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In the Bennett-Brassard 1984 protocol, we optimize the ratio of the choice of two bases, the bit basis and
the phase basis, by using the second-order expansion for the length of the generation keys under the coherent
attack. This optimization addresses the trade-off between the loss of transmitted bits due to the disagreement
of their bases and the estimation error of the error rate in the phase basis. Then, we derive the optimum ratio
and the optimum length of the generation keys with the second-order asymptotics. Surprisingly, the second
order has the order n

3
4 , which is much larger than the second-order n

1
2 in the conventional setting when n is

the number of quantum communication. This fact shows that our setting has much larger importance for the
second-order analysis than the conventional problem. To illustrate this importance, we numerically plot the
effect of the second-order correction.
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I. INTRODUCTION

The Bennett-Brassard 1984 (BB84) protocol [1] is a stan-
dard protocol for quantum key distribution. The key point of
this protocol is the evaluation of the amount of information
leakage on the bit basis via the estimation of the error rate
in the phase basis. Due to this reason, the sender, Alice, and
the receiver, Bob, choose their basis independently with equal
probability in the conventional setting. In this method, a half
of the transmitted bits are discarded due to the disagreement
of their bases. However, since the aim is the estimation for
the error rate, it is sufficient to assign the phase basis to a
limited number of transmitted pulses that enables Alice and
Bob to estimate the error rate in the phase basis [2]. In this
situation, we need to address the trade-off between the loss of
transmitted bits due to the disagreement of their bases and the
estimation error of the error rate in the phase basis. To address
this problem, we need to clarify the effect of the estimation
error to the key generation rate. The existing study [3] treated
the estimation error in the large deviation framework. While
the large deviation method addresses the speed of convergence
of the amount of information leakage, it cannot directly ad-
dress the fixed amount of information leakage. Due to this
reason, people in the community of quantum information
are interested in the latter formulation rather than the large
deviation theory. Fortunately, the existing studies [4,5] inves-
tigated this trade-off problem in the security proof under the
coherent attack by using the second-order analysis while the
preceding studies [6–10] address only the first-order analysis
in the asymptotic regime for the security proofs. These studies
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[4,5] clarified that the order of the second order in the length
of the key generation is n

1
2 when n expresses the number of

quantum communications.
The second-order theory was initiated by Strassen [11] and

addresses the fixed amount of the error probability. Then,
the paper in [4] applied it to the asymptotic regime of the
security proof of QKD and the paper in [12] did it to the clas-
sical source coding and uniform random number generation.
However, this approach did not attract attention sufficiently
until the papers in [13,14] applied it to the classical channel
coding. After the papers in [13,14], the papers in [15,16]
applied this approach to other topics in quantum information.
In particular, the paper in [16] studied the secure random
number extraction and the data compression with quantum
side information in this framework. While the paper in [17]
studied the finite-length regime for the security proofs, the
paper in [5] established the bride between the finite-length and
second-order regimes for the security proofs. That is, it de-
rived the finite-length bound for key generation and recovered
the second-order asymptotics as its limit. Later, the papers in
[18,19] considered the second-order analysis for QKD under
the collective attack, but they assumed that the error of the
channel estimation is zero. Overall, the order of the second
order is n

1
2 when n is the order of the first order.

In this paper, using the second-order analysis under the
coherent attack by [4,5], we address the trade-off between the
loss of transmitted bits due to the disagreement of Alice’s and
Bob’s bases and the estimation error of the error rate in the
phase basis. Then, we optimize the ratio of the phase basis
depending on the observed error rates. As a result, we find
that the order of the second order in the length of the key
generation is n

3
4 , while n expresses the number of quantum

communications. Comparing the above existing studies, no
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preceding study derived the order n
3
4 as the second order. Fur-

ther, our second-order n
3
4 is much larger than the conventional

second order. This fact shows that our problem has a larger
effect by the second-order correction, i.e., the second-order
analysis in our setting is more important than the second-order
analysis in other problem settings. To clarify this importance,
we numerically plot the effect of the second-order correction.

The remaining part of this paper is organized as follows.
Section II states our problem setting. Section III shows the
concrete protocol for our analysis by combining the error
verification. Section IV states the optimum key generation
length and makes its numerical plot. Section V gives the detail
derivation for our obtained result.

II. FORMULATION

In BB84 protocol, for each transmission, the sender, Alice,
randomly chooses one of two bases, the bit basis {|0〉, |1〉}
and the phase basis {|+〉, |−〉}, where |±〉 := 1√

2
(|0〉 ± |1〉).

The receiver, Bob, measures each received state by choosing
one of these two bases. While these choices are done with
equal probability in the usual case, we assume that Alice and
Bob choose the bit basis with probability 1 − r0. After their
quantum communication, Alice and Bob find which quantum
transmission is done in the matched basis by exchanging their
basis choice via public communication. While they keep the
data in the matched basis, they exchange a part of them to
estimate the error rate. Here, we denote the ratio of data used
for estimation in the bit basis (the phase basis) by r1 (r2).

When the quantum channel is noisy, we need information
reconciliation and privacy amplification after quantum com-
munication. Privacy amplification can be done by applying
a typical type of hash function with calculation complexity
O(n log2 n), where n is the block length. Hence we can choose
the hash function depending on the error rate of the channel.
In contrast, for a practical setting for BB84 protocol, we often
fix our code with coding rate β for information reconciliation
because it is not so easy to construct an error correcting code
depending on the error rate of the channel. In this paper, we
adopt the following security criterion. We denote Alice’s and
Bob’s final keys by K and K̂ , respectively, and denote Eve’s
system by E . Also, we denote the public information and the
length of final keys by G and L. In this situation, the ideal state
ρ ideal

LGKK̂E
is given by using �σE |LG = (σE |L=l,G=g)l,g as follows:

ρ ideal
LGKK̂E (�σE |LG) :=

lm∑
l=0

∑
g

PLG(l, g)|l, g〉〈l, g|

⊗
2l∑

k=1

1

2l
|k, k〉〈k, k| ⊗ σE |L=l,G=g, (1)

where lm expresses the maximum length of final keys. There-
fore, our security criterion for our final state ρreal

LGKK̂E
is given

as the difference between the ideal state ρ ideal
LGKK̂E

and the real
state ρreal

LGKK̂E
as

C
(
ρreal

LGKK̂E

)
:= min

�σE

1

2

∥∥ρ ideal
LGKK̂E (�σE |LG) − ρreal

LGKK̂E

∥∥
1
. (2)

If �σE is fixed to the state �ρE |LG = (ρE |L=l,G=g)l,g, the above
value is the same as the criterion defined in [20]. When we
attach the error verification step, we can guarantee the cor-
rectness of our final keys without caring about the estimation
error of the error rate of the channel [21, Sec. VIII].

We denote the final states for the part generated by the bit
basis (the phase basis) by ρreal,1

LGKK̂E
(ρreal,2

LGKK̂E
). Now, we impose

our protocol to the condition under the coherent attack:

C
(
ρreal,1

LGKK̂E

)
� ε + o

(
1√
n

)
, C

(
ρreal,2

LGKK̂E

)
� ε + o

(
1√
n

)
.

(3)

III. DESCRIPTION OF OUR PROTOCOL

Before presenting our main result, we state our protocol.
This protocol uses modified Toeplitz matrices in privacy am-
plification. A randomized function fS with random seeds S is
called a modified Toeplitz matrix from F l1

2 to F l2
2 with l1 � l2

when S takes values in F l1−1
2 and fS is given as the matrix

[I, T (S)], where T (S) is the l2 × (l1 − l2) Toeplitz matrix,
whose components are defined as T (S)i, j = S j−i+l1 . In fact, a
modified Toeplitz matrix fS is an example of universal2 hash
functions [22, Appendix II]. Here, a randomized function fS

from X to Y with random seed S is called a universal2 hash
function when the condition

Pr[ fS (x) = fS (x′)] � 1

|Y| (4)

holds for any x �= x′ ∈ X [23].
Also, based on [4, Secs. II-B and III-B] and [24, Eq. (4)],

we define the small value

δ(p, ε, m1, m2) :=
√

p(1 − p)(m1 + m2)

m1m2
�−1(εdu), (5)

with ε = √
εdu. That is, δ(p, ε, m1, m2) is given as

δ(p, ε, m1, m2) =
√

p(1 − p)(m1 + m2)

m1m2
�−1(ε2). (6)

Then, our protocol is given as Protocol 1.

Protocol 1.

Quantum communication. Alice randomly chooses the bit
basis or the phase basis with the ratio 1 − r0 : r0 and sends n
qubits and Bob measures the n receiving qubits by choosing
the bit basis or the phase basis with the ratio 1 − r0 : r0. Here,
Alice chooses her bits subject to the uniform distribution.
After quantum communication, they exchange the choice of
bases via public channel. Then, they obtain N1 = n1 bits with
the bit basis and N2 = n2 bits with the phase basis.

Error estimation. They randomly choose check bits in
the bit basis (the phase basis) with ratio r1 (r2), and ob-
tain the estimate p1 (p2) by exchanging their information.
Then, they decide the sacrificed lengths m1(n1, p2) := (1 −
r1)n1{h[p2 + δ(p2, ε, (1 − r1)n1, r2n2)]} and m2(n2, p1) :=
(1 − r2)n2{h[p1 + δ(p1, ε, (1 − r2)n2, r1n1)]}.

Information reconciliation. They apply error correction
with the linear code C1 (C2) of the rate β in the remaining
bits in the bit basis (the phase basis). That is, Alice sends
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her syndrome of the linear code C1 (C2) of (1 − r1)n1 bits
with the bit basis [(1 − r2)n2 bits with the phase basis] to
Bob via public channel. Bob corrects his error. Then, Alice
(Bob) obtains β(1 − r1)n1 bits X1 (X̂1) with the bit basis and
β(1 − r2)n2 bits X2 (X̂2) with the phase basis.

Privacy amplification. Alice randomly chooses two mod-
ified Toeplitz matrices f1,S1 from β(1 − r1)n1 bits to β(1 −
r1)n1 − m1 bits and f2,S2 from β(1 − r2)n2 bits to β(1 −
r2)n1 − m2 bits, and sends the choices of S1 and S2 to Bob via
public channel. Then, Alice [Bob] obtains f1,S1 (X1) [ f1,S1 (X̂1)]
with the bit basis and f2,S2 (X2) [ f2,S2 (X̂2)] with the phase basis.

Error verification. Alice sets m3 to be log2 n. Alice
randomly chooses two modified Toeplitz matrices f3,S3

from β(1 − r1)n1 − m1 bits to m3 bits and f4,S4 from
β(1 − r2)n2 − m2 bits to m3 bits, and sends the choices
of S3, S4 and f3,S3 [ f1,S1 (X1)], f4,S4 [ f2,S2 (X2)] to Bob via

public channel. If the relation f3,S3 [ f1,S1 (X1)] =
f3,S3 [ f1,S1 (X̂1)] ( f4,S4 [ f2,S2 (X2)] = f4,S4 [ f2,S2 (X̂2)]) holds,
they keep their bits f1,S1 (X1) and f1,S1 (X̂1) [ f2,S2 (X2) and
f2,S2 (X̂2)] by discarding initial m3 bits of f1,S1 (X1) and
f1,S1 (X̂1) [ f2,S2 (X2) and f2,S2 (X̂2)]. Otherwise, they discard
their obtained keys, i.e., set the length L to be zero.

IV. OUR RESULT

To discuss the length of the generated keys, we employ
the second-order asymptotics for the generated key length [4,
Secs. II-B and III-B] and [5, Eq. (53)]. When the observed
error rates in the bit basis (the phase basis) are given as p1

(p2) and the error verification is passed, the averaged length
of generated keys can be approximated by

n(A(p1)(1 − r0)2(1 − r1) + A(p2)r2
0 (1 − r2)) − √

n

(
B(p2, ε)

√
(1 − r0)2(1 − r1)

[
(1 − r0)2(1 − r1) + r2

0r2
]

r2
0r2

+ B(p1, ε)

√
r2

0 (1 − r2)
[
r2

0 (1 − r2) + (1 − r0)2r1
]

(1 − r0)2r1

)
+ o(

√
n), (7)

where

A(p) := β − h(p), B(p, ε) := h′(p)
√

p(1 − p)�−1(ε2),
(8)

and �(x) := ∫ ∞
x

1√
2π

e−t2/2dt . Here, h(p) expresses the binary
entropy −p log2 p − (1 − p) log2(1 − p) and h′(p) expresses
its derivative.

When h(p2) � h(p1), the optimal choices of r0, r1, r2 are√
B(p2,ε)
2A(p2 ) n− 1

4 , 0, 1. The maximum averaged length of the gen-

erated keys is

nA(p2) − n
3
4 2

√
2A(p2)B(p2, ε) + O(n

1
2 )

= nA(p2)

(
1 − n− 1

4 2

√
2B(p2, ε)

A(p2)
+ O(n− 1

2 )

)
. (9)

After this optimization, the second order has the order
n

3
4 , which is a larger order than the second order in (7).

Figure 1 shows the optimum key generation rate with the
second-order correction when p2 = 0.05. Since the second-
order n

1
4 appears in the rate, its effect is not negligible up to

n = 1010. This phenomena is surprising in comparison with
the conventional second-order analysis because the second-
order n

1
2 appears in the rate in the conventional setting so that

its effect vanishes around n = 105. This fact shows that the
second-order correction is more important when we optimize
the ratios r0, r1, r2 in our modified BB84 protocol given as
Protocol 1 than the conventional case.

V. DERIVATION OF OUR EVALUATION

For our security analysis under the coherent attack, we
define the state

ρmid,i
LGKK̂E

:=
lm∑

l=0

∑
g

Pi
LG(l, g)|l, g〉〈l, g|

⊗
2l∑

k=1

1

2l
|k, k〉〈k, k| ⊗ ρ i

E |K=k,L=l,G=g (10)

4 5 6 7 8 9 10
log10n

0.05

0.10
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FIG. 1. Numerical plot of the key generation rate

A(p2)(1 − n− 1
4 2

√
2B(p2,ε)

A(p2 ) ) with p2 = 0.05 and β = 0.9[1 −
h(0.05)] = 0.642 243. The rate is dimensionless because it is given
as the length divided by n. The vertical axis expresses the rate and
the horizontal axis expresses the log10 n. The top black dotted line
expresses the first-order rate, i.e., A(0.05) = 0.355 846. The green
normal line expresses the case with ε = 10−2. The blue dashed line
expresses the case with ε = 10−4. The red dotted line expresses the
case with ε = 10−6. The black normal line expresses the case with
ε = 10−8. The green dashed line expresses the case with ε = 10−10.
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for i = 1, 2. As explained in Appendix A, using the property
(4), we can show

1

2

∥∥ρmid,i
LGKK̂E

− ρreal,i
LGKK̂E

∥∥
1
� 1

2m3
= 1

n
(11)

for i = 1, 2. Thus we expand the security criterion C(ρreal,i
LGKK̂E

)
as

C
(
ρreal,i

LGKK̂E

)
�1

2

∥∥ρ ideal,i
LGKK̂E

(�σE |LG) − ρmid,i
LGKK̂E

∥∥
1

+ min
�σE |LG

1

2

∥∥ρmid,i
LGKK̂E

− ρreal,i
LGKK̂E

∥∥
1

�min
�σE |LG

1

2

∥∥ρ ideal,i
LGKE (�σE |LG) − ρreal,i

LGKE

∥∥
1 + 1

n
. (12)

The papers in [4,5,25] considered the virtual decoding er-
ror probability in the dual basis, which is denoted by Pi

du for
i = 1, 2. As shown in Appendix B, we have

min
�σE |LG

1

2

∥∥ρ ideal,i
LGKE (�σE |LG) − ρreal,i

LGKE

∥∥
1 �

√
Pi

du. (13)

Now, we recall the result for the second-order analysis by [4,
Secs. II-B and III-B] and [24, Eq. (4)], which is the corrected
version of [5, Eq. (53)]. Due to the choices of m1 and m2, the
above-mentioned second-order analysis guarantees that

Pi
du � εdu + o

(
1√
n

)
(14)

under the coherent attack. Since ε2 = εdu, combining (12),
(13), and (14), we have

C
(
ρreal,i

LGKK̂E

)
�ε + o

(
1√
n

)
, (15)

which guarantees (3). That is, we find that Protocol 1 satisfies
the condition (3).

As shown in Appendix D, by using the definition of
δ(p, ε, m1, m2) given in (5) the length of the generated keys
is calculated as

β(1 − r1)n1 − m1(n1, p2) − m3

+ β(1 − r2)n2 − m2(n2, p1) − m3

= (1 − r1)[β − h(p2)]n1 + (1 − r2)[β − h(p1)]n2

− B(p2, ε)

√
[(1 − r1)n1 + r2n2](1 − r1)n1

r2n2

− B(p1, ε)

√
[(1 − r2)n2 + r1n1](1 − r2)n2

r1n1
+ o(

√
n).

(16)

Since n1 and n2 are the realizations of the random variables
N1 and N2, we consider the average with respect to these
variables. Since the averages of N1 and N2 are n(1 − r0)2 and
nr2

0 , we have

EN1,N2

[
β(1 − r1)N1 − m1(N1, p2) − m3

+ β(1 − r2)N2 − m2(N2, p1) − m3
]

= EN1,N2

[
(1 − r1)[β − h(p2)]N1 + (1 − r2)[β − h(p1)]N2

− (1 − r1)B(p2, ε)

√
[(1 − r1)N1 + r2N2](1 − r1)N1

r2N2

− (1 − r2)B(p1, ε)

√
[(1 − r2)N2 + r1N1](1 − r2)N2

r1N1

]

+ o(
√

n)

= (1 − r1)[β − h(p2)](1 − r0)2n + (1 − r2)[β − h(p1)]r2
0n

− B(p2, ε)

√[
(1 − r1)(1 − r0)2 + r2r2

0

]
(1 − r1)(1 − r0)2

r2r2
0

× √
n

− B(p1, ε)

√
[(1 − r2)r2

0 + r1(1 − r0)2](1 − r2)r2
0

r1(1 − r0)2

√
n

+ o(
√

n), (17)

which implies (7).
Next, we optimize the ratios r0, r1, r2 under the condition

h(p2) � h(p1). In this case, the optimal rate in the first-order
coefficient is [β − h(p2)]. To achieve this rate, the ratio r0

needs to approach to zero. We set r0 to be α1n− 1
4 κn with a

sequence κn. Then, the above value is calculated as

(1 − r1)A(p2)n − 2(1 − r1)A(p2)α1n
3
4 κn

− B(p2, ε)

√
(1 − r1)2

r2α
2
1

n
3
4 κ−1

n + O
(
n

1
2
(
1 + κ2

n

))
. (18)

Since coefficients of the orders n
3
4 κn and n

3
4 κ−1

n are negative,
the maximization of the above value is realized when the order
of the second term coincides with the order of the third term,
i.e., κn is a constant term. In the following, we choose κn to be
1. Then, the above value is calculated as

(1 − r1)A(p2)n −
(

2(1 − r1)A(p2)α1

+ B(p2, ε)
(1 − r1)

r1/2
2 α1

)
n3/4 + O(

√
n). (19)

To maximize the first-order coefficient, r1 needs to be zero.

The maximum of −(2A(p2)α1 + B(p2, ε) 1
r1/2

2 α1
) is realized

when r2 = 1 and α1 =
√

B(p2,ε)
2A(p2 ) . Under this choice, the above

value equals (9).
When r1 = 0, Alice and Bob cannot estimate the error

rate p1. However, they can check whether their final shared
keys are matched by using the error verification. That is,
once the error verification test passed, we can guarantee the
correctness of our final keys without caring about the esti-
mation error of the error rate of the channel [21, Sec. VIII].
The recent papers in [26, Appendix E] and [27, Sec. VI]
discussed the detail evaluation for the performance of the
error verification. In the realistic situation, we have a prior
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knowledge for the expected value of the error rate p1. Hence
we design our protocol by using this prior knowledge. If
an unexpected event does not happen, the error verification
passes. Therefore, the choice with r1 = 0 is allowed in our
protocol.

VI. DISCUSSION AND CONCLUSION

We have derived the optimum key generate rate when we
optimize the ratios of basis choices. Then, we clarified the
second-order effect under this optimization. While the second
order has the order n

1
2 under the conventional setting [4,5],

the second order has the order n
3
4 in our setting. That is, when

we focus on the generation rate, our second-order effect has
the order n− 1

4 , while the second-order effect in the conven-
tional case has the order n− 1

2 . Since the vanishing speed of
the second-order effect is quite slow in our setting, we need
to be careful for the effect by the second-order correction.
Overall, our result has clarified that the order of the second
order becomes large after the optimization for the ratio of the
choices of the bases. Since the second-order coefficient is a
negative value, the second-order effect is negative. That is, the
key generation can be improved by removing the second-order
effect. In other words, the key generation can be improved by
increasing the block length n. Further, we can expect similar
phenomena in a problem with a certain optimization. That is,
this result suggests a possibility that an optimization makes
the order of the second order larger than the original order of
the second order.

Our model assumes a single-photon source. Many reports
for implementation of quantum key distribution used weak
coherent sources. Unfortunately, our result cannot be applied
to such practical systems while decoy BB84 methods and the
continuous-variable method can be used for such practical
systems [28–34]. For practical use, we need to expand our
analysis to the above two methods. In our result, one basis is
used to generate the sifted keys and the other basis is used to
estimate the quantum channel. This idea can be generalized
to the following: we optimize the ratio among the pulses to
generate the sifted keys and the pulses to estimate the quantum
channel. Therefore, we need to apply the above optimization
to the above practical settings. An interesting future study

would be to clarify the order of the second order larger after
the above optimization in such practical settings.

Next, in order to improve the key generation rate, we
discuss how to increase the block length n. For this aim,
we discuss the implementation cost for our protocol in the
software part. The numerical plots in Fig. 1 show that the
block length n needs to be chosen as 1010 to attain the rate
A(p2). However, it does not require one to prepare an error
correcting code with such a long block length. It is sufficient
to prepare modified Toeplitz matrices with such a long block
length. This construction can be done only with the calcu-
lation complexity O(n log2 n) Reference [35, Appendices C
and D] explains how to implement the multiplication of the
Toeplitz matrix. Indeed, Ref. [35, Appendix E-A] reported
its actual implementation for key length 108 using a typical
personal computer equipped with a 64-bit CPU (Intel Core
i7) with 16 GByte memory, and using a publicly available
software library. Therefore, we can expect to implement the
privacy amplification with n = 1010 in a current technology.

Here, we should remark on the relation between our
method for privacy amplification and the method by [9,17,36].
Our method is based on the method by [4,5,25] and the
paper in [36] clarified what condition for hash functions is
essential for this method. To clarify the point, the paper in
[36] introduced the concept of dual universal2 hash func-
tions and explained the difference between dual universal2
hash functions and universal2 hash functions, which are used
in the method by [9,17,36]. While the privacy amplification
in our method [4,5,25] requires a surjectivity and linearity,
the privacy amplification in [9,17,36] works with a general
universal2 hash function, i.e., the linearity is not needed in
[9,17,36]. However, as explained in [35, Sec. III-C], our
method has a better robustness than the method by [9,17,36].
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APPENDIX A: PROOF OF (11)

The relation (11) is shown as follows:

1

2

∥∥ρmid,i
LGKK̂E

− ρreal,i
LGKK̂E

∥∥
1

= 1

2

∥∥∥∥∥
lm∑

l=0

∑
g

Pi
LG(l, g)|l, g〉〈l, g| ⊗

2l∑
k=1

1

2l

(
|k, k〉〈k, k| −

2l∑
k̂=1

Pi
K̂ |K,L=l (k̂|k)|k, k̂〉〈k, k̂|

)

⊗ ρ i
E |K=k,L=l,G=g

∥∥∥∥∥
1

= 1

2

lm∑
l=0

Pi
L(l )

∥∥∥∥∥
2l∑

k=1

1

2l

(
|k, k〉〈k, k| −

2l∑
k̂=1

Pi
K̂|K,L=l (k̂|k)|k, k̂〉〈k, k̂|

)∥∥∥∥∥
1

= Pi
K,K̂ (K̂ �= K )
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� Pr( fi,Si (Xi ) �= fi,Si (X̂i ), f2+i,S2+i [ fi,Si (Xi )] = f2+i,S2+i [ fi,Si (X̂i )])

= Pr( fi,Si (Xi ) �= fi,Si (X̂i )) Pr( f2+i,S2+i [ fi,Si (Xi )] = f2+i,S2+i [ fi,Si (X̂i )]| fi,Si (Xi ) �= fi,Si (X̂i ))

(a)
� Pr( fi,Si (Xi ) �= fi,Si (X̂i ))

1

2m3
� 1

2m3
= 1

n
, (A1)

where (a) follows from (11).

APPENDIX B: PROOF OF (13)

To show (13), we divide the public information G into
two parts G1 and G2. G1 is the public information except
for f2+i,S2+i [ f2+i,S2+i (Xi )] and G2 is the public information
f2+i,S2+i [ f2+i,S2+i (Xi )]. Also, we denote keys after privacy
amplification and its length by K∗ = (K1, K2) and L1, respec-
tively, where K1 is the initial m3 bits and K2 is the remaining
bits. Since K1 �→ f2+i(K1k2) is bijective for every k2, (K1, K2)
and (G2, K2) have a one-to-one relation. Now, we say that the
phase basis (the bit basis) is the dual basis when we focus
on the information on the bit basis (the phase basis). That is,
when i = 1 (i = 2), the dual basis is the phase basis (the bit
basis).

Now, we focus on the fidelity
F (ρ ideal,i

L1G1K∗E (�σE |L1G1 ), ρreal,i
L1G1K∗E ) between ρ ideal,i

L1G1K∗E (�σE |L1G1 )

and ρreal,i
L1G1K∗E . We define the virtual decoding error probability

Pi
du|L1=l in the dual basis for i = 1, 2 depending on L1 = l . As

shown in Appendix C, the relation

max
�σE |G1

F
(
ρ ideal,i

G1K∗E |L1=l (�σE |G1 ), ρreal,i
G1K∗E |L1=l

)
�

√
1 − Pi

du|L1=l (B1)

holds. Hence we have

max
�σE |L1G1

F
(
ρ ideal,i

L1G1K∗E (�σE |L1G1 ), ρreal,i
L1G1K∗E

)
=

∑
l

PL1 (l ) max
�σE |G1

F
(
ρ ideal,i

G1K∗E |L1=l (�σE |G1 ), ρreal,i
G1K∗E |L1=l

)
(a)
�

∑
l

PL1 (l )
√

1 − Pi
du|L1=l

(b)
�

√∑
l

PL1 (l )
(
1 − Pi

du|L1=l

) =
√

1 − Pi
du, (B2)

where (a) follows from (B1) and (b) follows from the concav-
ity of the function x �→ √

x. Thus we have

min
�σE |LG

1

2

∥∥ρ ideal,i
LGKE (�σE |LG) − ρreal,i

LGKE

∥∥
1

(a)
� min

�σE |L1G

1

2

∥∥ρ ideal,i
L1GK2E (�σE |L1G) − ρreal,i

L1GK2E

∥∥
1

(b)= min
�σE |L1G1G2

1

2

∥∥ρ ideal,i
L1G1G2K2E (�σE |L1G1G2 ) − ρreal,i

L1G1G2K2E

∥∥
1

� min
�σE |L1G1

1

2

∥∥ρ ideal,i
L1G1G2K2E (�σE |L1G1 ) − ρreal,i

L1G1G2K2E

∥∥
1

(c)= min
�σE |L1G1

1

2

∥∥ρ ideal,i
L1G1K1K2E (�σE |L1G1 ) − ρreal,i

L1G1K1K2E

∥∥
1

(d )
� min

�σE |L1G1

√
1 − F

(
ρ ideal,i

L1G1K1K2E (�σE |L1G1 ), ρreal,i
L1G1K1K2E

)2

=
√

1 − max
�σE |L1G1

F
(
ρ ideal,i

L1G1K1K2E (�σE |L1G1 ), ρreal,i
L1G1K1K2E

)2

(e)
�

√
1 − (

1 − Pi
du

) =
√

Pi
du, (B3)

where (a) follows from the fact that K2 is a part of K , (b)
follows from the relation G = (G1G2), (c) follows from the
one-to-one relation between (K1, K2) and (G2, K2), (d ) fol-
lows from the general inequality 1

2‖ρ − σ‖ �
√

1 − F (ρ, σ )2

[37, (6.106)], and (e) follows from (B2). Hence we
obtain (13).

APPENDIX C: PROOF OF (B1)

For simplicity, we show (B1) only for the case with i = 1.
Since L1 is fixed to l , we omit L1 = l in the following discus-
sion. For s, t ∈ F l

2, we define operators on the l-qubit system
as

W (s, t ) :=
( ∑

x′∈F l
2

|x′ + s〉〈x′|
)( ∑

x∈F l
2

(−1)t ·x|x〉〈x|
)

, (C1)

where t · x := ∑l
j=1 t jx j . Then, by using a distribution PXZ on

F2l
2 , a generalized Pauli channel �[PXZ ] is written as

�[PXZ ](ρ) :=
∑

(s,t )∈F2l
2

PXZ (s, t )W (s, t )ρW (s, t )†. (C2)

As shown in [25, Sec. V-B], the noisy channel can be
considered as a generalized Pauli channel by considering the
virtual application of discrete twirling. Also, the virtual ap-
plication of discrete twirling does not change the joint state
on Alice and Bob. Hence we can consider that Alice and Bob
made the virtual application of discrete twirling. That is, we
can consider that the obtained keys K∗ and K̂∗ are obtained
via quantum communication via a generalized Pauli channel.
In this case, as shown in [25, Appendix B], Eve’s state ρE |K∗=k

with public information G is given as

ρE |K∗=k =
∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|, (C3)

where

|PXZ , y, x〉 :=
∑
z∈F l

2

(−1)z·y√PZ|X (z|x)|x, z〉. (C4)

While the system E is composed of 2l qubits, the first l qubits
do not have off-diagonal elements. When the first and second
l qubits in E are written by E1 and E2, E1 can be considered
as a classical system.
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We have

ρK∗E =
∑
k∈F l

2

1

2l
|k〉〈k| ⊗ ρE |K∗=k . (C5)

Then,

max
σE

F (ρK∗E , ρK∗ ⊗ σE ) = max
σE

F

( ∑
k∈F l

2

1

2l
|k〉〈k| ⊗

∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|,
∑
k∈F l

2

1

2l
|k〉〈k| ⊗ σE1E2

)

= max
σE2 |E1=x

F

( ∑
k∈F l

2

1

2l
|k〉〈k| ⊗

∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|,
∑
k∈F l

2

1

2l
|k〉〈k| ⊗ σE1E2

)
. (C6)

Since

[I ⊗ I ⊗ W (0, t )]
∑
k∈F l

2

1

2l
|k〉〈k| ⊗

∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|[I ⊗ I ⊗ W (0, t )]†

=
∑
k∈F l

2

1

2l
|k〉〈k| ⊗ |PXZ , k, x〉〈PXZ , k, x| (C7)

for t ∈ F l
2, the minimizer for σE1E2 can be assumed to be invariant for I ⊗ W (0, t ). That is, σE1E2 has the form∑

x,z∈F l
2

QXZ (x, z)|x, z〉〈x, z|. Hence

max
σE1E2

F

( ∑
k∈F l

2

1

2l
|k〉〈k| ⊗

∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|,
∑
k∈F l

2

1

2l
|k〉〈k| ⊗ σE1E2

)

= max
σE1E2

∑
k∈F l

2

1

2l
F

( ∑
x∈F l

2

PX (x)|PXZ , k, x〉〈PXZ , k, x|, σE1E2

)

= max
QXZ

∑
k∈F l

2

1

2l

∑
x∈F l

2

√
PX (x)QX (x)F

(
|PXZ , k, x〉〈PXZ , k, x|,

∑
z∈l

2

QZ|X (z|x)|x, z〉〈x, z|
)

= max
QXZ

∑
k∈F l

2

1

2l

∑
x∈F l

2

√
PX (x)QX (x)

〈
PXZ , k, x

∣∣∣ ∑
z∈l

2

QZ|X (z|x)|x, z〉〈x, z|
∣∣∣PXZ , k, x

〉

= max
QXZ

∑
k∈F l

2

1

2l

∑
x∈F l

2

√
PX (x)QX (x)

∑
z∈F l

2

PZ|X=x(z)QZ|X=x(z)

= max
QX

∑
k∈F l

2

1

2l

∑
x∈F l

2

√
PX (x)QX (x) max

z∈F l
2

PZ|X=x(z)

= max
QX

∑
x∈F l

2

√
PX (x)QX (x) max

z∈F l
2

PZ|X=x(z)
(a)=

√∑
x∈F l

2

PX (x) max
z∈F l

2

PZ|X=x(z)

�
√

max
z∈F l

2

PZ (z) �
√

1 − P1
du, (C8)

where (a) follows from the following relation: let {αi} be general non-negative real numbers. We have the following minimization
for probability distribution qi:

max
qi

∑
i

√
αiqi =

√∑
i

αi, (C9)

where the maximum is attained when qi = αi∑
i′ αi′

. Therefore, we obtain (B1).
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APPENDIX D: PROOF OF (16)

Using the definition of δ(p, ε, m1, m2) given in (5), we calculate the length of the generated keys as follows:

β(1 − r1)n1 − m1(n1, p2) − m3 + β(1 − r2)n2 − m2(n2, p1) − m3

= β(1 − r1)n1 − (1 − r1)n1{h[p2 + δ(p2, ε, (1 − r1)n1, r2n2)]}
+ β(1 − r2)n2 − (1 − r2)n2{h[p1 + δ(p1, ε, (1 − r2)n2, r1n1)]} − 2 log2 n

= β(1 − r1)n1 − (1 − r1)n1

[
h(p2) + h′(p2)δ(p2, ε, (1 − r1)n1, r2n2) + o

(
1√
n

)]

+ β(1 − r2)n2 − (1 − r2)n2

[
h(p1) + h′(p1)δ(p1, ε, (1 − r2)n2, r1n1) + o

(
1√
n

)]
− 2 log2 n

= (1 − r1)[β − h(p2)]n1 + (1 − r2)[β − h(p1)]n2

− (1 − r1)h′(p2)δ(p2, ε, (1 − r1)n1, r2n2)n1 − (1 − r2)h′(p1)δ(p1, ε, (1 − r2)n2, r1n1)n2 + o(
√

n)

= (1 − r1)[β − h(p2)]n1 + (1 − r2)[β − h(p1)]n2

− B(p2, ε)

√
[(1 − r1)n1 + r2n2](1 − r1)n1

r2n2
− B(p1, ε)

√
[(1 − r2)n2 + r1n1](1 − r2)n2

r1n1
+ o(

√
n). (D1)

Hence we obtain (16).
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