sec. IV, we simplify our analysis
and focus on the dynamics of the least decaying (nonlocal)
spin modes, which is described by Eqs. (29)–(31) and (34).
The full multimode analysis is detailed in Appendix C.

In Sec. V, we define the memory efficiency as a metric for
the system performance. In Sec. VI, we present and exem-
plify two different memory protocols featuring high memory
efficiencies [cf. Eqs.(69) and (70)]. The first protocol re-
lies on efficient exchange between the alkali and noble-gas
spins in the strong-coupling regime [87], which enables high-
bandwidth storage (>1 MHz) limited only by the excited-state
dynamics of the alkali spins. The second protocol alleviates
the requirement for strong coupling between the gases on the
expanse of lower memory bandwidth.

In Sec. VII, we outline and discuss various experimen-
tal configurations which can potentially realize the proposed
protocols, exploring different alkali vapor and noble-gas
mixtures, different cell coatings, and different protocols for
realizing �-type coupling which is compatible with the spin-
exchange interaction, as summarized in Table I. In Sec. VIII,
we discuss the effect of fluorescence noise as well as imperfect
polarization of the spin ensembles on the memory perfor-
mance, and finally summarize our work in Sec. IX.

III. MODEL OF THE SYSTEM

A. System constituents

Consider a glass cell of volume V containing Na alkali-
metal spins and Nb noble-gas spins, positioned inside an
optical cavity as shown in Fig. 1(a). The alkali spins are
initially polarized along the ẑ axis by optical pumping, and the
noble-gas spins are hyperpolarized via spin-exchange optical
pumping (SEOP) [82,90,91]. In the presence of an optical
quantum field, which serves as the signal, the total Hamilto-
nian of the system is given by

H̃ = H̃ε + H̃a + H̃b + H̃a-ε + H̃a-b. (1)

Here H̃ε is the Hamiltonian of the signal light field, H̃a is the
Hamiltonian of the alkali-metal spins, H̃b is the Hamiltonian
of the nuclear spins of the noble gas, H̃a-ε is the atom-light
dipole interaction, and H̃a-b is the coherent spin-exchange
interaction between the electronic spins of the alkali atoms
and the nuclear spins of the noble-gas atoms [61].

Each polarized alkali-metal atom, labeled by a, is modeled
as a three-level system in a � configuration, consisting of two
ground-level states |↓̃〉a and |↑̃〉a and a single excited state
|p̃〉a, as shown in Fig. 1(b). The corresponding Hamiltonian is

H̃a = h̄
Na∑

a=1

(ωp|p̃〉a〈p̃|a + ωs|↑̃〉a〈↑̃|a), (2)
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FIG. 1. (a) A quantum memory system based on a mixture of
noble-gas and alkali spins. The alkali-metal atoms (red) and noble-
gas atoms (blue) interact with the quantum signal field Ê in a cavity
and with a classical control field. The atomic spins are initially
polarized with an auxiliary pumping beam. The signal field in the
cavity is coupled to the incoming field Êin, to be stored, and to
the output field Êout, retrieved on demand after the memory time.
(b) Energy levels of the modeled alkali atom in the laboratory frame.
The � system consists of two stable ground-level states |↑̃〉 and |↓̃〉,
coupled via an excited state |p̃〉 by the classical control field Ec and
the quantum signal â = e−iωεt Ê . Initially, the state |↓̃〉 is populated.
(c) Energy levels of the modeled noble-gas atom in the laboratory
frame. Initially, the state |⇓̃〉 is populated.

where ωp is the resonance frequency of the optical transition
|↓̃〉 − |p̃〉 and ωs is the frequency difference between |↓̃〉 and
|↑̃〉. If the two spin states are in the same hyperfine manifold,
then ωs = gsB corresponds to the Zeeman splitting, where
B = Bẑ is the magnetic field and gs = 2.8/[I] × 2π MHz/G
is the gyromagnetic ratio of an alkali atom with nuclear spin I
([I] ≡ 2I + 1).

We consider noble-gas atoms with nuclear spin-1/2 (e.g.,
3He and 129Xe). Each noble-gas atom, labeled by b, consists
of two spin levels |⇓̃〉b and |⇑̃〉b, as shown in Fig. 1(c). The
corresponding Hamiltonian is

H̃b = h̄
Nb∑

b=1

ωk|⇑̃〉b〈⇑̃|b, (3)

with ωk = gkB being the frequency difference between the
states |⇑̃〉 and |⇓̃〉 due to the Zeeman splitting of the noble-gas
spins with gyromagnetic ratio gk.

We shall adopt a cavity model for describing the quantum
optical field [18]. We assume that the signal field resides in
a single mode of a running-wave cavity, as described by the
Hamiltonian

H̃ε = h̄ωεâ†â. (4)

Here â is the bosonic annihilation operator of the electromag-
netic field of the cavity mode with frequency ωε.

The atom-photon interaction Hamiltonian in the dipole
approximation is given by

H̃a-ε = −
Na∑

a=1

d̂a · Ê(ra, t ), (5)

where d̂a is the dipole operator of the alkali-metal atoms and
Ê(ra, t ) is the electric field at the location ra of that atom.
In our model, the electric field is composed of a classical
control field and a quantum signal. The control field, with fre-
quency ωc and amplitude Ec fc(r), couples to the |↓̃〉a − |p̃〉a

transition, with dipole moment μc. The quantum signal field√
h̄ωε/(2ε0) fε(r)â(t ) couples to the |↑̃〉a − |p̃〉a transition,

with dipole moment με. We thus obtain

H̃a-ε = −
Na∑

a=1

fc(ra)μcEc(t )e−iωct |↑̃〉a〈p̃|a + H.c.

−
Na∑

a=1

fε(ra)με

√
h̄ωε

2ε0
â(t )|↓̃〉a〈p̃|a + H.c. (6)

The spatial mode functions fc(r) and fε(r) satisfy the
Helmholtz equation (∇2 + k2

i

)
fi(r) = 0, (7)

where i ∈ {ε, c}, with the boundary conditions determined
by the cavity: fc(r) is the solution with an eigenvalue kc =
ωc/c and fε(r) is the solution with an eigenvalue kε = ωε/c,
where c denotes the speed of light. The Rabi frequency of
the classical field within the cavity is given by �(r, t ) =√

Vcav fc(r)�(t ), where �(t ) = μcEc(t )/(h̄
√

Vcav). Similarly,
g(r) = √

Vcavgfε(r) is the one-photon Rabi frequency for the
quantized-field mode, where [18]

g = με

√
ωε/(2ε0h̄Vcav). (8)

Before discussing the spin-exchange interaction H̃a-b, we
transform the above Hamiltonians into a rotating frame. The
transformation is given by

Ua = eiωεt |p〉a〈p̃|a + ei(ωε−ωc )t |↑〉a〈↑̃|a + |↓〉a〈↓̃|a (9)

for any alkali spin a, and by

Ub = ei(ωε−ωc )t |⇑〉b〈⇑̃|b + |⇓〉b〈⇓̃|b (10)

for any noble-gas spin b. We also use the transformation

Uε = ei
t
h̄ H̃ε for the signal field and define the slowly varying

quantum field operator Ê (t ) = eiωεt â(t ), which describes the
envelope of the quantum field within the cavity. We further
define the slowly varying continuous atomic operators

σ̂μν (r, t ) =
Na∑

a=1

|μ〉a〈ν|aδ(r − ra), (11)

which describe the collective state of the alkali ensemble with
μ, ν ∈ {↓,↑, p}, and

σ̂μν (r, t ) =
Nb∑

b=1

|μ〉b〈ν|bδ(r − rb), (12)
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which describe the collective state of the noble-gas ensemble
with μ, ν ∈ {⇓,⇑}. In the rotating frame, we get

H − Ha-b = h̄
∫

V
d3r �σ̂pp + δ̃sσ̂↑↑ + δ̃kσ̂⇑⇑

− [�(r, t )σ̂p↑ + g(r)Ê (t )σ̂p↓ + H.c.], (13)

where � = ωp − ωε is the one-photon detuning from the
atomic optical transition, and δ̃s = ωs + ωc − ωε and δ̃k =
ωk + ωc − ωε are the two-photon detunings from the spin
resonances of the two species (absent the shifts induced by
the spin-exchange interaction).

B. Spin-exchange coupling

The two spin gases experience random, weak, spin-
exchange collisions. For polarized gases, the leading term in
the dynamics is described by the coherent interaction Hamil-
tonian [61]

H̃a-b = h̄ζ

∫
d3r1

∫
d3r2δ(r1 − r2)f̂ (r1, t ) · k̂(r2, t ), (14)

where f̂ (r, t ) ≡ ∑
a f̂a(t )δ(r − ra(t )) and k̂(r, t ) ≡∑

b k̂b(t )δ(r − rb(t )) denote the continuous spin operators
of alkali and noble-gas spins, respectively. ζ δ(r1 − r2) is the
local average interaction strength of an alkali and noble-gas
atom pair, where the microscopic interaction strength constant
ζ = 〈φσv〉c/[I] is given by ensemble averaging over all
realizations of the collisional parameters, given the velocity
v, the hard-sphere cross-section σ , and the accumulated phase
φ during a single collision instance.

The ground level of actual alkali-metal atoms consists of
multiple spin levels. We choose |↓〉a to be the maximally
polarized spin state (with the projection I + 1/2 along the
quantization axis) and choose |↑〉a to be the adjacent state
(with projection I − 1/2); both states are in the hyperfine
manifold F = I + 1/2. With this choice and for fully polar-
ized ensembles, it is a good approximation to replace the total
spin operator f̂ by its projection on the two-state subsystem
f̂ ≈ P̂f̂P̂, where P̂ = ∑

a(|↑〉a〈↑|a + |↓〉a〈↓|a). We then ob-
tain in the rotating frame

f̂ (r, t ) ≈ [I]
2 (σ̂↓↓ + qI σ̂↑↑)ez

+
√

[I]
2 (ei(ωc−ωε )t σ̂↓↑e− + H.c.), (15)

where e± = (ex ± iey)/
√

2 and qI = ([I] − 2)/[I].
The collective noble-gas spin operator appearing in

Eq. (14) is given in the rotating frame by

k̂(r, t ) = 1
2 (σ̂⇓⇓ − σ̂⇑⇑)ez

+
√

1
2 (ei(ωc−ωε )t σ̂⇓⇑e− + H.c.). (16)

We thus arrive at the spin-exchange Hamiltonian

Ha−b = h̄
∫

V
d3r[Hs + ζ

√
[I](σ̂↓↑σ̂⇑⇓ + H.c.)/2], (17)

where the first term

Hs(r, t ) = ζ [I](σ̂↓↓ + qI σ̂↑↑)(σ̂⇓⇓ − σ̂⇑⇑)/4 (18)

describes an additional energy shift, which becomes promi-
nent for polarized ensembles. The second term in Eq. (17)
manifests the conservative exchange of spin between the two
gases.

C. Dissipation and atomic motion

The system Hamiltonian H given by Eqs. (13) and (17)
constitutes the unitary evolution of the system. The system is,
however, coupled to the environment: the cavity field decays
at a rate κ through the output port; the optical coherence
between |↓〉 and |p〉 decays at a rate γ↓p, coming from the
decay of state |p〉 to the ground state (by emitting photons
or by nonradiative channels via inelastic collisions) or from
collisional dephasing; and the alkali-spin and noble-gas-spin
coherences relax at rates γ↓↑ and γ⇓⇑, respectively, by vari-
ous spin thermalization channels. In addition, the atoms are
moving and their thermal motion is rendered diffusive by the
dense noble gas acting as a buffer [92]. We denote by Da and
Db the spatial diffusion coefficients of the alkali and noble-gas
atoms, respectively.

The overall dynamics can be described using the
Heisenberg-Bloch-Langevin formalism of open quantum sys-
tems [17,18,60]. The atomic dynamics, in terms of the
continuous quantum operators σ̂μν (r, t ) in the Heisenberg
picture, is given by the stochastic differential equations:

∂t σ̂μν = i

h̄
[H, σ̂μν] + (Da/b∇2 − γμν )σ̂μν + f̂μν. (19)

The first term describes coherent evolution by the system
Hamiltonian H. The second term describes the decay of the
system both due to the spatial diffusion and due to its coupling
to the environment at a rate γμν . The third term describes
the stochastic evolution through the input noise operators
f̂μν , which depend on the thermal spin state of the reser-
voir [93]. The explicit form of these equations is given in
Eqs. (A1)–(A3).

D. Collective excitations of polarized ensembles

At this point, we focus on the regime of highly polarized
spin ensembles, where Eqs. (13), (17), and (19) can
be further simplified by using the Holstein-Primakoff
transformation [17,94]. This transformation replaces the
collective spin ladder operators with bosonic creation and
annihilation operators. Let pa and pb denote the polarization
degree of the alkali and noble-gas spin ensembles,
respectively. For polarized spin ensembles (pa, pb ≈ 1),
the operators σ↓↓ ≈ pana and σ̂⇓⇓ ≈ pbnb act as classical
magnetic moments, where na and nb are the alkali and
noble-gas densities. The collective spin excitations, which
remain quantum, can now be described by the operators
P̂ (r, t ) = σ̂↓p(r, t )/

√
pana, Ŝ (r, t ) = σ̂↓↑(r, t )/

√
pana

and K̂(r, t ) = σ̂⇓⇑(r, t )/
√

pbnb. These operators satisfy
the bosonic commutation relations [P̂ (r), P̂†(r′)] =
[Ŝ (r), Ŝ†(r′)] = [K̂(r), K̂†(r′)] = δ(r − r′). Figure 2
reformulates the level structure of the system using these
operators for the case of a single excitation.
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FIG. 2. Couplings between the collective states for a single input
photon. A single photon Ê†|0〉 in the cavity is transferred to the
collective noble-gas spin excitation K̂†|0〉, which acts as the quan-
tum memory, via intermediate excitations of the alkali collective
excited-state P̂†|0〉 and ground-state Ŝ†|0〉 spins. The coupling is
controlled by varying the strength of the control field �(t ) and the
detunings δs(t ) and δk(t ). The exchange coupling rate J and the decay
rates γp, γs, and γk are constant. The state |0〉 corresponds to the
maximally polarized spin state and P̂, Ŝ, and K̂ are bosonic field
operators.

The equations of motion for the spin annihilation operators
[see Eqs. (A5)–(A7)] are then given by

∂t P̂ (r, t ) = −(γp + i�)P̂ (r, t ) + i�(r, t )Ŝ (r, t ) (20)

+ iG(r)Ê (t ) + f̂P (r, t ),

∂t Ŝ (r, t ) = −(γs + iδs − Da∇2)Ŝ (r, t ) (21)

+ i�∗(r, t )P̂ (r, t ) − iJK̂(r, t ) + f̂S (r, t ),

∂t K̂(r, t ) = −(γk + iδk − Db∇2)K̂(r, t )

− iJŜ (r, t ) + f̂K(r, t ). (22)

Here δs and δk are the two-photon detunings associated with
the collective spin operators of the alkali and noble gas, re-
spectively. They correspond to the previously defined δ̃s and
δ̃k, but also include the collisional shifts due to the spin-
exchange collisions (see Appendix A). G(r) = √

panag(r)
denotes the collective interaction rate of the optical dipole
with the optical field in the cavity and J = ζ

√
[I]pa pbnanb/4

denotes the collective exchange rate of the two polarized spin
ensembles, a consequence of multiple weak spin-exchange
collisions [61]. The stochastic properties of the quantum
noise terms f̂P (r, t ), f̂S (r, t ), and f̂K(r, t ) are detailed in
Appendix B.

Equations (20)–(22) manifest the collective enhancement
of the various couplings to the collective excitations. The
atom-photon interaction rate g(r) is multiplied by the large
factor

√
na, as expected for the coherent absorption and emis-

sion of a photon by multiple atoms, resulting in the enhanced
collective rate G(r). The microscopic coherent spin-exchange
rate ζ is multiplied by

√
nanb, corresponding to a unitary

precession of the collective spin of one gas around the other
at the enhanced rate J .

E. Dynamics of the light field

The dynamics of the slowly varying quantum light field
in the cavity Ê (t ) is described by the Heisenberg-Langevin
equation

∂t Ê = −κ Ê +
√

2κ Êin + i

h̄
[H, Ê]

= −κ Ê +
√

2κ Êin + i
∫

V
G∗(r)P̂ (r, t )d3r. (23)

Here the cavity field decays at a rate κ and is driven by the
field Êin(t ) at the cavity input port. The third term in Eq. (23)
describes the collective absorption and emission of the field by
the dipole coherence P̂ . We implicitly assume that the cavity
has no internal losses. The field Êout(t ) at the cavity output
port is obtained from the general input-output relation [18]

Êout =
√

2κ Ê − Êin. (24)

The commutation relations [Êin(t ), Ê†
in(t ′)] =

[Êout(t ), Ê†
out(t

′)] = δ(t − t ′) hold. In the fast-cavity regime
(κ � G, also known as a bad cavity), the input-output relation
simplifies to

Êout = Êin + i

√
2

κ

∫
V

G∗(r)P̂ (r, t )d3r. (25)

We adopt this approximation in our analysis, thus limiting
the results to the fast-cavity regime. Notably, the operation
of an optical quantum memory in this regime resembles the
operation in free space [19].

To further simplify the analysis, we limit the bandwidth of
the incoming light pulse to

T −1 � Cγp, (26)

where T is the pulse duration. The cooperativity parameter of
the cavity is given by

C = |G|2
γpκ

, (27)

characterizing the collective atom-photon interaction strength
with respect to the decay rates, where G = √

panag and g is
given in Eq. (8). Under the assumptions of fast cavity and lim-
ited pulse bandwidth, P̂ adiabatically follows both the light
field Ê and the collective alkali-spin operators Ŝ , satisfying

P̂ (r, t ) = i
�(r, t )Ŝ (r, t ) + G(r)Ê (t ) − i f̂P (r, t )

γp + i�
. (28)

IV. SPATIAL MODES OF ATOMIC OPERATORS

Up until this point, we described the dynamics of
the atomic spins using local continuous operators. Indeed,
Eqs. (21), (22), and (28) support the storage of photons in
multiple spatial modes [92]. The signal light field, however,
was assumed to reside in the specific spatial mode fε(r) of
the cavity, with the input signal field matching this mode.
Therefore, the signal excites an atomic superposition with a
particular spatial amplitude pattern [the term ∝G(r)Ê (t ) in
Eq. (28)], and subsequently this specific superposition coher-
ently emits light to the output port [Eq. (25)]. The general
multimode evolution of the collective spins Ŝ (r, t ) and K̂(r, t )
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during memory operation is governed by the spatial profiles
of the signal and control fields, as well as by the nonlocal
action of the diffusion operator. Specifically, Ŝ (r, t ) is driven
via a two-photon transition by the control and signal fields,
generating a quantum excitation of the collective alkali spin
wave with a long wavelength. In this section, we present
simplified equations of motion which consider the excitation
of only the single uniform modes Ŝ (t ) and K̂(t ) of Ŝ (r, t )
and K̂(r, t ), whereas, in Appendix C, we derive the general
multimode equations of motion and, in Appendix D, present
numerically calculated solutions.

In the single-mode representation, the output field of the
cavity is given by [compare to Eq. (25)]

Êout(t ) = Êin(t ) + i
√

2CγpP̂ (t ), (29)

where the atomic optical dipole is [compare to Eq. (28)]

P̂ (t ) = i�(t )Ŝ (t ) + i
√

2γpCÊin(t ) + f̂P (t )

γp(1 + C) + i�
. (30)

The dynamics of the uniform mode Ŝ (t ) of the alkali spin is
given by

∂t Ŝ = − (γs + �� + iδs)Ŝ − iJK̂ − Q�∗Êin + F̂S , (31)

where the complex-valued optical coupling rate is

��(t ) ≡ |�(t )|2
γp(1 + C) + i�

, (32)

and we define

Q =
√

2Cγp

γp(1 + C) + i�
. (33)

We identify γ� ≡ re(��) as the stimulated (power-broadened)
optical coupling rate to the alkali spins and im(��) as the light
shift due to the control field. The noise operator of the alkali
spins is given by F̂S = f̂S + iQ�∗ f̂P/

√
2Cγp, including the

excess noise due to scattering of the control photons.
The uniform mode of the alkali spins has a large overlap

with the long-lived uniform mode of the noble-gas spins,
which is unaffected by diffusion [60] and therefore chosen
as the quantum memory. The dynamics of the uniform mode
K̂(t ) of the noble-gas spin is given by

∂t K̂ = −(γk + iδk)K̂ − iJŜ + f̂K. (34)

The noise operators f̂P , f̂S , and f̂K are defined in Appendix C.

V. MEMORY EFFICIENCY

Following Refs. [18,20], we write the total efficiency of the
quantum memory

ηtot = ηinηdarkηout (35)

in terms of the efficiency ηin of the storage process, the
noble-gas efficiency in the dark ηdark and the efficiency ηout

of the retrieval process. The total efficiency ηtot sets a limit
on other figures of merit, such as the memory fidelity [18] or
preservation of squeezing [95,96].

We assume that the signal pulse extends from t = −∞ to
t = 0. The storage process we consider occurs during the time
interval −∞ � t � T ′, where the duration T ′ � 0 enables

further manipulation of the spins in the absence of the signal
field to complete the mapping. In this process, the input field is
mapped onto the long-lived, collective, noble-gas spin Êin →
K̂(T ′). We denote 〈Ô†Ô〉t = 〈Ô†(t )Ô(t )〉 for any operator Ô
and define the storage efficiency by the ratio

ηin ≡ 〈K̂†K̂〉T ′∫ 0
−∞〈Ê†

inÊin〉t dt
, (36)

i.e., by the number of stored spin excitations divided by the
number of incoming signal photons. We can use the integral
relation in Eq. (E2) to express the efficiency as

ηin =1 − 2
∫ T ′

−∞ dt
〈

1
2 Ê

†
outÊout + γpP̂†P̂ + γsŜ†Ŝ + γkK̂†K̂

〉
t∫ 0

−∞ dt〈Ê†
inÊin〉t

.

(37)

We find that the storage efficiency is limited by four relaxation
mechanisms: decoherence of excited alkali atoms at a rate γp,
decoherence of the alkali-metal spin at a rate γs, decoherence
of the noble-gas spin at a rate γk, and leakage of photons
during the storage represented by

∫ T ′

−∞〈Ê†
outÊout〉t dt .

After the storage stage, the control fields are fixed and the
memory preserves the noble-gas spin coherence for a memory
(dark) time τ . The efficiency of this stage is determined by the
noble-gas relaxation in the dark and is given by

ηdark = 〈K̂†K̂〉(T ′+τ )

〈K̂†K̂〉T ′
= exp(−2γkτ ). (38)

The retrieval process starts at t = T ′ + τ . During this pro-
cess, there is no input field and the spin excitations are mapped
to the output field K̂(T ′ + τ ) → Êout. The retrieval ends when
no atomic excitations are left in the medium. The retrieval
efficiency is then given by

ηout ≡
∫ ∞
τ+2T ′ 〈Ê†

outÊout〉t dt

〈K̂†K̂〉(T ′+τ )
, (39)

i.e., the number of retrieved photons divided by the number
of stored spin excitations. Similar to the storage process, we
assume that the control field starts only 2T ′ + τ , delayed by a
duration T ′ � 0 with respect to the retrieval start. This delay
enables manipulation of the spin gases in the dark before the
control field is able to initiate the emission of the optical
signal. Using the integral relation in Eq. (E2), we find

ηout = 1 − 2
∫ ∞

T ′+τ
〈γpP̂†P̂ + γsŜ†Ŝ + γkK̂†K̂〉t dt

〈K̂†K̂〉(T ′+τ )
. (40)

It is evident that the retrieval efficiency is maximized if the
duration for which P̂ and Ŝ are excited is minimal.

VI. PROTOCOLS FOR LIGHT STORAGE

Our motivation for setting up an interface between optical
signals and noble-gas spin ensembles is to utilize the long-
lived uniform mode of collective states of the noble gas to
store the quantum state of an input optical field. In other
words, we aim to find controllable processes which transfer
quantum excitations from Êin(t ) to K̂(T ′) efficiently and then
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enable controllable retrieval of the light field by mapping
K̂(T ′ + τ ) to Êout(t ).

Here we present and exemplify the memory operation us-
ing two distinctive protocols, which attain high efficiencies
in complementary regimes. The first protocol, presented in
Sec. VI A, temporarily maps the optical signal onto the three-
level alkali memory, which accepts higher bandwidth and only
later transfers it to the noble-gas spins via the spin-exchange
coupling. We term this two-step approach as sequential map-
ping and demonstrate that it is an efficient protocol when the
optical signal pulse is shorter than the the alkali decoherence
time and when the spin-exchange coupling between the two
gases is strong. The second protocol, presented in Sec. VI B,
constitutes a direct mapping between the light and noble
gases, using the alkali spins as mediators that adiabatically
follow, keeping their excitation small. This protocol is shown
to be efficient when the optical pulse is longer than the typical
exchange time between the gases. In Sec. VI C, we provide a
comparison of these two protocols.

To simplify the presentation, we exemplify the protocols
using an input signal that has an exponential temporal profile
of the form

Ein(t ) =
√

2

T
et/T , −∞ � t � 0, (41)

and zero otherwise. We also assume that the desired retrieved
field follows an exponential temporal profile of the form

Eout (t ) =
√

2

T
e(2T ′+τ−t )/T , t � 2T ′ + τ. (42)

Here T denotes the characteristic pulse duration of the input
and retrieved light, which determines the optical bandwidth
of the pulse 1/(2T ). This particular choice of pulse profiles
enables considerable analytic simplification of the theoretical
results. Indeed, for �-type memories in the adiabatic regime,
optimal storage and retrieval of such exponentially-shaped
signals is associated with temporally square-shaped control
pulses [18]. Therefore, this choice allows us to derive simple
expressions for the efficiencies, with the control field �(t )
[or, equivalently, γ�(t )] kept constant for the duration of the
signal pulse. Solutions for other pulse profiles might require
the application of optimal control tools as those presented in
Ref. [97]. Nevertheless, the particular solution presented here
enables simple identification of the main competing mech-
anisms in the operation of the memory and, in particular,
highlights the effect of the characteristic pulse duration T on
memory efficiency.

A. Sequential mapping

We first analyze the sequential protocol, which is suitable
for storage and retrieval of short pulses in which T � 1/γs

and T � 1/J . In this protocol, storage is conducted by a
sequential two-stage transfer of the excitation Êin → Ŝ (0) →
K̂(T ′) by first mapping the signal onto the alkali spin Ŝ at
time t = 0 and afterward mapping it onto the noble-gas spin
K̂ at time T ′. After the memory time of duration τ in which
the noble gas stores the signal’s excitations, they are retrieved
into emission of an optical signal by following the two-stage
sequence K̂(T ′ + τ ) → Ŝ (2T ′ + τ ) → Êout.

To exemplify this protocol, we first solve numerically
Eqs. (31) and (34) as ordinary differential equations by setting
the noise operators to zero. We use the input field in Eqs. (41)
and solve the storage and retrieval stages for constant � =
δs = 0 and for γ�(t ), δk(t ) that follow square temporal pro-
files as shown in Figs. 3(a) and 3(b). In Figs. 3(c)–3(f), we
present the calculated quantum excitations of the optical in-
put and output fields and the atomic excitations |P|2, |S|2,
and |K|2 using J = 60γs, γsT = 1.7 × 10−3, and C = 100,
initially setting the atomic excitations to zero. The retrieved
optical field is presented in Fig. 3(c). The overall calculated
memory efficiency in this example is ηtot = 0.91.

Below we examine the protocol’s performance analytically
and consider its efficiency as a function of J, γs, and T . We
simplify the discussion by neglecting the slow relaxation of
the noble-gas spins (i.e., setting γk = 0) during the mapping
processes and retain γk only for the long memory time in the
dark.

1. Storage stage 1: Êin → Ŝ

In the first stage, the signal field is mapped onto the alkali
spins. To achieve this, δk is kept large, which efficiently decou-
ples the noble-gas spins from the alkali spins, thus rendering
the first storage stage similar to standard light storage onto
alkali spins. Indeed, for δk � J, T −1 we find from Eq. (34)
that K̂ ≈ (J/δk)Ŝ , such that 〈K̂†K̂〉 � 1.

In Appendix F, we review the process of light storage
onto and retrieval from alkali spins, following Ref. [18]. The
maximal efficiency of the process Êin → Ŝ is given in Eq. (F7)
for a general pulse shape and optimally shaped control. For
the particular case of an exponentially shaped signal we con-
sider here, a square control pulse with a constant value of
γ� = 1/T + γs maximizes the storage efficiency, which reads

η
(E→S )
in = 〈Ŝ†Ŝ〉(t=0)∫ 0

−∞〈Ê†
inÊin〉t dt

= C

C + 1
× 1

1 + γsT
. (43)

2. Storage stage 2: Ŝ → K̂

In the second stage, as shown in Fig. 3, the control field is
turned off (� = 0) and the excitation is coherently transferred
from the alkali to the noble-gas spins Ŝ (0) → K̂(T ′) via the
spin-exchange interaction. In general, the dynamics of spin
exchange in the presence of diffusion is multimode, due to
the thermal motion of the atoms during the exchange process
[60,61], and we present the complete multimode calculation in
Appendix G. Here we present the approximated dynamics for
the uniform modes. This solution is accurate for antirelaxation
coated cells [60].

The exchange evolution of the alkali and noble-gas spins
over duration T ′ in the absence of light fields is given by [61]

Ŝ (T ′) = e− 1
2 (iδs+iδk+γs )T ′

{
− iJ

J̃
sin(J̃T ′)K̂(0)

+
[
cos(J̃T ′) − γs − iδ

2J̃
sin(J̃T ′)

]
Ŝ (0)

}
+ Ŵs(T

′)

(44)
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FIG. 3. Example of storage and retrieval of a short signal pulse using the sequential mapping protocol. We solve numerically Eqs. (31) and
(34) for an exponentially shaped input signal field with a single excitation [cf. Eqs. (41)], setting � = δs = 0 and using square pulses for the
optical control field γ� and magnetic detuning δk as shown in (a) and (b). Here J = 60γs, γsT = 1.7 × 10−3, and C = 100. The memory maps
the excitation of the input field 〈Ê†

inÊin〉t onto the atomic populations of the alkali 〈P̂†P̂〉t , 〈Ŝ†Ŝ〉t , and the noble gas 〈K̂†K̂〉t , which are later
retrieved, on demand, into an optical excitation of 〈Ê†

outÊout〉t . In the first stage −∞ � t � 0, the control field maps the signal onto the collective
state of the alkali spins via a two-photon process, while the noble gas remains decoupled by setting a large δk. In the second stage 0 < t � T ′

(here T ′/T = 15.6), by tuning δk = 0, the alkali spins exchange the excitation with the noble-gas spins. Subsequently, the noble-gas spins are
decoupled from the alkali spins by increasing δk again. The optical signal is retrieved into the exponentially shaped output mode [cf. Eqs. (42)]
by time reversing the storage sequence, except for a correction of order γsT to the control field amplitude, γ�(retrieval) = γ�(storage) − 2γs,
which corrects for the effect of nonzero alkali-spin relaxation to first order, as described in the text. The calculated memory efficiency is
ηtot = 0.91.

for the alkali spins and

K̂(T ′) = e− 1
2 (iδs+iδk+γs )T ′

{
− iJ

J̃
sin(J̃T ′)Ŝ (0)

+
[
cos(J̃T ′) + γs − iδ

2J̃
sin(J̃T ′)

]
K̂(0)

}
+ Ŵk(T ′)

(45)

for the noble-gas spins. Here

δ = δk − δs (46)

is the mismatch between the spin-precession frequencies and

J̃ =
√

J2 + (δ + iγs)2/4 (47)

denotes the effective exchange rate. The stochastic quantum
processes Ŵs and Ŵk for the alkali and noble-gas spins are
defined in Appendix G.

Maximal exchange rate and thus efficient mapping Ŝ (0) →
K̂(T ′) are obtained by setting δ(B) = 0 during the exchange
time T ′. To simplify the analysis at this point, we consider the
particular regime of strong coupling J � γs, which enables
efficient exchange between the spin gases. In this regime, it is
efficient to set T ′ as the π -pulse duration, which is given by

T ′ ≈ (π J̃ − γs)/(2J̃2) to leading order in γs/J̃ , yielding

K̂(T ′) = e− πγs
4J Ŝ (0) + Ŵk(T ′). (48)

Substitution of Eq. (48) into Eq. (39) yields the storage effi-
ciency for the second stage:

η
(S→K)
in = exp

(
−πγs

2J

)
. (49)

3. Memory time

Once the excitation is stored on the uniform mode of the
noble-gas spins, we can decouple the state of the two spin
ensembles by applying a large magnetic field. Specifically,
we take δ(B) � J , such that the generalized exchange rate
of Eq. (47) becomes J̃ ≈ δ/2. As the exchange contrast of
collective spin excitations between the alkali (〈Ŝ†Ŝ〉) and
noble gas (〈K̂†K̂〉) scales as |J/J̃|2, for δ � J the exchange
is negligible. Under these conditions, Eq. (45) becomes

K̂(T ′ + τ ) = e−(iδk+γk )τ K̂(T ′) + Ŵ ′ (50)

for the memory time τ , where Ŵ ′ = Ŵk(T ′ + τ ) − Ŵk(T ′).
The noble-gas spins then act as a quantum memory that de-
cays according ηdark (τ ) in Eq. (38), with potentially very long
lifetime γ −1

k .
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4. Retrieval: K̂ → Ŝ → Êout

We retrieve the photons from the memory by realiz-
ing the process K̂(T ′ + τ ) → Ŝ (2T ′ + τ ) → Êout. First, the
magnetic field is tuned to strongly couple the two spin gases
by setting δ(B) = 0. As described by Eq. (44), the excitation
is mapped back from the noble gas to the alkali spins after the
same transfer time T ′,

〈Ŝ†Ŝ〉tr = e− πγs
2J 〈K̂†K̂〉(T ′+τ ), (51)

where tr = 2T ′ + τ , yielding the retrieval efficiency of
η

(K→S )
out = η

(S→K)
in .

Retrieval of the photons from the alkali spins is then
performed as a standard retrieval in �-system memories, as
reviewed in Appendix F. Importantly, the temporal profile
of the control field determines the emission profile of the
retrieved signal field [18]. For short pulses T < 1/γs, retrieval
into the target mode we consider in Eqs. (42) is realized
using a constant control field with γ� = 1/T − γs [compare
to γ� = 1/T + γs during storage]. This profile yields the re-
trieval efficiency

η
(S→E )
out =

∫ ∞
tr

〈Ê†
outÊout〉t dt

〈Ŝ†Ŝ〉tr

= C

C + 1
(1 − γsT ) (52)

[compare to Eq. (43) for storage].

B. Adiabatic mapping

We now turn to analyze the adiabatic mapping, which is
suitable for storage and retrieval of long pulses satisfying T �
1/J . In this mapping scheme, Ŝ is kept unexcited during the
storage and retrieval to avoid the loss of excitations by the
alkali-spin relaxation [cf. Eq. (40)]. The principle is that Ŝ
can mimic the dynamics of P̂ in the adiabatic regime, thus
serving as a mediator whose excitation is negligible.

Below we examine the protocol’s performance analyti-
cally using T ′ = 0. We derive the equations of motion in
the adiabatic regime, show that a direct coherent mapping
Êin → K̂(0) is established during storage and K̂(τ ) → Êout

during retrieval. We then calculate the memory efficiency for
an exponentially shaped pulse.

1. Adiabatic equations of motion

We consider the dynamics of the uniform mode Ŝ (t ) in the
adiabatic regime for γ� � J, |Q�/

√
T |. Equation (31) can

then be approximated by

Ŝ = −Q�∗Êin + iJK̂ − F̂S
�� + γs + iδs

. (53)

Here Ŝ (t ) adiabatically follows the operators K̂, Êin, and
F̂S , similarly to the role of P̂ in Eq. (C2). The alkali-spin
excitation is small 〈Ŝ†Ŝ〉 � J2/|��|2 � 1, allowing for high
memory efficiency according to Eqs. (37) and (40). By substi-
tuting the adiabatic solution (53) in Eqs. (29) and (30) and in
Eq. (34), we obtain

Êout = (α − iaJQ�/J )Êin + aJ (�/�∗)K̂ + F̂E , (54)

∂t K̂ = −(γk + �J + iδk)K̂ + aJ Êin + F̂K. (55)

Here we define the stimulated coupling rate to the noble-gas
spins as

�J (t ) ≡ J2

��(t ) + γs + iδs(t )
, (56)

as well as the parameter aJ ≡ iQ�∗�J/J . The vacuum
noise operators are F̂K = f̂K − i�J F̂S/J and F̂E = f̂E +
iaJ�F̂S/(J�∗), and the parameters Q and α are defined in
Eqs. (33) and (C5).

To exemplify this protocol, we solve numerically Eqs. (54)
and (55), set the noise operators to zero, and use the input field
in Eqs. (41). Here we solve the storage and retrieval stages for
constant � = δs = δk = 0, set T ′ = 0, and use γ�(t ), which
follows a square temporal profile as shown in Fig. 4(a). In
Figs. 4(c)–4(f), we present the calculated quantum excita-
tions of the optical input and output fields, and the atomic
excitations 〈P̂†P̂〉, 〈Ŝ†Ŝ〉, and 〈K̂†K̂〉 using J = 60γs, γsT =
17, and C = 100. The retrieved output field is presented in
Fig. 3(c) and the overall calculated memory efficiency in
this example is ηtot = 0.98. Interestingly, here the alkali spin
remains unexcited, 〈Ŝ†Ŝ〉 � 1, suppressing loss of the signal
via alkali relaxation.

It is also insightful to discuss the rate �J associated with
the emergent coupling between noble-gas spins and light. The
imaginary part im(�J ) constitutes the frequency shift due to
the spin-exchange coupling to the alkali spins, which vanishes
when operating at � = δs = 0. The real part

γJ ≡ re(�J ) (57)

constitutes the relaxation inherited from the alkali spins. The
alkali spins themselves experience a relaxation at a high rate
γ� + γs, composed of radiative (γ�) and nonradiative (γs)
losses; both are partially inherited by the noble gas and are
accounted for in γJ . The emergence of γJ and its analogy to γ�

are illustrated in Fig. 5 for the case of retrieval. The intuition
is the same for the case of storage.

Equation (55) is a linear stochastic differential equa-
tion and, similarly to Eq. (F1), can be solved by

K̂(t ) = ϒt,−∞K̂(−∞) +
∫ t

−∞
hJ (t, s)Êin(s)ds + ŴK(t ),

(58)

where hJ (t, s) = ϒt,saJ (s), and ŴK(t ) = ∫ t
−∞ ϒt,sF̂K(s)ds,

and the evolution function from time t ′ to time t is

ϒt,t ′ = e− ∫ t
t ′ [γk+�J (s)+iδk(s)]ds. (59)

Below we estimate the efficiencies of the storage and retrieval
stages.

2. Storage: Êin → K̂

The spins are initially unexcited 〈K̂†K̂〉−∞ = 0, so the first
term in Eq. (58) vanishes. We therefore get

K̂(0) =
∫ 0

−∞
hJ (0, s)Êin(s)ds + ŴK(0). (60)

The transfer function hJ satisfies the inequality∫ 0

−∞

1

ή(t )
|hJ (0, t )|2dt � 1, (61)
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FIG. 4. Example of storage and retrieval of a long pulse using the adiabatic mapping protocol. We numerically solve Eqs. (54) and (55) for
an exponentially shaped signal field containing a single excitation [cf. Eqs. (41)] for � = δs = 0 and for the square-profile control fields γ� and
δk in (a) and (b). Here J = 60γs, γsT = 17, and C = 100. The mapping of the input excitations 〈Ê†

inÊin〉t onto the atomic populations 〈P̂†P̂〉t ,
〈Ŝ†Ŝ〉t , and 〈K̂†K̂〉t is realized during storage, and the mapping onto 〈Ê†

outÊout〉t is realized during retrieval. The noble-gas spins adiabatically
follow the input optical pulse, maintaining 〈Ŝ†Ŝ〉t � 1 throughout the protocol. The optical pulse is retrieved by time reversing the storage
sequence, yielding a total memory efficiency of ηtot = 0.98.

where the weight factor ή is given by

ή(t ) = C

C + 1

γ�(t )

γ�(t ) + γs

γJ (t )

γJ (t ) + γk
. (62)

We now calculate the storage efficiency for the expo-
nentially shaped signal in Eqs. (41) for T > γs/J2, using
a constant control pulse with amplitude γ� = J2T − γs

(corresponding also to γJ = 1/T ) and assuming negligible
spin relaxation of the noble gas (γk = 0). The storage effi-
ciency is then given by

ηin = C

C + 1

(
1 − γs

J2T

)
. (63)

Turning off the control beam and applying a large magnetic
field [δ(B) � J] after storage decouples the two spin gases
and lets the noble gas act as a quantum memory, free of alkali-
induced relaxation.

3. Retrieval: K̂ → Êout

During retrieval, starting from t = τ , there is no input sig-
nal (〈Ê†

inÊin〉 = 0), and so the second term in Eq. (58) vanishes.
The noble-gas spin excitations are then given by

〈K̂†K̂〉t = e−2
∫ t
τ

[γk+γJ (s)]ds〈K̂†K̂〉τ , (64)

and substitution in Eq. (54) yields the total output photon
number:∫ ∞

τ

〈Ê†
outÊout〉t ′dt ′ =

∫ ∞

τ

|aJ (t ′)|2〈K̂†K̂〉t ′dt ′. (65)

Similarly to �-system storage, the temporal shape of the
output mode depends on the control field via the term aJ (t ′).
Substituting Eq. (65) in Eq. (39) yields the output efficiency

ηout = C

C + 1

∫ y(∞)

0

γ�(y)

γ�(y) + γs

γJ (y)

γJ (y) + γk
e−ydy, (66)

where

y(t ) = 2
∫ t

τ

(
γJ (s) + γk

)
ds. (67)

For the target exponentially shaped mode, we consider in
Eqs. (42) and for γk = 0, setting γJ = 1/T and γ� = J2T −
γs enables retrieval of light with efficiency

ηout = ηin = C

C + 1

(
1 − γs

J2T

)
. (68)

C. Comparison between the sequential and adiabatic mappings

It is insightful to compare the performance and validity
regimes of the two protocols in Secs. VI A and VI B 1 for
the exponentially shaped input and output signal fields in the
limit γkT ≪ 1 (i.e., we account for nonzero γk only during
the long memory time τ between storage and retrieval). For
the sequential mapping scheme, the memory efficiency is
determined by combining Eqs. (35), (38), (43), (49), and (52)
into ηtot = η

(E→S )
in η

(S→K)
in ηdarkη

(K→S )
out η

(S→E )
out , yielding

ηtot =
( C

C + 1

)2(1 − γsT

1 + γsT

)
e− πγs

J e−2γkτ . (69)
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FIG. 5. Emergence of a decay rate γJ from the collective noble-
gas spin K̂ during adiabatic retrieval. The picture is similar for
adiabatic storage. (a) The optical cavity field Ê couples to the collec-
tive optical dipole P̂ , which couples to the collective alkali spin Ŝ,
which couples to the collective noble-gas spin K̂, with corresponding
rates G, �, and J . The optical field decays into the desired output
field Êout with rate κ . The rates γp, γs, and γk encompass both relax-
ation and coupling to other (undesired) modes (not shown). (b) In
the fast-cavity limit (κ � G), the cavity field adiabatically follows
the optical dipole, giving rise to a decay rate Cγp from the optical
dipole into the output field. This good decay rate Cγp competes with
bad decay rate γp, contributing a factor of Cγp/(Cγp + γp) to the
retrieval efficiency. (c) For moderate control fields (Cγp � �), the
optical dipole adiabatically follows the alkali spin, giving rise to a
decay rate γ� from the alkali spin. This good decay rate γ� competes
with bad decay rate γs, contributing a factor of γ�/(γ� + γs ) to the
retrieval efficiency. (d) For γ� + γs � J (corresponding to T � 1/J ,
since T ∼ 1/γJ ), the alkali spin adiabatically follows the noble-gas
spin, giving rise to a decay rate γJ from the noble gas spin. This good
decay rate γJ competes with bad decay rate γk, contributing a factor
of γJ/(γJ + γk) to the retrieval efficiency.

For the adiabatic mapping scheme, the memory efficiency is
determined by combining Eqs. (63) and (68):

ηtot =
( C

C + 1

)2(
1 − γs

J2T

)2
e−2γkτ . (70)

The memory efficiencies of both schemes approach unity for
large cooperativity (C � 1) and slow alkali relaxation. The
latter amounts to the condition γs � J, 1/T in the sequential
scheme and to γs � J2T in the adiabatic scheme. Notably,
when the pulse is long (T � γs/J2), the efficiency of the adi-
abatic protocol approaches C2/(C + 1)2 which is the maximal
attainable efficiency of optically accessible �-type quantum
memories. For the sequential mapping, the maximal attainable
efficiency is further reduced by the factor exp(−πγs/J ). On
the other hand, when the pulse is short (γsT � 1), the memory
efficiency of the sequential scheme becomes independent of

the pulse duration (as long as TCγp � 1), while the effi-
ciency of the adiabatic scheme decreases as [1 − γs/(J2T )]2

for JT � 1. Interestingly, the adiabatic protocol can reach
high memory efficiency even when the alkali and noble-gas
spins are weakly coupled and the alkali relaxation is signifi-
cant γs � J , provided that the signal bandwidth is sufficiently
small.

VII. POSSIBLE EXPERIMENTAL CONFIGURATIONS

The proposed quantum memory can be realized under a
variety of experimental conditions. We consider two types of
configurations, which differ in the pressure range of the buffer
gas enclosed inside the glass cell; here buffer gas includes
both noble gas isotopes with nonzero nuclear spins used as
the memory medium, and possibly additional inert gases such
as N2 or noble gases with no nuclear spin.

Configurations with high buffer-gas pressure benefit from
higher SEOP efficiency and rate, higher exchange rate J ,
and lower alkali destruction rate γdiff due to collisions with
the walls [cf. Eq. (C15)]. At high pressures, however, each
of the alkali D1 or D2 lines used for the optical excita-
tion is pressure broadened and appears as a single optical
line. This broadening reduces the optical depth of the alkali
medium and impedes optical resolution of or control over
individual hyperfine transitions. Consequently, memory op-
eration based on standard �-system protocols (e.g., EIT or
Raman absorption) in practice deviates from that described
by the simple �-type model and includes other undesired
processes, such as four-wave mixing [38], which compromise
memory efficiency and fidelity. Nevertheless, Faraday inter-
action in a double-pass configuration [98,99] provides for a
beam-splitter-like Hamiltonian, which is free of four-wave
mixing. This type of coupling is therefore consistent with
our �-type modeling for the alkali spins. Moreover, at high
buffer-gas pressures, the effect of tensor polarizability be-
comes negligible [90,100], rendering the Faraday interaction
with the orientation moment dominant, as desired for this
memory.

Low-pressure configurations benefit from strong atom-
photon interaction and enable employment of standard storage
protocols (e.g., EIT and Raman absorption) which utilize
optical access and control over the state of different hy-
perfine levels. As diffusion is faster in these configurations,
antirelaxation coated cells should be used to avoid alkali-spin
relaxation by collisions with the cell walls [8,21,38], but these
coatings limit the operation temperature.

The configurations we consider feature high optical depths,
which may alleviate the need for an optical cavity and en-
able implementations based on free-space propagation. While
exact calculations of a free-space model extend beyond the
scope of this paper, our main conclusions based on the
fast-cavity regime should also remain, similar to Ref. [19],
approximately valid for cavity-free configurations. To
approximate such configurations, we use the scaling found in
Ref. [19] and relate the effective cooperativity of the medium
to the optical depth in free space via C ≈ OD/5.8, where OD
is the free-space optical depth associated with attenuation of
the power of the signal beam.
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TABLE I. Possible experimental configurations and memory efficiencies. (1), (2) High-pressure configurations. (1) Mixture of potassium,
helium-3, and N2 (the last for mitigating radiation trapping during optical pumping) in a spherical glass cell with a 1 cm radius. The noble-gas
spin state potentially lives for 1/γk = 100 hours, limited by the dipole-dipole limit. This configuration is compatible with both the sequential
and adiabatic storage schemes. (2) Mixture of rubidium, xenon-129, and N2 (the last to increase the molecular breakdown rate) in a cubical
glass cell with a 1 cm edge length. Here J < γs such that the scheme is only suitable for an adiabatic operation. Here γk is limited by collisions
with the alkali atoms. For the high-pressure configurations (1) and (2), mapping of the optical signal on the alkali spins can be implemented via
Faraday teleportation in a double-pass configuration, which realizes a beamsplitter interaction. (3), (4) For the low-pressure configurations, we
consider a Cs-129Xe mixture enclosed in a cylindrical cell with antirelaxation coating for the alkali spins, where γk is limited by collisions with
the alkali atoms. For these configurations, mapping of the optical signal onto the orientation moment of the alkali spins can be implemented
using any standard mapping scheme, such as EIT of linearly polarized light tuned to the F = 4 → F = 3 optical transition of the D1 line
[38]. (3) Paraffin coating, which allows for Ne = 1000 bounces before spin randomization. (4) Alkane coating, which allows for Ne = 105 wall
bounces before spin randomization.

Temperature Additional Efficiency
No. Pressure Noble gas Alkali (◦C ) buffer gas Coating γs [2π Hz] J [2π Hz] C 1/γk ηtot

(1) High 3He, 2 atm K 230 N2, 30 Torr 2.4 110 37 100 [h] 95% | adiabatic
88% | sequential

(2) High 129Xe, 7 Torr Rb 150 N2, 1500 Torr 1000 92 2.7 22 [s] 74% | adiabatic
(3) Low 129Xe, 0.2 Torr Cs 70 Paraffin 13 2.4 15 540 [s] 94% | adiabatic
(4) Low 129Xe, 0.2 Torr Cs 90 Alkane 8 4.6 69 140 [s] 98.5% | adiabatic

In the following two subsections, we analyze some exem-
plary possible configurations, which are also summarized in
Table I .

A. High buffer-gas pressure

1. Mixture of potassium and helium-3

The first configuration we consider consists of a K-3He
mixture enclosed in a spherical glass cell with a 1 cm radius.
We consider a 3He density of nb = 5.4 × 1019 cm−3 (corre-
sponding to 2 atm at ambient conditions), an alkali-metal
density of na = 5.2 × 1014 cm−3 (corresponding to the vapor
pressure at a temperature of 230 ◦C) and 30 Torr of N2 to
mitigate radiation trapping. We estimate a relaxation rate of
about γs = 2π × 2.4 Hz during memory operation dominated
by collisions with the background gas (coupling to cell walls
is reduced due to the slow diffusion, where the longest living
alkali diffusion mode relaxes after 0.5 s due to wall coupling)
[61,90]. This configuration is similar to the experimental con-
ditions recently reported in Refs. [87,88].

The high buffer gas pressure broadens the optical D1

transition of the potassium, such that its full width at half
maximum (FWHM) is about 27 GHz. Despite the broadening,
a large resonant optical depth of about OD ≈ 220 is expected,
owing to the elevated alkali density, which corresponds to
about C ≈ 37 for cavity-free configurations. The initialization
of the alkali spins relies on optical pumping using a pump
field, which is on only before the storage and retrieval stages
(when the alkali and the noble gas are decoupled). Due to the
high OD, efficient optical pumping of the alkali spins across
the cell requires high intensity of the pump light at a large
frequency detuning from the optical transition [87,88]. The
pump light burns through the cell, as atoms whose spin is
optically pumped cease to absorb pump photons [81] (but not
signal photons, which differ in polarization and frequency).
We estimate that alkali spin polarization of about pa � 95%
can be obtained using 160 mW of a circularly polarized pump
at 770 nm, detuned by 70 GHz from the D1 transition, with

a beam waist of about 1 cm (yielding a pumping rate of
∼2π × 50 Hz).

The noble gas spins can be initialized prior to the exper-
iment via SEOP hyperpolarization to about pb � 75% at a
SEOP rate of ∼(10 hour)−1 [64]. This day-long initialization
is required only once, before the first memory operation, and
is not required for continuous operation of the memory there-
after. These parameters allow for a high coherent coupling
rate of J ≈ 2π × 110 Hz. We estimate that the collisional,
magneticlike spin-exchange shifts induced by one gas on the
other are 230 μG for the noble gas and 22 mG for the alkali
spins (cf. Appendix A). The high J/γs enables high-efficiency
memory operation, with ηtot ≈ 88% for the sequential proto-
col and ηtot ≈ 95% for the adiabatic protocol. The memory
efficiency in this configuration is limited mainly by the optical
cooperativity of the alkali atoms, which can be increased if
needed by increasing vapor density and pump power or by
employing an optical cavity.

The Faraday interaction in a double-pass configuration
should be employed to map the photons onto the orientation
moment Ŝ of the alkali spin via direct interaction with the
electron spin [17]. We consider a 1.5 W linearly polarized
control beam detuned by 76 GHz and estimate a coherent
coupling rate of about γ� = 2π × 1.6 kHz and � = 2π ×
27 MHz, taking into account the attenuation of the control
field due to the small fraction of unpolarized alkali spins. The
rate γ� also approximates the signal bandwidth that can be
stored and retrieved efficiently using the sequential scheme.
To enjoy the potential 1/γk = 100 hours coherence time of the
noble gas, limited by self-dipole-dipole interactions, we need
to minimize magnetic-field inhomogeneities and decrease al-
kali density, e.g., by lowering the cell temperature [64,101].
Such a configuration could therefore feature an extraordinary
time-bandwidth product exceeding 109.

2. Mixture of rubidium and xenon-129

The second configuration we consider contains a Rb-129Xe
mixture enclosed in a cubical glass cell with a 1 cm edge
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length. We consider a 129Xe density of nb = 2.5 × 1017 cm−3

(7 Torr at ambient conditions), an alkali density of na =
1014 cm−3 (temperature 150 ◦C), and 1500 Torr of N2 to miti-
gate radiation trapping, decrease the diffusion coefficient, and
increase the molecular breakdown rate of short-lived XeRb
molecules (�0.1 ns) [71,102,103]. The latter is important for
improving the SEOP efficiency and for decreasing the decay
rate of the noble-gas spins due to the molecular interaction
[103]. The optical depth of the alkali medium is expected to
be OD ≈ 16.

The alkali spins are maintained at a constant spin-
polarization of pa = 90% by continuous optical pumping.
This pumping can be realized using a 250 mW of circularly
polarized 795 nm beam, detuned 36 GHz from the D1 transi-
tion, whose linewidth is about 36 GHz. In this configuration,
diffusion to cell walls occurs at a rate of about 2π × 1 Hz and
is thus negligible. The pumping light shifts the alkali-spin res-
onance frequency by 2 kHz and adds to its relaxation, which
sums up to γs ≈ 2π × 1 kHz.

The 129Xe atoms are polarized via SEOP to pb = 65%,
limited by relaxation due to collisions with the alkali, yielding
γk = 2π × 7 mHz. As in the previous configuration, it is pos-
sible to decrease γk during the memory time by lowering the
alkali density. This configuration features J = 2π × 92 Hz
and collisional shifts of ∼3.5 mG exerted by the alkali on the
xenon and ∼2.7 mG exerted by the xenon on the alkali.

In this configuration, J < γs, so it is most suitable for the
adiabatic protocol. A 1 W control beam, detuned by 38 GHz
and of 1 cm waist, would provide for � = 2π × 40 MHz and
γ� = 2π × 16 kHz, taking into account depletion of the con-
trol by unpolarized atoms. For ultralow-bandwidth pulses, we
expect a memory efficiency of ηtot ≈ 74%.

B. Low buffer-gas pressure

For the low-pressure configurations, we consider a
Cs-129Xe mixture enclosed in a cylindrical cell with an-
tirelaxation coating for the cesium spins. The alkali spins
decohere by binary collisions with other alkali atoms, by
three-body collisions with xenon atoms, and by interaction
with the cell walls. The three-body collisions are associated
with the formation of short-lived Cs-129Xe (van der Waals)
molecules, which limit the attainable degree of polarization pa

and significantly increase the destruction rate γs. To mitigate
this process, we decrease the molecular formation rate by
considering a relatively low density nb = 7 × 1015 cm−3 of
129Xe (0.2 Torr). At this pressure, the molecular formation
rate per alkali atom R3 = Zn2

b ≈ 2π × 0.4 Hz is compara-
ble to the binary spin-exchange collision rate R2 = kSEnb,
where Z = 8.5 × 10−32 × 2π Hz cm6 [104] and kSE = 6.5 ×
10−16 × 2π Hz cm3 [90]. The low gas pressure corresponds
to a large diffusion coefficient of 160 cm2/s, leading to a
mean-free path of 0.2 mm and mean-free time of about 0.9 μs.
For 1 cm cell, the time for reaching the wall is of the order
of 2 ms, indicating the importance of alkali-wall interaction.
Here we consider two configurations based on different wall
coatings, all compatible with the adiabatic mapping scheme
as J < γs.

1. Paraffin coating

Paraffin coating allows for Ne � 1000 bounces before spin
randomization [105]. We consider a cylindrical cell of length
L = 3 cm and radius r = 1 cm. The alkali density is na =
2 × 1012 cm−3 (temperature 70◦C), and γs = 2π × 13 Hz due
to collisions with the walls and the background xenon. The
optical line is inhomogeneously Doppler broadened by about
400 MHz (FWHM), which yields a resonant optical depth
of OD ≈ 90 along the axis of the cylinder, corresponding
to C ≈ 15 for a cavity-free apparatus. In inhomogeneously
broadened configurations, the OD can potentially be further
enhanced by optical techniques [106].

To allow for operation in the adiabatic regime for a du-
ration longer than the alkali-spin lifetimes, an alkali-spin
polarization of pa = 90% is maintained by continuous optical-
pumping [105,107–109]. While standard optical pumping
would typically increase the relaxation rate in the dark by a
factor of 1/(1 − pa), pumping of the lower hyperfine manifold
combined with frequent spin-exchange collisions allows for
efficient pumping of the spin in the upper hyperfine man-
ifold at reduced spin decoherence. To apply this pumping
scheme, the pumping rate has to be faster than the spin-
exchange rate ∼2π × 220 Hz. On-resonance optical pumping
with low-power light of ∼1 mW readily provides a pumping
rate of ∼2π × 2 kHz. Under these conditions, the noble-
gas spin polarization is maintained at pb = 50% via binary
and molecular spin-exchange collisions assuming a coher-
ence time of γ −1

k = 9 minutes limited by collisions with
alkali atoms. These parameters yield J = 2π × 2.4 Hz, and
collisional spin-exchange shifts corresponding to a magneti-
clike field of ∼120 μG for the xenon and ∼100 μG for the
alkali.

Here mapping of the optical signal onto the orientation
moment of the alkali spins can be implemented with any
standard mapping scheme, such as EIT with linearly polarized
light tuned to the F = 4 → F = 3 optical transition of the
D1 line [38]. For a 2 mW linearly polarized control beam at
894 nm, detuned by 1 GHz from the D1 atomic line, we expect
� = 2π × 1 MHz and γ� ≈ 2π × 210 Hz = 15γs, for which
a memory efficiency of ηtot ≈ 94% can be realized.

2. Alkane coating

A configuration based on alkane coating could allow Ne =
105 wall bounces before spin randomization [63,105]. We
consider cesium vapor density of na = 9 × 1012 cm−3 (tem-
perature 90 ◦C) in a narrow cylindrical cell with L = 2 cm
and r = 1 mm to mitigate radiation trapping. This aspect ratio
gives an optical depth of 400 along the axis of the cell and only
26 across it. Maintaining pa = 90% by continuous optical-
pumping of the lower hyperfine manifold (using a 5.4 mW
pumping laser for a pumping rate of 2π × 9 kHz, much faster
than the 2π × 1 kHz spin-exchange rate), yields pb = 50%,
γs = 2π × 8 Hz,

γ −1
k = 140 s, J = 2π × 4.6 Hz, and C = 69 for a cavity-

free configuration. Owing to the reduced alkali relaxation rate,
here γ� = 50γs and � = 2π × 3.2 MHz can be obtained with
a 0.2 mW control beam, detuned by 2.3 GHz and of waist
1 mm. For this configuration, we estimate γJ ≈ 2π × 55 mHz

042606-13



OR KATZ et al. PHYSICAL REVIEW A 105, 042606 (2022)

and a potential memory efficiency of ηtot ≈ 98.5% using the
adiabatic protocol.

VIII. NOISE CHARACTERIZATION

Noise photons generated during the operation of a quantum
memory might impact the overall fidelity. While the noise
generated by the memory is independent of the state of the op-
tical signal, its overall affect on the output light depends much
on the particular state that is stored. For example, the effect
of stray noise photons on weak coherent states or squeezed
states of light (whose quantum correlations collectively reside
in a large number of photons) would be less pronounced with
respect to, e.g., a single photon. In this section, we consider
potential noise sources in noble-gas-based memories and an-
alyze their consequences.

A. Fluorescence noise

When alkali atoms are optically excited, they can return to
the ground state while emitting a noise photon, either by spon-
taneous emission or by induced fluorescence due to collisions
with buffer gas [110,111]. Using N2 as a quenching gas can
considerably suppress emission of spontaneous photons, as it
de-excites alkali atoms nonradiatively. Here we estimate the
amount of noise photons arriving at the output mode due to
flourescence in the absence of a quenching gas.

Assuming that γp is dominated by collisional broadening,
spontaneous excitation of alkali atoms is captured by the
atomic noise operator f̂P . Using Eq. (C4), we find the rela-
tion between f̂P and the noise operator of the emitted noise
photons:

f̂E =
√

2Cγp

γp(1 + C) + i�
f̂P . (71)

The operator f̂P is temporally white, and therefore the optical
noise field at the detector f̂E has a spectral line shape centered
around the atomic line at ωp and of width γp(1 + C). Impor-
tantly, detuning the signal and control fields from resonance
by |�| � γp(1 + C) renders the optical frequency of the noise
photons different with respect to the signal photons by a
frequency offset �, which enables frequency filtering of the
noise photons from the signal (e.g., by using optical filters).

To quantify the benefit of a large detuning �, we es-
timate the fluorescence noise in the outgoing signal mode∫ ∞

T ′+τ
〈Ê†

outÊout〉t dt during the retrieval. The number of such
noise photons due to fluorescence is determined by the con-
tribution of f̂E in Êout in Eq. (C4), which is given by

NF =
∫ ∞

T ′+τ

〈 f̂ †
E f̂E〉t dt ≈ 2Cγp

�2

∫ ∞

T ′+τ

〈 f̂ †
P f̂P〉t dt . (72)

The last relation uses Eq. (71) in the large detunning limit.
Using Eq. (B2), we find that

∫ 〈 f̂ †
P f̂P〉t dt ≈ γ�, and therefore

NF � 1.
In summary, memories operating with off-resonant con-

trol can differentiate noise photons from signal photons by
means of optical filtering, as well as by using molecular buffer
gas which efficiently suppresses fluorescence via nonradiative
channels.

B. Imperfect alkali polarization

Imperfect alkali spin polarization can affect the memory
performance. Here we consider a polarized medium sat-
isfying 〈σ↓↓〉 � 〈σ↑↑〉. Imperfect optical pumping has two
effects on the equations of motion. First, an ensemble of
thermally uncorrelated flipped spins with a density matrix
σ ≡ σ1 ⊗ σ2 ⊗ . . . ⊗ σNa and degree of polarization pa =
〈σ↓↓〉 < 1 has a nonzero overlap with the collective mode
of the desired spin wave, thus initially populating that mode
with 〈Ŝ†Ŝ〉0 = (1 − pa)/2pa ≈ (1 − pa)/2 spin excitations
[61]. Second, as the steady-spin polarization is associated
with dephasing, from the fluctuation-dissipation theorem,
the quantum noise maintains steady nonvacuum statistics.
Consequently, the normally ordered noise variance of the al-
kali spins increases to 〈 f̂S (t )† f̂S (t ′)〉 = [(1 − pa)/pa]γsδ(t −
t ′) ≈ (1 − pa)γsδ(t − t ′), while the antiordered variance
is given by 〈 f̂S (t ) f̂ †

S (t ′)〉 = [(1 + pa)/pa]γsδ(t − t ′) ≈ [2 +
(1 − pa)]γsδ(t − t ′). This increased variance enters into the
equations of motion of the two storage protocols. For
the sequential storage, it enters via the noise process
ŴS in Eq. (F1), where the detected noise photons in∫ ∞

T ′+τ
〈Ê†

outÊout〉t dt are given by N = ∫ ∞
T ′+τ

|Q�|2〈Ŵ†
SŴS〉t dt .

Summing the contributions of the two effects, for high band-
width pulses satisfying γsT � 1 and C � 1, we find that
N � (1 − pa), which satisfies N � 1 for a highly polarized
medium. This noise mechanism is universal for all alkali-
based quantum memories.

C. Imperfect noble-gas polarization

Imperfect polarization pb < 1 of the noble-gas spins re-
duces the coupling rate J ∝ √

pb and increases the initial
(incoherent) excitation of the collective uniform mode of the
noble-gas ensemble by 〈K̂†K̂〉0 = (1 − pb)/2pb > 0. The lat-
ter could lead to readout and emission of a noise photon with
probability (1 − pb)/(1 + pb) ≈ (1 − pb)/2, reducing the fi-
delity of the memory when storing single photons. However,
this noise photon can potentially be read out prior to the
storage process via the same spin-exchange mechanism and
retrieval procedure used for reading out the signal photon,
leaving 〈K̂†K̂〉0 = 0. Unlike the case of alkali spins, the
rate at which the collective mode is replenished with inco-
herent excitations is γk, leaving ample time for the storage
and retrieval of the signal photon. In fact, the readout of
the noise happens naturally in the sequential mapping pro-
cess (strong-coupling regime J � γs), as the transfer process
Ŝ → K̂ is bidirectional and is accompanied by the reverse
transfer K̂ → Ŝ . We shall explore these possibilities in future
work.

IX. SUMMARY

The analysis presented in this paper suggests that noble-gas
spins and their interface via spin-exchange collisions can be
used as an efficient interface to map nonclassical light onto
the collective and long-lived state of noble-gas spins and
therefore realize efficient quantum memories with potentially
unprecedented time-bandwidth product. We outline various
experimental configurations and mapping protocols which
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characterize and demonstrate the operation and performance
of such memories.

The presented model is not limited to noble-gas spin
systems and could potentially be applied to analyze quan-
tum memories in other four-level systems. These include,
for example, an atomic system with a ladder of excited
electronic orbitals [112–114], as well as other hybrid sys-
tems with both optically accessible and inaccessible spins,
such as quantum dots, diamond color-centers, and rare-
earth impurities interacting with nearby nuclear spins in the
crystal.
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APPENDIX A: HEISENBERG-BLOCH-LANGEVIN
EQUATIONS

The explicit form of the Heisenberg-Bloch-Langevin equa-
tions for σ̂μν (r, t ) is obtained by substituting H from Eqs. (13)
and (17) into Eq. (19), yielding

∂t σ̂↓p = −[
γp + i� − i [I]

4 ζ (σ̂⇓⇓ − σ̂⇑⇑)
]
σ̂↓p

+ i�(r, t )σ̂↓↑ + ig(r)(σ̂↓↓ − σ̂pp)Ê

+ i
√

[I]
2 ζ σ̂↑pσ̂⇓⇑ + Da∇2σ̂↓p + f̂↓p, (A1)

∂t σ̂↓↑ = −[
γs + iδs + i qI −1

4 [I]ζ (σ⇓⇓ − σ⇑⇑)
]
σ̂↓↑

+ i�∗(r, t )σ̂↓p − i
√

[I]
2 ζ (σ̂↓↓ − σ̂↑↑)σ̂⇓⇑

− ig(r)σ̂p↑Ê + Da∇2σ̂↓↑ + f̂↓↑, (A2)

∂t σ̂⇓⇑ = −[γk + iδk − i [I]
2 ζ (σ̂↓↓ + qI σ̂↑↑)]σ̂⇓⇑

− i
√

[I]
2 ζ σ̂↓↑(σ̂⇓⇓ − σ̂⇑⇑) + Db∇2σ̂⇓⇑ + f̂⇓⇑, (A3)

where γp ≡ γ↓p, γs ≡ γ↓↑, and γk ≡ γ⇓⇑. These operators
satisfy the commutation relations of continuous spin operators

[σ̂μν (r, t ), σ̂αβ (r′, t )]

= δ(r − r′)(δανσ̂μβ (r, t ) − δβμσ̂αν (r, t )). (A4)

The equations can be further simplified by using the following
assumptions: the excited state is unpopulated, σ̂pp ≈ 0 if the
control power is kept low (� � γ↓p); σ̂p↑ ≈ 0 for weak input
pulses 〈Ê†Ê〉 � (�/g)2; the collective operator σ̂↓↓ ≈ pana

is determined by the density of alkali atoms na and by the
degree of ground-state polarization pa, which is kept high via

optical pumping pa → 1, such that σ̂↑↑ ≈ 0; and similarly the
collective operator σ̂⇓⇓ ≈ pbnb is determined by the density
of noble-gas atoms nb and by the degree of polarization pb,
which satisfies pb � 1 owing to SEOP. We also note that
the collisional shift and the diffusion terms have a negligible
effect on the optical linewidth. The simplified equations of
motion are then given by

∂t σ̂↓p = −(γp + i�)σ̂↓p + i�(r, t )σ̂↓↑ (A5)

+ iG(�r)Ê + f̂↓p,

∂t σ̂↓↑ = −(γs + iδs − Da∇2)σ̂↓↑ + i�∗(r, t )σ̂↓p (A6)

− i(ζ
√

[I]pana/2)σ̂⇓⇑ + f̂↓↑,

∂t σ̂⇓⇑ = −(γk + iδk − Db∇2)σ̂⇓⇑

− i(ζ
√

[I]pbnb/2)σ̂↓↑ + f̂⇓⇑, (A7)

where � → � − [I]
4 ζ pbnb. The modified detuning of

the alkali spins δs = δ̃s + (qI − 1)[I]ζnb pb/4 accounts
for the collisional shift that the alkali spins experience due to
the magnetized noble-gas spins. Similarly, the modified
detuning of the noble-gas spins δk = δ̃k − [I]ζ pana/2
accounts for the collisional shift that the noble-gas spins
experience due to the magnetized alkali spins.

APPENDIX B: PROPERTIES OF THE QUANTUM NOISE

In this Appendix, we present the properties of the quan-
tum noise operators. In the Heisenberg-Langevin picture,
the relaxation of the quantum operators is accompanied by
stochastic quantum noise [93]. In our model, we assume that
the noise operators f̂μν (r, t ) defined in Eq. (19) are temporally
white, satisfying

〈 f̂μν (r, t )〉 = 0 (B1)

with variance

〈 f̂μν (r, t ) f̂αβ (r′, t ′)〉 =Cμναβ (r, r′)δ(t − t ′)

+ δνα (γμν + γνβ − γμβ )σμβ (r, t )

× δ(r − r′)δ(t − t ′), (B2)

where Cμναβ (r, r′) is the diffusion noise correlation function
for operators σ̂μν, σ̂αβ . The noise operators are essential for
preserving the commutation relations [σ̂μν (r, t ), σ̂αβ (r′, t )].

For polarized spins, in the Holstein-Primakkof approx-
imation, the operators P̂ (r, t ), Ŝ (r, t ), and K̂(r, t ) act as
local bosonic annihilation operators. The noise terms f̂P =
f̂↓p/

√
pana, f̂S = f̂↓↑/

√
pana, and f̂K(r, t ) = f̂⇓⇑/

√
pbnb,

appearing in Eqs. (20)–(22), then act as vacuum noise oper-
ators satisfying

〈 f̂q(r, t )〉 = 〈 f̂ †
q (r, t ) f̂q(r′, t ′)〉 = 0 (B3)

and

[ f̂q(r, t ), f̂ †
q (r′, t ′)] = 〈 f̂q(r, t ), f̂ †

q (r′, t ′)〉
= 2(γq − Dq∇2)δ(r − r′)δ(t − t ′).

(B4)

Here q ∈ {P,S,K}, with γP ≡ γp, γS ≡ γs, γK ≡ γk , DP =
DS ≡ Da, and DK ≡ Db. The first term in Eq. (B4) describes
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a spatially white noise with variance 2γq, which is associated
with the relaxation rate γq via the fluctuation-dissipation re-
lations. The second term is the diffusion component of the
noise correlation function, independent of the other relaxation
mechanisms incorporated in γq [60]. The diffusion-induced
decoherence rate of P̂ is negligible compared to γp and so is
the contribution of diffusion to the excited state noise.

APPENDIX C: SPATIAL MODES REPRESENTATION

Here we present the decomposition of the spin opera-
tors into spatial mode functions and various choices for
these functions. Equations (21) and (22) contain nonlocal
terms due to atomic diffusion. Consequently, the evolution
of the spin operators is better described using a decompo-
sition into multiple nonlocal (spatial) modes. We therefore
write P̂ (r, t ) = ∑

i u(p)
i (r)P̂i(t ), Ŝ (r, t ) = ∑

m u(s)
m (r)Ŝm(t ),

and K̂(r, t ) = ∑
n u(k)

n (r)K̂n(t ), where each set of mode func-
tions (up, us, uk) is complete [17].

1. Optical dipole P̂
The optical dipole component that interacts with the field

of the cavity in Eq. (25) is defined by the spatial overlap with
the signal

P̂ (t ) =
√

Vcav

V

∫
V

f ∗
ε (r)P̂ (r, t )d3r. (C1)

It is therefore fruitful to choose the set of modes u(p)
i (r) in

which a specific mode u(p)
0 (r) maximizes that integral and all

other modes are orthogonal. We thus choose u(p)
0 (r ∈ V) =√

Vcav/V fε(r) [and u(p)
0 (r /∈ V) = 0 ] and obtain P̂ (t ) by sub-

stituting Eq. (28) into Eq. (C1):

P̂ (t ) = i
�(t )

∑
m bmŜm(t ) + √

2γpCÊin(t ) − i f̂P
γp(C + 1) + i�

. (C2)

The optical mode-matching parameter bm is given by

bm =
√

Vcav

∫
V

u(s)
m (r)u(p)∗

0 (r) fc(r)d3r, (C3)

characterizing the spatial overlap of the alkali-spin modes
u(s)

m (r) with the mode u(p)
0 (r) of the optical dipole, weighted

by the mode function of the optical control field in the cav-
ity

√
Vcav fc(r). The condition

∑
m |bm|2 � 1 is satisfied. We

also define the noise operator of the single excited mode by
f̂P (t ) = ∫

V u(p)∗
0 (r) f̂P (r, t )d3r.

Correspondingly, Eq. (25) is transformed to

Êout(t ) = αÊin −
∑

m

p(m)
out (t )Ŝm + f̂E , (C4)

where we define

α = γp(1 − C) + i�

γp(1 + C) + i�
, (C5)

the coefficients p(m)
out (t ) = Qbm�(t ), and the additional noise

operator for the output field f̂E = Q f̂P , where Q is defined in
Eq. (33).

2. Noble-gas spin K̂
The natural choice of mode functions for the collective

noble-gas spin is the set of eigenmodes of the diffusion-
relaxation operator [60]

(γk − Db∇2)u(k)
n (r) = γ (k)

n u(k)
n (r), (C6)

assuming nondestructive (Neumman) boundary conditions.
Here γ (k)

n represents the relaxation rate of the nth mode. Using
these mode functions, the equations of motion of the noble-
gas spin can be written as

∂t K̂n = −(
γ (k)

n + iδk
)
K̂n − iJ

∑
m

c∗
mnŜm + f̂ (n)

K , (C7)

where

cmn =
∫

V
u(s)∗

m (r)u(k)
n (r)d3r (C8)

describes the matching of the noble-gas spin modes to the
alkali-spin modes [61]. The matrix [cmn] is unitary, satisfy-
ing

∑
n c∗

mncn j = δm j . The normalized noise operators of the
spin modes are f̂ (n)

K = ∫
V u(k)∗

n (r) f̂K(r, t )d3r. In particular,
the n = 0 mode is the uniform spin mode, u(k)

0 (r) = 1/
√

V ,
unaffected by diffusion and exhibiting a minimal decay at a
rate γk = γ

(k)
0 . This mode is utilized here as the single mode

of the long-lived quantum memory:

K̂(t ) ≡ K̂0(t ) = 1√
V

∫
K̂(r, t )d3r. (C9)

3. Alkali spin Ŝ
Before choosing a particular basis for the alkali spins, we

first write Eq. (21) for a general basis u(s)
m . Using Eq. (C2), we

obtain

∂t Ŝm =−(γs + iδs)Ŝm −
∑

j

(��b∗
mbj + dm j )Ŝ j

− iJ
∑

n

cmnK̂n − p(m)
in (t )Êin + F̂ (m)

S , (C10)

Generally, the modes u(s)
m are coupled by the atomic diffusion,

as represented by the coefficients

dm j = −Da

∫
V

d3ru(s)∗
m (r)∇2u(s)

j (r). (C11)

The coefficients p(m)
in (t ) = Qb∗

m�∗(t ) describe the coupling
of each alkali-spin mode to the input light field. The
normalized noise operators of the alkali spin are F̂ (m)

S =∫
V u(s)∗

m (r) f̂S (r, t )d3r + ip(m)
in f̂P/

√
2Cγp, including the quan-

tum noise associated with the control beam (light-induced
relaxation).

To choose a mode-function basis for the alkali spins, we
examine eigenvalues of the matrix [γsδm j + γ�b∗

mbj + dm j],
which correspond to the relaxation rates of the modes γ (s)

m .
It follows that a convenient choice of mode basis exists in
two limiting regimes: when the dynamics is dominated by
diffusion (e.g., in the dark γ� � Da/V 2/3) and [dm j] is diago-
nal, or when the dynamics is dominated by power broadening
(γ� � Da/V 2/3) and [b∗

mbj] is diagonal. Here we consider
these two regimes.
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a. Diffusion-dominated regime

In the regime γ� � Da/V 2/3, the diffusion dominates over
power broadening. The natural choice of basis is the set of
eigenmodes of the diffusion-relaxation operator for the alkali-
metal spins,

(γs − Da∇2)u(s)
m (r) = γ (s)

m u(s)
m (r), (C12)

satisfying destructive (Dirichlet) or partially destructive
(Robin) boundary condition, depending on the quality of the
antirelaxation coating of the cell walls [60,90]. This set of
mode functions best applies for the sequential mapping proto-
col in Sec. VI A and Appendix G. In Appendix D, we calculate
the values of bm and cmn for an uncoated spherical cell.

b. Light-dominated regime

In the regime γ� � Da/V 2/3, power broadening due to the
control beam dominates over diffusion. It is then possible
to engineer the spatial profile of the control field such that
the m = 0 spin mode becomes the uniform mode u(s)

0 (r) =
1/

√
V , and bm = δm0. This can be realized by maintaining the

term fc(r) f ∗
ε (r) constant within the atomic cell, such that the

term �∗(r, t )P̂ (r, t ) appearing in Eq. (21) is spatially inde-
pendent. This in turn yields a uniform two-photon excitation
of the alkali spin ensemble.

To exemplify this, in the large cavity limit, the spa-
tial modes are approximately the free-space modes fc(r) ≈
eikcr/

√
Vcav and f ∗

ε (r) = e−ikεr/
√

Vcav. For an enclosure of
length L, if |kε − kc|L � 1, then fc(r) f ∗

ε (r) ≈ 1/Vcav and the
input signal excites the uniform spin mode efficiently. This
condition is often satisfied in experiments when the signal and
control fields are nearly degenerate. Under these conditions,
we get b0 = c∗

10 = 1 while bm = c∗
m0 = 0 for m �= 1. We can

then approximate the dynamics in Eq. (31) with the use of the
uniform spin operator

Ŝ (t ) ≡ 1√
V

∫
V
Ŝ (r, t )d3r. (C13)

To account for the contribution of higher spatial modes in
Eq. (C10), we approximate the multi-exponential decay using
a single effective rate:

γs → γs + γdiff. (C14)

While for the sequential scheme it is natural to decompose
the uniform spin mode into the diffusion eigenmodes, which
lead to a multiexponential decay [cf. Eqs. (G1) and (G2)], for
the adiabatic scheme the dynamics can be well approximated
by a single exponential decay, since γ� dominates over the
diffusion rate of the least decaying modes. We therefore use
Eq. (31), which neglects the contribution of the other spatial
modes to the uniform alkali mode. To best approximate the
dynamics and the diffusion-induced relaxation in Eq. (C14),
we define the effective rate

γdiff = −γE ln

[ ∞∑
m=0

|cm0|2 exp

(
γ� + γs − γ (s)

m

γE

)]
, (C15)

which weighs the contribution of the different diffusion mode
within some coupling duration 1/γE . In Fig. 6, we present the
diffusion decay rate γdiff in an uncoated cell with respect to

FIG. 6. Effective diffusion-induced decay rate of the uniform
mode of alkali spins as a function of the coupling duration 1/γE .

the decay rate Daπ
2/R2 of the lowest-order diffusion mode.

In the calculations presented in the main text, we choose γE =
γ� + γs, such that γdiff approaches Daπ

2/R2.

APPENDIX D: NUMERICAL EVALUATION
OF THE SPATIAL MODE DECOMPOSITION

FOR A SPHERICAL CELL

In this Appendix, we present a numerical evaluation of
the overlap coefficients b and c and derive an approximate
expression for the diffusion relaxation of the uniform alkali-
spin mode. We consider a spherical cell of radius R and
define the diffusion modes following Ref. [60]. In a spherical
cell, the diffusion modes are labeled by (m, �, μ), where m
characterizes the radial dependence and (�, μ) represent the
angular symmetry. Since we ultimately consider storage on
the noble-gas uniform mode, we use only the spherically
symmetric modes, i.e., � = μ = 0. We therefore use a single
label m to index the modes.

1. Representation of b

We calculate the overlap bm between the alkali spin and
the optical field, as defined in Eq. (C3). We set the ẑ axis
as the cavity axis, such that for the control we have fc(r) =
e−ikcz/

√
Vcav, and the optical dipole spatially follows the signal

field u(p)∗
0 (r) = eikε ·r/

√
V . With these, we get for the spheri-

FIG. 7. Mode overlap of the uniform spin distribution with the
signal and control fields in the cavity, cf. Eq. (C3), for the first seven
modes. The condition |kε − kc|R � 1 is typically satisfied.
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TABLE II. Diffusion-induced decay rates for the first seven
spherically symmetric modes of alkali spins (γ (s)

m − γs) and noble-gas
spins (γ (k)

m − γk) in an uncoated spherical cell [cf. Eqs. (C6) and
(C12)].

Mode number (m) γ
(s)
m −γs

Daπ2/R2
γ

(k)
m −γk

Dbπ2/R2

0 1 0
1 4 2.05
2 9 6.05
3 16 12.05
4 25 20.05
5 36 30.05
6 49 42.05

cally symmetric modes

bm =
∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
bm(r, θ, ϕ)dϕ, (D1)

where

bm(r, θ, ϕ) =
√

3 j0(πxmr/R) · ei(kε−kc )z

Am4πR3
. (D2)

Here j0(x) denotes the zeroth-order spherical Bessel function,
πxm is its mth root such that j0(πxm) = 0, and Am is the
normalization factor defined as

A2
mR3 =

∫ R

0
r2 j2

0 (πxmr/R)dr. (D3)

Expanding the expression exp(i(kε − kc)z) as a series of
Bessel functions yields

bm =
√

3

Am

∫ 1

0
ξ 2 j0(πxmξ )

[
J0((kε − kc)Rξ )

+ 2
∞∑

κ=1

(−1)κJ2κ ((kε − kc)Rξ )

1 − 4κ2

]
dξ . (D4)

In Fig. 7, we present bm for the first seven modes m =
0, . . . , 6. For standard alkali-spin memories, the condition
|kε − kc|R � 1 is typically satisfied, yielding the identity
bm = cm0.

2. Representation of c

In an uncoated cell, the alkali and noble-gas spins interact
differently with the surface of the glass wall, leading to differ-

ent boundary conditions for the diffusion of spins (Neumann
for noble-gas spins and Dirichlet for alkali spins) [60]. This
in turn leads to different sets of radial eigenmodes of the two
spin species in a spherical cell. Under these conditions, we
calculate the diffusion-induced decay rates γ (s)

m − γs for the
alkali spins and γ (k)

n − γk for the noble-gas spins (see Table II)
and the overlap coefficients for the modes of the two species
cmn (see Table III).

APPENDIX E: CONSERVATION OF EXCITATIONS

Here we identify an integral relation, which can be viewed
as a conservation law for the excitations. The excitations in the
optical signal Êin can be exchanged between the spin operators
P̂ , Ŝ , K̂ and finally be transferred to Êout. Using Eqs. (30),
(31), and (34), we write the relation

〈Ê†
outÊout〉 − 〈Ê†

inÊin〉 + ∂t (〈P̂†P̂〉 + 〈Ŝ†Ŝ〉 + 〈K̂†K̂〉)

= −2(γp〈P̂†P̂〉 + γs〈Ŝ†Ŝ〉 + γk〈K̂†K̂〉). (E1)

It is evident that, in a lossless cavity, excitations decay only
through the relaxations γp, γs, and γk during the time that P̂ ,
Ŝ , and K̂ are excited. Upon integration, we get the relation∫ t2

t1

〈Ê†
outÊout − Ê†

inÊin〉t dt + 〈P̂†P̂〉t2 − 〈P̂†P̂〉t1

+ 〈Ŝ†Ŝ〉t2 − 〈Ŝ†Ŝ〉t1 + 〈K̂†K̂〉t2 − 〈K̂†K̂〉t1

= −2
∫ t2

t1

(γp〈P̂†P̂〉t + γs〈Ŝ†Ŝ〉t + γk〈K̂†K̂〉t )dt, (E2)

which describes the conservation of excitations.

APPENDIX F: STORAGE AND RETRIEVAL
OF ALKALI MEMORIES

In this Appendix, we review the formalism of Ref. [18] to
describe storage and retrieval of optical memories using alkali
spins.

Equation (31) is a linear stochastic differential equation for
the alkali-spin operator. The solution for this equation is
given by

Ŝ (0) = �0,−∞Ŝ (−∞) −
∫ 0

−∞
�0,t Q�∗Êin(t )dt + ŴS (0).

(F1)

TABLE III. The overlap coefficients cmn between the mth diffusion eigenmode of alkali spins and the nth diffusion eigenmode of noble-gas
spins in an uncoated cell [cf. Eq. (C8)].

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 0.780 0.609 −0.126 0.058 −0.033 0.022 −0.016
m = 1 −0.390 0.652 0.622 −0.158 0.079 −0.049 0.033
m = 2 0.260 −0.275 0.0647 0.0627 −0.173 0.091 −0.058
m = 3 −0.195 0.182 −0.256 0.644 0.629 −0.181 0.098
m = 4 0.156 −0.139 0.168 −0.246 0.643 0.631 −0.187
m = 5 −0.130 0.112 −0.128 0.159 −0.239 0.642 0.632
m = 6 0.111 −0.095 0.104 −0.121 0.154 −0.235 0.641
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The first term describes the deterministic evolution of Ŝ in
the absence of an input signal. The second term describes the
response of the spins to the input optical signal. The third term
describes the stochastic response of the spin via the stochastic
quantum process ŴS (0) = ∫ 0

−∞ �0,τ F̂S (τ )dτ . The operator
�0,t is the evolution in the interval t < T , given by

�0,t = exp

[
−

∫ 0

t
[��(s) + γs + iδs]ds

]
. (F2)

Note that this solution accounts for the diffusion-induced re-
laxation of the alkali spins in the power-broadened regime
γ� � Da/V 2/3 via Eqs. (C14) and (C15). We now focus on
the storage and retrieval stages for T ′ = 0.

1. Storage

Initially, 〈Ŝ†Ŝ〉(t=−∞) = 0, so the first term in Eq. (F1)
vanishes. By defining the transfer function

h�(0, t ) = −Q�∗�0,t , (F3)

we write the alkali spin after storage as

Ŝ (0) =
∫ 0

−∞
h�(0, t )Êin(t )dt + ŴS (0). (F4)

The transfer function h�(0, t ) then satisfies∫ 0

−∞
e−2γst |h�(0, t )|2dt �

√
C + 1

C
. (F5)

Maximal storage efficiency is realized by shaping the tem-
poral profile of the control field �(t ) to satisfy h�(0, t ) =
A�Ê∗

in(t ), where the normalization constant A� is given by

A� =
√√√√∫ 0

−∞ |h�(0, s)|2ds∫ 0
−∞〈E†

inEin〉sds
. (F6)

Using Eq. (F1), we can describe the storage efficiency for any
input signal by

η
(E→S )
in = C

C + 1

∫ 0

−∞
〈Ê†

inÊin〉t e
2γst dt, (F7)

which approaches C/(C + 1) in the short pulse limit (γsT �
1), but otherwise depends on the temporal mode function of
the input field.

2. Retrieval

The output field during retrieval, obtained by substituting
Eq. (30) in Eq. (29), is

Êout(t ) = αÊin − Q�Ŝ + f̂E , (F8)

where α is given in Eq. (C5). Note that Eq. (F8) is the single-
mode version of Eq. (C4). The output field squared for any
t � τ is then given by

〈Ê†
outÊout〉t = |h�(t, τ )|2〈Ŝ†Ŝ〉τ , (F9)

assuming that f̂E satisfies vacuum properties and that
〈Ê†

inÊin〉(t>0) = 0. The retrieval efficiency into some target

temporal mode f (t ) is given by

η
(S→E )
out = C

C + 1

1∫ ∞
τ

| f (t )|2e2γs (t−τ )dt
, (F10)

where f (t ) is normalized such that
∫ ∞
τ

| f (t )|2dt = 1. Like the
storage efficiency, the retrieval efficiency approaches C/(C +
1) in the short pulse limit (γsT � 1), but otherwise depends
on the desired temporal mode function of the output field.

APPENDIX G: MULTI-MODE DESCRIPTION
OF THE SEQUENTIAL MAPPING

In this Appendix, we derive the solution for the multimode
exchange evolution in the second stage Ŝ → K̂ of the sequen-
tial mapping scheme. Using the diffusion eigenmodes for the
alkali spins in Eq. (C12), the dynamics is described by

∂t Ŝm = −(γ (m)
s + iδs)Ŝm − iJ

∑
n

cmnK̂n + f̂ (m)
S , (G1)

∂t K̂n = −(γ (n)
k + iδk)Kn − iJ

∑
m

c∗
mnSm + f̂ (n)

K . (G2)

The spins experience coherent dynamics in the dark, with the
alkali and noble-gas spin modes periodically exchanging ex-
citations. The coefficients cmn [Eq. (C8)] weigh the coupling
of the mth mode of one spin gas with the nth mode of the other
spin gas. The solution of Eqs. (G1) and (G2) reads

(
Ŝ(T ′)
K̂(T ′)

)
= �T ′,0

(
Ŝ(0)
K̂(0)

)
+

(
Ŵ s(T ′)
Ŵk(T ′)

)
, (G3)

where the matrix �T ′,T describes the evolution of the spins
from time t = 0 to time T ′, and the vector of stochastic oper-
ators is given by

(
Ŵ s(T ′)
Ŵk(T ′)

)
=

∫ T ′

0
�T ′,t

(
f̂S (t )
f̂K(t )

)
dt . (G4)

For a constant magnetic field during the interaction, �T ′,0 is
given by

�T ′,0 = exp

[(
[As] iJ[c]

iJ[c]† [Ak]

)
T ′

]
, (G5)

where the matrices [As], [Ak], and [c] have the el-
ements [As]mn = (γ (m)

s + iδs)δmn, [Ak]mn = (γ (n)
k + iδk)δmn,

and [c]mn = cmn.
The exchange evolution depends on the detuning δ between

the alkali and noble-gas spins, and the coupling is maximal
on resonance δ = 0. If the quantum signal is mapped on the
uniform mode of the alkali spins at storage, then after a π

pulse [with T ′ ≈ π/(2J )], we find the efficiency

η
(S→K)
in = 〈K̂†K̂〉T ′

〈Ŝ†Ŝ〉(t=0)
=

∑
m

|c0m|2 exp

(
−γ (s)

m π

2J

)
. (G6)
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