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In order to quantify the relative performance of different test-bed quantum computing devices, it is useful to
benchmark them using a common protocol. While some benchmarks rely on the performance of random circuits
and are generic in nature, here we instead propose and implement a practical, application-based benchmark.
In particular, our protocol calculates the energy of the ground state in the single-particle subspace of a one-
dimensional (1D) Fermi Hubbard model, a problem which is efficient to solve classically. We provide a quantum
ansatz for the problem that is provably able to probe the full single-particle subspace for a general-length 1D
chain and scales efficiently in number of gates and measurements. Finally, we demonstrate and analyze the
benchmark performance on superconducting and ion-trap test-bed hardware from three hardware vendors and
with up to 24 qubits.
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I. INTRODUCTION

The performance of noisy intermediate-scale quantum
(NISQ) devices is impacted by a variety of noise sources [1],
which limit the sizes of quantum circuits that can be im-
plemented effectively. In order to characterize the generic
performance of NISQ devices, benchmarks based on random
circuits have been used widely [2–8]. These benchmarks,
including randomized benchmarking (RB), quantum volume
(QV), and algorithmic qubits (AQs), all rely on both the
notion that random circuits are useful stand-ins for appli-
cations of interest and the constructions of the underlying
circuits that allow them to be efficiently simulated classi-
cally [6,9]. However, the driving interest in NISQ devices is
their promise for improving solutions to practical problems
that are not efficient classically, including quantum chem-
istry [10,11], combinatorial optimization [12–16], quantum
simulation [17,18], and machine learning [19,20]. In order to
probe these use cases more directly, recent research has ex-
plored “application-specific” benchmarks that directly mimic
practical applications of interest [16,21–23]. We focus on the
variational quantum eigensolver (VQE), which has received
significant attention as a hybrid algorithm that has the po-
tential to improve on classical solutions to practical quantum
simulation and chemistry problems in the near term [24–30].

A NISQ application-specific benchmark benefits from sev-
eral key properties. It should be scalable in the sense that it
can be applied to arbitrarily sized quantum systems. For near-
term implementations, it is also desirable for the benchmark
to have low circuit depth. Similarly, it should require few
unique circuits and measurement settings, thus lessening the
required run time and cost on commercial test-bed devices.
The benchmark should be straightforward to implement effi-
ciently on a broad class of hardwares and architectures, which
generally favors constructions based on standard one- and
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two-qubit gates with nearest-neighbor connectivity. Finally,
the benchmark should discriminate between the performances
of currently available devices.

In this work, we introduce and demonstrate an efficient
application-based benchmark focused on finding low-energy
states of the Fermi-Hubbard model, in a spirit similar to
work from Dallaire-Demers et al. [21]. We construct a scal-
able quantum ansatz for the problem which uses relevant
symmetries in the problem to reduce the required quantum
resources [28,31–33]. This ansatz is similar to ones using
Givens rotations [34–36].

We show that the construction of the quantum circuit for
use in the benchmark has a gate count and optimization pa-
rameter count which scale linearly in the number of qubits.
Additionally, the benchmark also requires only a constant
number of noncommuting sets of measurements (indepen-
dent of problem size). Additionally, our ansatz assumes only
nearest-neighbor connectivity and uses a common gate set
consisting of controlled-NOT (CNOT) entangling gates and
parametrized single-qubit rotations. We also implement the
benchmark on nine different test-bed devices from three dif-
ferent providers to demonstrate how broadly approachable it
is for current hardware. In addition, one can employ compres-
sion techniques which reduce the qubit requirements [37,38],
although we do not apply this technique in our benchmark.

Any quantum computer benchmark reports the perfor-
mance of a composite of the quantum hardware and the
software required to program the hardware. For each device
we benchmark, QISKIT or Amazon BRAKET software submits
quantum circuit jobs to the respective quantum hardware. This
software also maps virtual qubits and gates in the quantum
circuits to specific physical qubits and gates on the device;
this mapping can be optimized by the software to highlight the
best-performing qubits and interactions. Therefore, the result-
ing performance is a consequence of both the hardware per-
formance and the automated selection done by the software.

The primary result of our benchmark is a single number
representing the largest size (twice the number of fermionic
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sites) of the Fermi-Hubbard calculation implemented in the
protocol that returns a result below an error threshold. This
output is similar in kind to the “algorithmic qubits” bench-
mark [9] in that it represents the maximum number of qubits in
the device that can be effectively utilized to solve a problem.
We note that QV and AQs both require that classical simula-
tion of the random circuits is possible for these benchmarks
and therefore are inherently not scalable unless restricted to
gates chosen from the Clifford group. In our benchmark,
we do not directly require classical simulation, although the
single-particle problem is exactly efficiently solvable, never-
theless. We discuss extending the benchmark to more particles
in Sec. A 3.

We begin in Sec. II with a description of our benchmark
and its required components. In Sec. III we show the results
of our benchmark run on IBM, IonQ, and Rigetti hardware.
We discuss our results and conclude in Sec. IV.

II. BENCHMARK

While benchmarks like RB and QV attempt to capture
generic performance based on random circuits constructed
within a rubric, it is also interesting to consider the perfor-
mance of quantum devices based on their ability to solve
practical and specific problems. We focus on the problem of
finding the ground state of a physically relevant Hamiltonian,
which is a common underlying task in NISQ applications. In
particular, we choose the Hamiltonian for the one-dimensional
(1D) Fermi-Hubbard model because of its simplicity and fa-
miliarity, as well as its symmetry properties, which lead to
simpler circuits. The general 1D Fermi-Hubbard model is
given by the equation

Ĥ = −t
∑

〈i, j〉,σ
(â†

i,σ â j,σ + â†
j,σ âi,σ ) + U

∑
i

â†
i,↑âi,↑â†

i,↓âi,↓,

(1)
where â†

i,σ (âi,σ ) is the creation (annihilation) operator asso-
ciated with site i and spin σ . We map this fermionic problem
to a qubit problem by way of the Jordan-Wigner mapping,
which directly maps spin orbitals to qubits while maintaining
the anticommutation rules of the original Hamiltonian [39].
This maps a problem defined for an L-site chain to N = 2L
qubits (since each site has two spins).

Solving for the ground state of the generic Fermi-Hubbard
Hamiltonian is computationally hard. A brute-force classical
solution for a two-dimensional (2D) grid-based Fermi-
Hubbard model requires diagonalization of a size 22nxny ×
22nxny matrix for nx and ny sites in the horizontal and verti-
cal directions [30]. The model is analytically solvable in the
limiting cases of U

t → 0 and U
t → ∞ and in the 1D case

using the Bethe ansatz, but general exact solutions are not
known [40–42]. Here, to further simplify the problem for cur-
rent NISQ hardware and to make a more intuitive benchmark,
we restrict our focus to the single-particle ground state. In this
regime, we can take U = 0 without loss of generality because,
for the single-particle ground state, there are no possible inter-
actions, and therefore, Eq. (1) is invariant to the choice of U .
This choice leads to a simpler form of the Hamiltonian that
can be solved exactly [43]. We further fix t = 1 and choose
open (nonperiodic) boundary conditions.

|0〉 X
A

|0〉
A

|0〉
A

|0〉

...
...

. . .
...

|0〉

FIG. 1. Circuit used to produce the single-particle ansatz. Each
A gate preserves the particle number and spin projection. A gates are
present on the top half of qubits, and measurements are taken on all
qubits.

Under these conditions, the analytic, single-particle
ground-state energy of the 1D Fermi Hubbard model is

Egs = 2 cos[Lπ/(L + 1)], (2)

where L is the number of sites in the chain. This simple
solution for the restricted problem gives an easy target for the
benchmark at any length L. Note that considering U = 0 was
only a tool to clarify the ideal exact solution; for the mea-
surement of energies on hardware, states which are not only
single particles are present due to noise. In order to capture
these errors in the benchmark results and tie the benchmark
implementation to the more general problem, we use the full
Hamiltonian with U = 2.

To test the ability of NISQ devices to find this target ground
state, we employ the VQE algorithm. This algorithm relies
on the fact that, for any parameterized quantum state ψ (θi ),
minimizing 〈ψ (θi )|H |ψ (θi)〉 over θi bounds the ground-state
energy. If the parametrization allows for the creation of ex-
actly the space of states allowed by the problem constraints,
e.g., a fixed particle number, then optimizing the energy in
this way solves for a ground state subject to those constraints
(there may be many due to degeneracy).

To implement the VQE algorithm we also need to spec-
ify an ansatz (sometimes also called a variational quantum
circuit). For resource efficiency, we choose an ansatz which
is built to enforce the symmetries in the Hamiltonian.
This kind of ansatz has been used in previous works re-
lated to symmetry-preserving circuits for chemical ground
states [28,31,33,42,44]. Our ansatz, depicted in Fig. 1, is built
from a single primitive gate, A, with a single parameter, θ ,
where A has the following computational-basis matrix repre-
sentation:

A(θ ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 sin θ cos θ 0

0 cos θ − sin θ 0

0 0 0 1

⎞
⎟⎟⎟⎠. (3)

Constructing an ansatz from this gate has several beneficial
features. First, an ansatz built from parameterized SWAP-type
gates naturally conserves the particle number. In addition,
when Eq. (1) is mapped to qubit operators using a spin-block-
based Jordan-Wigner mapping, our ansatz also preserves spin
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A(θ)
•

=

• Ry(θ)† Ry(θ) •

FIG. 2. Decomposition of the A gate in terms of elementary
single- and two-qubit gates. Ry(φ) = exp(−iφσy/2).

projection. The ansatz also maps real states to real states, and
we note that all ground states of our chosen problem are real
valued. Since these symmetries are encoded into the ansatz,
it fundamentally requires fewer quantum resources than a
more general ansatz, e.g., Refs. [25,45]. Since the problem of
interest is a single-particle ground state, we start with a single
excited qubit and construct a simple ladderlike circuit for an
arbitrary number of sites, as shown in Fig. 1. Intuitively, the
proposed circuit can swap the initial single-particle excitation
into any qubit, controlled by the parameters θi for qubit i.

In the standard gate set for quantum computing and for a
generic input state, each A gate can be decomposed into three
CNOT and two single-qubit gates, as shown in Fig. 2. However,
since we always begin the benchmark circuit in a fixed initial
state, we can make small simplifications to the general circuit,
as shown in Figs. 7 and 8 in the Appendix.

Based on these simplifications, the ansatz requires 2L − 3
CNOT gates and L − 1 parameters for L � 2, the number of
sites in the Fermi-Hubbard chain. Since the ansatz requires
only 1D nearest-neighbor connectivity, this gate count can
be achieved by any device with nearest-neighbor CNOT gates,
avoiding the overhead frequently required to map arbitrarily
connected circuits to a specific hardware connectivity. As a
result, the benchmark does not significantly benefit from the
arbitrary connectivity allowed in some quantum systems, e.g.,
trapped ions. This is an example of the idiosyncrasies intro-
duced by application-specific benchmarks that differentiate
them from random-circuit benchmarks. Finally, we prove in
Sec. A 2 that the ansatz can identify the single-particle ground
state for any L.

Figure 3 presents an example of the ansatz for L = 4.
Notably, the circuit fills only the top half of the quantum
register. This is a direct consequence of the single-particle
ground state necessarily having a spin-projection value of
sz = ±0.5. Because we have mapped the original fermionic
problem to qubit operators using the Jordan-Wigner mapping
and we have used a block-based spin encoding, the top half of
qubits encodes spin-up particles, while the remaining qubits
encode spin down. The two choices of sz are degenerate with
one another and are related by a simple bit-flip operation on all
qubits, so we need only generate one of these choices, and we
choose the sz = 0.5 state. Note that the general Hamiltonian
itself requires 2L qubits to express, even though gates are
present on only the first L qubits in our restricted problem.
In our benchmark, we still choose to measure all 2L qubits
to calculate the energy of the single-particle state, and this
choice means that measurement errors on the unused qubits
still impact the result. In principle we could allow devices
which employ midcircuit reset to reset the empty qubits prior
to measurement, but we do not use this in our benchmark.
Writing the protocol in this way preserves our ability to extend

FIG. 3. Example symmetry-based ansatz for L = 4, composed
of three simplified A gates and three parameters. While gates are
required on only the first L qubits, measurement of all N = 2L qubits
is performed to calculate the energy of the Hamiltonian defined on N
qubits.

the Hamiltonian to more than one particle without changing
the construction. We further discuss extension of the bench-
mark to more particles in Sec. A 3.

The problem Hamiltonian, once mapped to qubit operators,
can be written as a sum of Pauli strings. For instance, the
Hamiltonian of the simplest case at L = 2 is

Ĥ = IIII + 1
2 (IZIZ + ZIZI − IZYY − IZII − ZIII

−IZXX − YY ZI − IIIZ − IIZI − XXZI ).

For most devices, measuring any operators that contain X or
Y requires that we rotate the qubits prior to a Z-basis mea-
surement. We can group these operators into a small number
of tensor-product-basis (TPB) sets where all operators within
each set are diagonal in the same tensor product basis and can
be measured simultaneously [25]. In this example case, we
can group the Hamiltonian into five groups of terms given by

Ĥ = H0 + H1 + H2 + H3 + H4,

H0 = IIII + 1
2 (IZIZ + ZIZI − ZIII

− IZII − IIZI − IIIZ ),

H1 = − 1
2 IZXX,

H2 = − 1
2 IZYY,

H3 = − 1
2YY ZI,

H4 = − 1
2 XXZI.

Note that this grouping is not unique and many other choices
exist but do not change the resulting measurement of 〈Ĥ〉. In
Ref. [30], the authors showed that these Hamiltonian terms
can always be grouped into five TPB sets at most. As a
result, measuring the Hamiltonian requires five different mea-
surement settings that can each be implemented with only
single-qubit gates. Because the evaluation of the Hamiltonian
requires a fixed number of simple measurement settings and
the ansatz requires only linear scaling of both qubits and gates,
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FIG. 4. VQE convergence using the COBYLA optimizer over 20
steps on IBM Guadalupe hardware, using an initial point seeded from
an ideal simulation (blue diamonds) and using a fixed initial point of
[0,0] (orange circles).

the benchmark is both simple to implement at small sizes and
simple to scale to larger sizes.

The motivating application for our benchmark is the use of
the VQE hybrid algorithm in order to find minimum-energy
solutions on quantum hardware. To find the minimum ener-
gies, the algorithm optimizes a parameterized circuit (creating
a parameterized state). While the VQE algorithm can, in
principle, start with any seed parameters, we can assist it
by preoptimizing the parameters classically. In the case of
the hardware devices tested, we do not actually perform the
hybrid algorithm at all. Instead, we evaluate only the energy
of the preoptimized parameters. This choice reduces the com-
putational (and monetary) cost of the benchmark, which is
only formally dependent on the accuracy of the energy of
the optimized parameters. Through comparison of the energy
associated with the preoptimized parameters with the ideal
result, we can show that the preoptimization does not appre-
ciably impact the benchmark results: the maximum-energy
difference we find in this comparison is 2.946 × 10−10 at
(L = 12). This demonstrates that the VQE algorithm itself
along with classical optimization is able to very accurately
find the desired minimal-energy states and does not limit the
benchmark results we report.

In Fig. 4 we show an example of the convergence behavior
of the full VQE algorithm over 20 steps using IBM Guadalupe
for the three-site Fermi Hubbard benchmark. We plot the
convergence for two different sets of initial parameters: one
with initial parameters arbitrarily fixed to zero and one with
the classically preoptimized parameters. The use of the ideal
parameters assists by improving the minimum number of
steps before convergence of the optimizer but is not neces-
sary. This simple case with only two parameters indicates the
expected result that the VQE algorithm is able to converge on
hardware eventually without the need of any specific initial
point derived from simulation.

The issue of how to optimize hybrid performance with
respect to splitting resources between VQE evaluations and
classical preoptimization for large application instances is
an interesting and important problem. Performing poorly at
this optimization could impact very large instances of our
Fermi length benchmark and is an example of how the bench-
mark evaluates both hardware and software aspects of NISQ

TABLE I. Table of devices used in our benchmark along with
their maximum usable qubits, quantum volume (where available),
and the result of our benchmark. L∗ lists the maximum number
of qubits (twice the chain length) used which pass the benchmark
for both the raw (R) and mitigated (M) results. An asterisk (*)
denotes benchmarks which were terminated because they exceeded
the threshold error score; otherwise, the benchmark was run up to the
maximum size allowed by each device or postprocessing. We used a
relaxed-value score of 10 as our error-score threshold for passing the
benchmark as described in the text.

Device Maximum Qubits log(QV) L∗ (R) L∗ (M)

Jakarta 7 4 0* 6
Casablanca 7 5 0* 6
Guadalupe 16 5 0* 10*
Toronto 27 5 0* 6*
Mumbai 27 7 0* 16*
Montreal 27 7 0* 24
Brooklyn 65 5 0* 20*
IonQ 11 5* 5*
Rigetti Aspen-9 32 0* 0*

devices; however, the instances here are too small for the
difficulty of classical optimization to have an impact.

III. RESULTS

We ran the benchmark described in the previous section on
nine devices provided by IBM, Rigetti Computing, and IonQ.
We accessed private IBM devices (seven total) through IBM
QISKIT software [46]. We accessed IonQ and Rigetti devices
through Amazon Web Services’ (AWS) BRAKET software.

For each choice of chain length, we seed the hardware
evaluations by first running a simulator of the VQE algorithm
using the high-performance QULACS software package [47].
These simulations provide optimal parameters θi for each
choice of L that we use to initialize the same problem on the
quantum devices. For all hardware, we evaluate the energy at
the fixed seed-parameter values in order to reduce cost. The
benchmark evaluation relies only on the energy evaluation of
this single point for each L. The QULACS classical simulation
is not a required step for the actual VQE algorithm; in princi-
ple, the same results can be obtained by implementing more
steps of the hybrid algorithm on the quantum hardware at a
greater cost to the quantum devices.

For each device, we run the benchmark for increasing
chain lengths starting with L = 2 and terminating when the
benchmark performance is severely degraded or when the
maximum system size is reached. For all hardware devices,
we fixed the number of repetitions (shots) to 8192. In Table I
we capture the qubit number, the quantum volume reported
elsewhere in the literature, and our benchmark result for each
device. Of the nine devices we benchmarked, three were able
to run to their full physical limit, while the remaining six
were terminated early (note that the protocol requires an even
number of qubits).

We show the raw energies computed using each device in
Fig. 5. In the left panel, we show the raw results, and we
observe that the superconducting devices typically have larger
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FIG. 5. Left: Raw data of the single-particle energy as a function of Fermi-Hubbard chain length (N = 2L). In all cases, error bars are
smaller than marker size. Right: Mitigated data of the single-particle energy after SPAM error mitigation. Data points are horizontally offset
slightly from their integer values to reduce clutter.

errors than the IonQ device, which performs well through
L = 5 (with the exception of L = 4). Most devices visually
follow the trend of the ideal energy at short chain lengths
before crossing a threshold and drifting farther away from
the exact energy. This makes the benchmark easy to evaluate
qualitatively. However, either due to noise in the hardware
or differences in software optimization, the threshold can be
difficult to identify exactly, e.g., for the IBM Brooklyn device,
which performs better at length 9 than at length 8. For this
reason we establish in the following paragraphs a criterion
that condenses the benchmark results to a single number for
report.

We find that the explanatory power of the benchmark re-
sults benefits from the option of including standardized state
preparation and measurement (SPAM) error mitigation in the
protocol. We describe our approach to SPAM mitigation in
Sec. A 4. SPAM mitigation leads to significantly better energy
estimation across most devices tested. The results of applying
the SPAM mitigation are shown in the right panel of Fig. 5,
and here the hardware results track the ideal results more
closely than in the left panel, although significant errors are
still present. When characterizing the performance of a device
with our benchmark, we consider the performance obtained
after SPAM mitigation to be the primary result. However,
we note that this mitigation technique can require significant
classical computing resources for large problem sizes. For this
reason, we include only benchmark results up to 24 qubits. We
also present the raw (unmitigated) results in both Fig. 5 and
Table I for comparison.

In order to distill the benchmark to a single number, we
choose a benchmark score inspired by the accuracy require-
ment in the LINPACK benchmark [48]. We define our error
score by

Es =
√

2M × |〈E〉 − Egs|/L, (4)

where 〈E〉 is the measured energy from the quantum device
after SPAM mitigation, Egs is the known classical result, L is
the chain length, and M is the number of shots in each mea-
surement. M plays the role of the factor representing machine
precision in the LINPACK benchmark as here it controls the
accuracy with which we can measure energy, up to statistical
variance.

Consistent with the intuition for shot noise of a single
measurement, we find empirically from simulations that the
standard error of the measured energy scales as

√
2M for

M > 100, and therefore, the prefactor in Eq. (4) effectively
removes the error score’s dependence on M when M > 100.
To avoid small sample effects, we propose that our bench-
mark always be implemented with M > 100, and we note that
comparisons are simplest when M is fixed. In practice, IBM
hardware limited M � 8192, and so we fix M = 8192 for all
devices for the benchmark results we present in this paper.

When we run our benchmark for increasing L, we note
the first length occurrence L∗ + 1 for which each device has
an error score greater than 10, and we report that the device
passes the benchmark up to a length L∗. The threshold value
of 10 was chosen arbitrarily, although it is consistent with
bounding the LINPACK requirement that the error score should
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FIG. 6. Error score of each device, grouped by chain length (a lower error score indicates a better result). A relaxed error threshold (blue
dashed line) is shown at a value of 10, and an aggressive error threshold (black dashed line) is shown at a value of 1. For each device, when
the first violation of the chosen threshold is found, the device is said to have failed the benchmark. Symbols above each bar are for easy
identification of their associated bar along with the accompanying legend.

have O(1). It may be useful to consider other, tighter threshold
values in the future; however, this alteration of the benchmark
should be reported clearly for the sake of fair comparison.
While we choose Eq. (4) to be defined in terms of the clas-
sically known solution, this is not necessarily required. For a
ground-state energy calculation where the finite-size solutions
are known to monotonically approach the asymptotic value,
one could instead define a threshold requirement based on the
monotonically decreasing behavior of the experimentally de-
termined energy, even without knowing the exact asymptotic
target value.

We capture the error score for each device and chain length
in Fig. 6. This rescaling of the data presented in Fig. 5 helps
to visualize when each device exceeds our chosen threshold.
While not all devices increase in error monotonically, Fig. 6
shows that they nevertheless slowly trend toward and past the
error-threshold line. Notably, most devices are able to pass the
suggested score threshold of 10, but very few approach a score
of 1 after more than a handful of chain lengths. This marks a
significant goal for improvement for current NISQ devices.

IBM’s Montreal device, which has one of the largest quan-
tum volumes of all devices we tested, also performs very
well with respect to our score threshold, based on a combi-
nation of large qubit number and low noise. The Montreal
device results improved significantly upon applying SPAM
mitigation, but others, e.g., IonQ, improve less noticeably.
This is expected as the IonQ device typically has significantly
smaller SPAM errors than the superconducting devices. See
SI A 4 for further details regarding SPAM mitigation. We
also wish to highlight the smaller IBM devices, Jakarta and
Casablanca, which perform well within this benchmark up
to their maximum allowed size. We suggest that the lacking
performance of the Rigetti Aspen-9 device is due to errors
which are not corrected through simple SPAM mitigation
techniques and would require more rigorous error-mitigation
strategies.

IV. CONCLUSION

We have proposed and demonstrated an application-
specific quantum benchmark that is well suited for current and
near-term NISQ devices. We have shown that our proposed
benchmark scales in small increments of the required quantum
resources, giving it the ability to discriminate devices finely.
The choice to restrict the problem to a single-particle subspace
of the 1D Fermi Hubbard model also allows us to exactly solve
for the energy at arbitrary L, making the benchmark easy to
verify classically at any size.

We applied a well-conditioned symmetry-based ansatz and
SPAM error-mitigation strategy in order to improve the results
of the energy estimation. This ansatz is hardware agnostic and
easily defined for arbitrary L, and we showed analytically that
it is always able to find the single-particle ground state of
the supplied 1D Fermi Hubbard model. The primary result of
our chosen benchmark clearly discriminates the performance
of available quantum test beds in a way that tracks closely,
but not exactly, with the more abstract “algorithmic qubits”
metric. Analyses of the impact of SPAM error mitigation and
the scaling of the ansatz performance as a function of length
provided some clarity about the primary limitations of the
devices. The result is a benchmark that is simple to implement
and analyze and yet provides good quantitative discrimination
between current-generation devices for a problem similar to a
commercially relevant NISQ application.
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A(θ0) =

Ry(θ0)† X Ry(θ0) •

FIG. 7. Since the initial state is fixed, we can simplify the first A
gate (the topmost one) in the general circuit shown in Fig. 1.
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APPENDIX

1. A gate simplification

Our efficient ansatz is constructed from a single X gate
and many primitive A gates. Due to the construction of the
circuit, we can always simplify the general decomposition
of the A gate presented in the main text without changing
the overall calculation implemented by the circuit. Since the
circuit always begins with an X gate on the first qubit, we can
simplify the first A gate as shown in Fig. 7. We can simplify
all other A gates as shown in Fig. 8. These simplifications are
significant improvements for current NISQ devices, which are
heavily limited by two-qubit gate error rates.

2. Exact ansatz

In the main text we used an ansatz that is composed of
particle-conserving gates that can be decomposed into two or
fewer CNOT gates for the fixed input state we have considered.
It is straightforward to show that the ansatz described in the
main text is always able to produce any single-particle state
and, consequently, that optimization over the parameters of
the ansatz can always find the single-particle ground-state
energy. Consider the first application of an A gate onto the
fixed input state defined on n qubits. This first interaction
results in the state (up to a global phase)

A0,1|10 · · · 0〉 = sin θ0|10 · · · 0〉 + cos θ0|01 · · · 0〉 ≡ |s0〉,
where Ai,i+1 is the gate acting on qubits i, i + 1 and has corre-
sponding parameter θi. The second A gate has a similar action
and produces the state

A1,2|s0〉 = sin θ0|100 · · · 0〉
+ cos θ0 sin θ1|010 · · · 0〉
+ cos θ0 cos θ1|001 · · · 0〉.

For the general case of our ansatz on n qubits, we can
compactly write the single-particle (in lexicographical order)

A(θn)
•

=

Ry(θn)† Ry(θn) •

FIG. 8. Simplification of all A (n > 0) gates in the general circuit
except for the first gate, which follows the simplification shown in
Fig. 7.

coefficients as

c0 = sin θ0,

c1 = cos θ0 sin θ1,

c2 = cos θ0 cos θ1 sin θ2,

...

cn−1 = cos θ0 · · · cos θn−1 sin θn,

cn = cos θ0 · · · cos θn−1 cos θn

for n � 2. We can see that repeated applications of the ladder
of A gates in the ansatz leads to a state whose coefficients have
the form of the coordinates of an n-dimensional hypersphere.
Since this construction can create any valid hyperspherical
coordinates, the ansatz is able to specify any superposition of
single-particle states with real coefficients. This set of states
is isomorphic to the target (restricted) subspace for our Fermi-
Hubbard problem, so we guarantee that a correct choice of θi

is capable of creating the ground state of the subspace. Assum-
ing the optimizer software works in an idealized way, it will
be capable of finding this ground state and the corresponding
minimum energy.

3. Benchmark extensions

We have chosen to restrict the Fermi length bench-
mark to the single-particle and spin-up symmetry subspace.
The minimum-energy single-particle state may not be the
minimum energy over all particle numbers. Note that our
SWAP-like ansatz and fixed initial state ensure that the ansatz
cannot generate any states other than single-particle states.
Therefore, generation of multiparticle states occurs only due
to quantum errors, and, in their absence, optimizing over
the allowed parameters optimizes over only the restricted
subspace. This restricted problem requires fewer quantum
resources and has a simple closed-form solution that we use
to simplify the benchmark evaluation. For the one-particle
subspace we require only that the top half of the qubits is
subjected to gates. This simplification is allowed because the
one-particle subspace is made up of two degenerate parts cor-
responding to spin up and spin down, and either one requires
only half of the qubits in our chosen representation.

In the fully general case, we can segregate any Hamil-
tonian which has a well-defined particle-number symmetry
into spaces based on these particle numbers. The size of the
segregated subspaces naturally obeys the form of

∑n
m=0( n

m ) =
2n. Therefore, the full Hilbert space of size 2n is broken up
into sets of size ( n

m ) for m � n particles. It is easy to see
that the single-particle subspace is linear in the system size
( n

1 ) = O(n), while other subspaces grow much faster. Notably,
the largest subspace is given by the so-called half-filling case
m = n/2, which grows exponentially in n.

The subspace size gives us a rough characterization of the
classical computational complexity if the solution method is
assumed to be brute-force matrix diagonalization within each
subspace. Using sparse methods to diagonalize a size 2n × 2n

matrix within a smaller block of size O(nm) takes classical
resources (time and memory) that scale polynomially in n for
a fixed particle-number subspace m and exponentially as m
increases, for example, if we fix m = n/2.
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For each choice of subspace, we can also quantify the
minimum number of parameters required to fully specify a
quantum state within this space. The single-particle subspace
can be written as a linear combination of single-particle states
defined by

|s〉 = α|10 · · · 0〉 + β|01 · · · 0〉 + · · · + ζ |00 · · · 1〉.
Therefore, any real state of the above form can be fully speci-
fied with a minimal parameter count of ( n

m ) − 1 = ( n
1 ) − 1 =

n − 1 real parameters (minus one due to the normalization
requirement). We are not aware of a quantum ansatz which is
capable of matching this minimal parameter count in general.
However, an ansatz for less trivial spaces remains an active
area of research. Further symmetries of a given Hamiltonian
may allow further reductions of these parameter counts, in
principle.

If we extend the benchmark to the two-particle case and
a 2D lattice structure, there are now two nondegenerate spin
subspaces: one where both particles have the same spin (e.g.,
sz = ±1) and one where they have opposite spins (sz = 0). In
the sz = 1 case, we still require gates on only the top half of
the qubits, but the sz = 0 case requires gates on all qubits.

Results from previous investigations of small problems in
quantum chemistry show that a similar ansatz performs well in
this two-particle subspace [28,32]. Therefore, we can extend
the protocol used for the benchmark to the evaluation of sym-
metry subspaces for which an exact classical solution is not
necessarily known. Because we want to make this extension
straightforward, we insist on using the entire space and not
just the spin-up subspace in our benchmark protocol. The
cost of this is that the benchmark requires twice as many
qubits as are truly necessary to solve the restricted problem.
This choice is typical of the trade-off between simplification
and application specificity that must be negotiated for any
benchmark.

4. SPAM mitigation

In order to mitigate errors that occur during state prepara-
tion and measurement, we employ a simple construction that
maps ideal, intended states to noisy output states using the
equation

Mi jxk = yk, (A1)

where Mi j is a scattering matrix relating the ideal input states
xk to their measured noisy output states yk [49]. Constructing
this scattering matrix without restrictions would require mea-
suring independently all 2N input bit strings for an N-qubit
system. This is possible, and very effective, for small sys-
tems but becomes untenable rapidly as the number of qubits
exceeds 10. However, we can reduce this overhead by as-
suming that SPAM errors for each qubit are uncorrelated with
other qubits. Under this assumption, we need to prepare only
two measurement circuits, the all-zero state and the all-one
state, independent of the number of qubits in the system. The
results allow us to populate N sets of size 2 × 2 scattering
matrices Mk . We then construct the full scattering matrix by
Mi j = M1

⊗
M2

⊗ · · · MN .
For SPAM mitigation, we intend to relate the noisy output

states back to ideal input states; therefore, we need to calculate
M−1

i j (or its psuedoinverse in the case of singular values). For
the factorized case described above this inversion is not a
challenging task. However, actually carrying out the M−1

i j yk

operation is a large calculation in our implementation, even
though we avoid explicitly constructing the full 2N × 2N ma-
trix. This calculation is the current bottleneck in our classical
postprocessing and limits SPAM mitigation to problems with
fewer than 26 qubits.

To further illustrate the impact of the technique, we show
in Fig. 9 the energy correction (difference) between our raw
results and the SPAM mitigated results. Figure 9 captures
some information about the nature of the errors on the devices;

FIG. 9. Energy differences between each device’s raw results and its SPAM-mitigated results. This difference characterizes the magnitude
of errors which arise due to uncorrelated SPAM errors. Large, positive differences indicate that the mitigation results in a largely improved
energy measurement after mitigation. Not all devices are present at each chain length due to varying physical system size. Symbols above each
bar are for easy identification of their associated bar along with the accompanying legend.

042602-8



CLASSICALLY EFFICIENT QUANTUM SCALABLE … PHYSICAL REVIEW A 105, 042602 (2022)

TABLE II. List of benchmark devices along with some of their specifications taken from their respective cloud service providers. Gate
errors are measured from standard randomized benchmarking techniques and are averaged over all qubits (or pairs for 2-QB gates). All
specifications other than qubit number may drift over time, and therefore, these values are only a snapshot, taken on 20 August 2021, which
is near the same date as our Fermi-Hubbard-based benchmark. A layout of “HH” denotes a heavy-hexagonal topology and is the preferred
topology of all current IBM Quantum (IBMQ) devices. We use standard abbreviations for qubit (QB) and readout (RO). In addition, T1 and
T2 describe decoherence and dephasing time, respectively.

Jakarta Casablanca Guadalupe Toronto Mumbai Montreal Brooklyn IonQ Aspen-9

Qubits 7 7 16 27 27 27 65 11 32
1-QB gate error (%) 0.03 0.03 0.04 0.05 0.03 0.03 0.04 0.27 1.12
2-QB gate error (%) 0.98 0.97 1.02 1.06 0.83 1.31 1.09 3.04 11.87
Average RO error (%) 2.58 2.07 2.08 3.77 3.96 1.96 2.37 0.02 11.32
Average T1 (μs) 113.88 100.26 97.71 105.99 115.04 106.16 65.79 10000 29.81
Average T2 (μs) 34.23 115.76 107.87 117.30 114.47 78.96 79.21 0.2 18.09
Service IBMQ IBMQ IBMQ IBMQ IBMQ IBMQ IBMQ AWS AWS
Layout HH HH HH HH HH HH HH Linear Ring
Software QISKIT QISKIT QISKIT QISKIT QISKIT QISKIT QISKIT PENNYLANE PENNYLANE

for example, the IonQ device corrections are much smaller
than those for the Rigetti device, and this is consistent with the
difference in self-reported measurement error rates between
the two devices. We also see that there is a significant com-
ponent of the error in each case that our mitigation does not
remove. These include gate errors and SPAM errors due to
correlating or drifting conditions.

5. Experimental details

In our experimental runs we accessed nine different quan-
tum devices from three different vendors through two different
online, cloud-based services. Specifications for each IBM
device can be found in Ref. [50]. However, we note that
some specifications of the devices change from day to day as
calibrations are updated unpredictably. Therefore, we include
here a summary of specifications from each device obtained
during the time period of our experiments. Table II shows a
summary of device specifications for each tested device.

For brevity and to follow the reporting of IBM Quantum,
we list average qubit specifications, individual qubit specifica-
tions would require an exceedingly large number of statistics
to report and would still not represent the variability over
time. We note that the IonQ device is capable of directly
entangling any pair of ions in its chain, without any associated
overhead of swap operations. This all-to-all connectivity does
not manifest as an advantage in our benchmark because we
utilize only nearest-neighbor connectivity, which all tested
devices support. In principle, all-to-all connectivity should
provide an advantage for related Fermi-Hubbard simulations,
but attempting to penalize nearest-neighbor connectivity for
this specific simulation would complicate the benchmark arti-
ficially.

For each device we utilized the packaged VQE algorithm
in each code base with our custom ansatz, discussed in the
main text. In all cases, we fix the number of shots to 8192, and

the required evaluations in order to measure 〈Ĥ〉 is five; there-
fore, each quantum hardware is queried 8192 × 5 = 40 960
times for each choice of L (independent of L). Note that
one can measure 〈H〉 with only single-qubit measurements
as H is factorized into five tensored product basis sets and
does not generally require multiqubit measurements [25]. In
Fig. 10 we provide an example layout of a typical IBM chip
layout configuration (Ibmq Guadalupe) and the shape of the
heavy-hexagonal layout. Also included in Fig. 10 is the ring
layout of Rigetti’s Aspen-9 chip showing their connected ring
configuration.

(a)

(b)

FIG. 10. Layout of two example quantum devices. (a) Layout
connectivity of the IBMQ Guadalupe device in a heavy hexagonal
configuration. Other IBM devices follow a similar layout but vary in
the number of qubits. (b) Layout of the Rigetti Aspen-9 device in a
connected ring layout.
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