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Bayesian quantum thermometry based on thermodynamic length
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In this work we propose a theory of temperature estimation of quantum systems, which is applicable in the
regime of non-negligible prior temperature uncertainty and limited measurement data. In this regime the problem
of establishing a well-defined measure of estimation precision becomes nontrivial. Furthermore, the construction
of a suitable criterion for optimal measurement design must be reexamined to account for the prior uncertainty.
We propose a fully Bayesian approach to temperature estimation based on the concept of thermodynamic length,
which solves both these problems. As an illustration of this framework, we consider thermal spin-1/2 particles
and investigate the fundamental difference between two cases: on the one hand, when the spins are probing the
temperature of a heat reservoir and, on the other, when the spins themselves constitute the sample.
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I. INTRODUCTION

Measuring the temperature of a physical system is a fun-
damental task in science and technology. At the micro- and
nanoscale in particular, highly precise temperature measure-
ments are essential for a large number of current experiments.
Examples include real-time monitoring of temperature pro-
files within living organisms, e.g., utilizing color centers
in nanodiamonds [1–3], the preparation of ultracold atoms
in optical lattices, phase diagrams and exploring transport
phenomena [4–10], and studies of quantum thermodynamic
phenomena in microelectronic devices [11–15]. Tempera-
ture is not a directly measurable property of a system,
and in contrast to, e.g., interferometry, phase estimation, or
electromagnetic-field sensing [16,17], thermometry is fur-
ther complicated by the fact that temperature is also not a
Hamiltonian-encoded parameter. Rather, the temperature of a
system is an entropic quantity which must be estimated indi-
rectly from the statistical behavior of a variable which can be
observed directly. The purpose of the theory of quantum ther-
mometry is both to guide the design of optimal measurement
processes, i.e., building good thermometers in the quantum
regime, and to optimally infer from the acquired measurement
data the underlying temperature [18,19].

The majority of previous works on quantum thermometric
theory, with the notable exception of the recent studies in
[20–22], have focused on local point estimation [23], termed
for short the local paradigm, in which measurements are
designed to detect small variations around a known temper-
ature value [18,19]. Within the local paradigm, the expected
precision of a temperature estimate is typically quantified
by the frequentist mean-square error, with the associated
signal-to-noise ratio providing a meaningful notion of rel-
ative error [24]. Given that certain conditions are satisfied,
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e.g., that the temperature estimate is unbiased, the frequentist
mean-square error is lower bounded, as well as typically well
approximated, by the so-called Cramér-Rao bound [25–27].
Furthermore, optimal measurements applicable in the asymp-
totic (large-data-set) regime can be identified via the local
optimization of the Cramér-Rao bound.

The motivation for constructing a theory applicable beyond
the local paradigm is twofold: (i) It is typically an unjustified
assumption that the temperature to be estimated is known with
sufficient precision a priori to justify working within the local
paradigm and (ii) the optimal measurement protocol gener-
ally depends on the prior temperature information and cannot
be identified via an optimization of the asymptotic Cramér-
Rao bound. Avoiding the restrictions of the local paradigm,
i.e., providing a general approach to quantifying thermomet-
ric performance, and designing optimal measurements, under
conditions of non-negligible prior uncertainty, requires a fully
Bayesian framework [28,29].

In this work we develop a theory of Bayesian quantum
thermometry, applicable for any amount of prior informa-
tion, which is based on the concept of a thermodynamic
length [30–33]. The basic idea is that a meaningful measure
of thermometric precision should be based on the ability
to distinguish states at different temperatures, i.e., colder
from hotter, and should be independent of the particular
parametrization of the states, e.g., temperature. This can be
naturally achieved by introducing a distance function between
the thermal states of the sample system considered. Such a
distance is exactly the thermodynamic length between thermal
states [30–33] and we argue that this choice is singled out by
the requirement that a well-defined distance should respect the
invariance properties of the sample. An interesting implication
of the proposed framework is that any meaningful definition
of relative error must be given with respect to the specific
sample system considered. This feature is illustrated in Fig. 1.
In particular, we find that the standard noise-to-signal ratio,
defined in terms of the frequentist mean-square error, is only

2469-9926/2022/105(4)/042601(11) 042601-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3076-5162
https://orcid.org/0000-0002-0398-9200
https://orcid.org/0000-0002-4658-0632
https://orcid.org/0000-0003-3859-0272
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.042601&domain=pdf&date_stamp=2022-04-01
https://doi.org/10.1103/PhysRevA.105.042601


MATHIAS R. JØRGENSEN et al. PHYSICAL REVIEW A 105, 042601 (2022)

FIG. 1. Illustration of a hypothetical experiment. A collection of
spin impurities (scenario A) interacts with a thermal environment
(scenario B) at temperature θ ; the spin impurities are measured via an
optical setup yielding measurement data x. An essential message of
this paper is that the sample system defines the appropriate distance
function and that the distance is the basis of the estimation theory.
To illustrate this point we consider two scenarios. In scenario A the
spin impurities themselves constitute the sample system of interest,
e.g., we are interested in the thermometry of the spin degrees of
freedom themselves [8,34]; in this case we obtain a metric hA

L and
a distance DA. In scenario B the spin impurities are employed as
equilibrium thermometers of the thermal environment [10,35]; in this
case we obtain a different metric hB

L and a different distance DB. As
a consequence, the relevant figure of merit, as well as the associated
optimal protocol, will be different in each sensing process.

recovered as a meaningful relative error, within the local
regime, when the considered sample system can be effectively
modeled as an ideal heat bath.

For the sake of illustration, we consider a thermometry
setting that involves noninteracting spin-1/2 particles and
compare the scenario in which the interest is in thermometry
of the particles themselves to the scenario in which the parti-
cles are employed as probes of an underlying heat reservoir.
Specifically, we look at simulated outcomes of projective en-
ergy measurements of thermal spin-1/2 particles and compare
the computed temperature estimates and measures of preci-
sion in the two cases. The example illustrates that the rate of
convergence to the local regime and the suitability of various
precision bounds depend on the specific scenario considered.

II. BAYESIAN ESTIMATION THEORY

In this section we summarize the key concepts of Bayesian
estimation theory [28,29]. The aim of estimation theory, at
least when considering point estimation [23], is to provide
a prescription for singling out an estimate, serving as a best
guess of an unknown quantity of interest and for quantifying
a measure of confidence in, or the precision of, the specified
estimate. In this work we specifically consider a smooth mani-
fold of quantum states, e.g., thermal Gibbs states, of a sample,
depicted schematically as S in Fig. 2. Our task is to estimate
the true state of the sample, assuming that this belongs to the
specified manifold.

FIG. 2. Illustration of a parameter space � and an alternative
parametrization �, mapped onto a one-parameter curve of quantum
states S� = S�. The distinguishability of parameter values is only
meaningful when expressed as a distance D between the corre-
sponding quantum states, i.e., the state space induces a geometry
on the parameter space. The induced geometry may be simpler for
certain choices of parametrization. In particular, there may exist a
Euclidean parametrization with a flat geometry. By considering the
distance directly between quantum states, it follows that the distance
is invariant with respect to the specific choice of parametrization of
the states.

Within the Bayesian theory, the manifold of states is
equipped with a probability distribution and this distribution
is updated as measurement data are acquired. An estimate
is computed, according to some prescription, based on the
updated probability distribution. Providing a measure of con-
fidence in an estimate requires a notion of distance between
states on the manifold. Here we first argue for a metric struc-
ture on the manifold of states. A distance function can then
be constructed as the geodesic length between states. As a
result, the confidence in the computed estimate can then be
unambiguously quantified via the mean-square distance over
the updated probability distribution.

Having established the required notions of estimation the-
ory, we provide a criterion for the optimal measurement
design and show how the local estimation theory can be re-
covered as the asymptotic limit of the Bayesian framework.
Moreover, we outline a number of known results on Bayesian
Cramér-Rao bounds that are particularly useful. Finally, we
discuss how to select an uninformative initial prior probability
distribution.

A. Manifold of states and Bayesian updating

Physical systems are typically subject to a set of experi-
mental conditions, e.g., some preparation procedure, which
defines a smooth manifold of states [36–38]. To be specific,
we consider a quantum system, the sample, and assume that
the true, but unknown, state of the sample ρtrue belongs to a
one-parameter family S� of quantum states in the manifold

ρtrue ∈ S� := {τ�(θ ) for θ ∈ �}, (1)

where τ�(θ ) labels a parametrized quantum state, i.e., a linear
operator on the sample Hilbert space, and � ⊆ R denotes the
parameter space, e.g., � could be the space of temperatures.
Our task is to identify the true sample state, which, given that
the state belongs to a one-parameter family, can be formulated
as a parameter estimation problem. Throughout, we focus on a
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one-dimensional parameter space and leave the generalization
to the multidimensional case for future work.

Within Bayesian estimation theory, we start from a prior
probability density p(θ ) on the parameter space �, which is
subsequently updated as the sample state is probed via mea-
surements. Quantum mechanically, any measurement can be
represented by a positive-operator-valued measure (POVM).
If we suppose that the sample is in the state τ�(θ ), then the
likelihood p(x |θ ) of observing a measurement outcome x is
given by Born’s rule

p(x|θ ) = Tr[�(x)τ�(θ )], (2)

where �(x) is the POVM element associated with the out-
come x ∈ X , with X the outcome space of the measurement
performed. The POVM elements must be positive semidefi-
nite, i.e., �(x) � 0, and satisfy the normalization condition∫

X dx�(x) = I, with I the identity operator [39]. Conditioned
on observing the specific outcome x, we can find the posterior
probability distribution using Bayes’s rule

p(θ |x) = p(x|θ )p(θ )

p(x)
, (3)

where p(x) := ∫
�

dθ p(x|θ )p(θ ) is the marginal probability
density on the space of outcomes. For later use we also
define the joint density p(θ, x) = p(x|θ )p(θ ). The posterior
density represents our degree of belief in different parameter
values given the available measurement data. Note that here
we formulate Bayes’s rule as a single-shot update. If we
consider ν independent measurements giving outcomes x =
{x1, . . . , xν}, then it is equally valid to compute the posterior
conditioned on the full set of observations.

B. Parametrization invariance

Having introduced the manifold of quantum states and dis-
cussed probability densities on the parameter space, we must
face the subtlety of parametrization invariance. In the above
we worked with a parametrization �; however, the manifold
of quantum states itself is invariant with respect to the spe-
cific choice of parametrization. For example, the manifold of
thermal Gibbs states is the same whether we parametrize it
using the temperature or the inverse temperature. This fact is
illustrated in Fig. 2. In general, we can express this invariance
as follows: If we consider a one-to-one mapping φ : �→�,
where � ⊆ R is the image of the map, then the function φ

provides an equally valid parametrization of the manifold of
states, i.e., S� ≡ S� with

S� = {τ�(φ) for φ ∈ �}, (4)

and we explicitly indicate that each state is now given with re-
spect to the parametrization �, while the invariance condition
reads

φ = φ(θ ), τ�(θ ) = τ�(φ) ∀φ (5)

and expresses the parametrization invariance of every equiv-
alent quantum state. Furthermore, the probability assigned
to a given region of state space must be independent of the
specific parametrization employed. Thus, to be consistent, the
prior probability density must satisfy the invariance condition

[28,40]

φ = φ(θ ), dθ p�(θ ) = dφp�(φ) ∀φ. (6)

Since the likelihood function p(x|θ ) only depends on the state
itself, it is inherently parametrization invariant. Hence, it thus
follows that if the above invariance condition holds for the
prior density, it will also hold for the posterior density. To
simplify our notation, we will for the most part not indicate
the parametrization explicitly in what follows. The choice of
parametrization is implicitly indicated by the parameter value
itself.

C. Metric structure and geodesic length

The essential ingredient required for the development of a
parametrization-invariant estimation theory on a Riemannian
manifold is the metric structure, i.e., an infinitesimal notion of
length, on the manifold of quantum states [40–42]. A metric
makes it possible to define the distance between states on
the manifold and, more fundamentally, the idea of defining
a probability density on a continuous parameter space is not
well defined in the absence of such a metric structure [40].
Suppose for a moment that the manifold possesses a metric
denoted by g. Then it is always possible to construct a well-
defined distance function, as the geodesic length, which we
refer to as the metric-based distance, defined by [32,40,42]

D(τ (θ0), τ (θ1)) :=
∣∣∣∣
∫ θ1

θ0

dθ g�(θ )

∣∣∣∣, (7)

where the quantity dθg�(θ ) provides a parametrization-
invariant integration measure, i.e., dθg�(θ ) = dφg�(φ) for
φ = φ(θ ). The metric-based distance is a statistical distance
between quantum states and it is a parametrization-invariant
quantity; this is depicted in Fig. 2. To simplify our notation,
in what follows we will write the metric-based distance as
D(θ0, θ1), referring only to the parameter values. However,
it should be kept in mind that this is a distance between
quantum states. The form of the geodesic length above is
valid for one-parameter problems. More generally, defining
the geodesic length involves a minimization over paths [40].

The above way of defining a distance function on the pa-
rameter space may still seem ambiguous unless a particular
choice of metric can be justified. However, if we consider a
reference measurement of the sample with POVM elements
M(y) for y ∈ Y , then a key insight of Bayesian information
geometry [32,40,42,43] is that the likelihood associated with
this measurement induces a metric of the form g2 = hM,
where hM is the Fisher information associated with the M
measurement [25,40,42]

hM(θ ) =
∫

Y
dy p(y|θ )[∂θ ln p(y|θ )]2. (8)

From the point of view of Bayesian probability theory, the
Fisher information metric with respect to the reference mea-
surement is the unique Riemannian metric which satisfies both
parametrization invariance and any other invariance property
of the likelihood function [40,44]. Moreover, according to
Chentsov’s theorem, any other (monotonic) metric on the
parameter space corresponds to the Fisher information metric,
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with respect to some reference measurement, up to a multi-
plicative constant [44,45].

1. Quantum Fisher information metric

The choice of reference measurement represents a degree
of freedom, i.e., we can define the metric-based distance and
the estimation theory itself, relative to an arbitrary reference
measurement of the sample. A natural choice would be to
maximize the distance D(θ0, θ1) over all possible measure-
ments; however, this procedure does not generally yield a
unique reference measurement. To see this, we consider the
problem of maximizing the metric at a specific parameter
value. This local maximization problem can be solved ana-
lytically and yields a metric defined relative to a projective
measurement of the symmetric logarithmic derivative L(θ )
associated with the manifold of states [27]. The symmetric
logarithmic derivative (SLD) is defined implicitly by the rela-
tion [27]

L(θ )τ (θ ) + τ (θ )L(θ ) = 2∂θτ (θ ) (9)

and is in general a function of the parameter value. The prob-
lem alluded to above is then that the SLD defines a natural
reference measurement only if the eigenbasis of the SLD is
parameter independent, i.e., the projectors must be parameter
independent. Note that this need not be the case for the SLD
eigenvalues.

If we adopt the SLD reference measurement, then with this
choice of reference we obtain the quantum Fisher information
(QFI) metric, which gives the maximum-likelihood-induced
metric-based distance between sample states. The QFI metric
is given by [27]

√
hL(θ ) = Tr[L(θ )2τ (θ )]1/2. (10)

The resulting metric is equal to four times the Bures metric
[25] and is thus directly related to the so-called fidelity be-
tween infinitesimally separated states in the manifold. If the
family of states considered is a thermal state ensemble, then
the metric-based distance is also called the thermodynamic
length [30–33]. In the remainder of this paper we will always
consider the SLD reference measurement, written L, and the
QFI metric following from that choice.

D. Choosing the correct Bayesian error

Having equipped the manifold with a metric structure and
outlined how to construct a metric-based distance function, we
can develop a parametrization-invariant estimation theory by
considering the mean-square distance as a suitable Bayesian
error function [40]. Before proceeding with this development,
we want to stress the basic logic of the approach. For a specific
thermal sample system, the QFI metric associated with the
SLD reference measurement specifies the thermodynamic ge-
ometry, i.e., it specifies how to measure the distance between
thermal sample states. Only once the states are defined whose
temperature should be distinguished (the manifold of states) is
it possible to define the correct corresponding Bayesian error
function.

1. Mean-square distance within the λL parametrization

In this section we consider an implemented measurement
� giving measurement data x and the SLD reference mea-
surement L defining the thermodynamic length. Suppose we
denote the estimator of the true parameter value constructed
using the measurement data x by θ̃ (x). Then we may define
the mean-square distance (MSD) based on Eq. (7) as

MSD(θ̃ ; x) :=
∫

�

dθ p(θ |x)D(θ̃ (x), θ )2, (11)

which provides a parametrization-invariant measure of the
confidence assigned to the adopted parameter estimate. The
mean-square distance is defined with respect to the likelihood
function p(x|θ ) associated with the implemented measure-
ment � and it is defined with respect to the distance function
associated with the SLD reference measurement L. Further-
more, note that the mean-square distance is conditional on the
measurement data, i.e., it is a stochastic quantity.

For convenience, we define, implicitly, the function λL(θ )
as the inverse derivative of the QFI metric associated with the
measurement L as [40]

∂θλL(θ ) := h1/2
L (θ ). (12)

Since the QFI is non-negative, it follows that the function λL
is monotonically increasing. Furthermore, if we consider a
change of parametrization θ → φ and note that under such a
transformation the QFI transforms as hL(θ ) = [∂θφ]2hL(φ),
then we see that it follows directly from the definition of λL
that it is a parametrization-invariant quantity, i.e., λL,�(θ ) =
λL,�(φ) for φ = φ(θ ). Using the λL function, it is always
possible to express the distance (7) defined based on the QFI
metric in the Euclidean form, i.e.,

D(θ̃ , θ ) = |λL(θ̃ ) − λL(θ )|. (13)

This follows directly from an application of the fundamental
theorem of calculus for g�(θ ) = √

hL(θ ).
If we constrain ourselves to reference measurements for

which the QFI is nonvanishing (except perhaps at isolated
points, e.g., the boundaries of the parameter domain), then λL
itself constitutes a valid parametrization of the one-parameter
family within the manifold. Referring to the associated pa-
rameter space as �L, it follows that when working in this
parametrization the MSD takes the simple form

MSD(λ̃; x) =
∫

�L

dλ p(λ|x)[λ̃(x) − λ]2, (14)

where λ̃(x) = λ(θ̃ (x)) and we have made use of Eq. (6), i.e.,
the invariance property of the posterior probability density
function. In the above we dropped the subscript L when re-
ferring to the λ parameter itself. Furthermore, from here on
we will not explicitly indicate the space which is integrated
over, i.e., �L. Note that the �L parametrization is special in
that it is associated with QFI equal to unity, i.e., a flat metric.
The form of the MSD is then simply the standard Euclidean
distance with respect to the parametrization �L.

The remaining open question is how to choose a suitable
estimation function. A natural choice, and the one primarily
adopted here, is the mean of λ over the posterior probability
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distribution

λ̄(x) :=
∫

dλ p(λ|x)λ. (15)

It can be shown that this choice of estimation function is
classically optimal, in the sense that it minimizes the mean-
square distance [Eq. (14)] [24,29,40]. For this reason the
posterior mean of λ is called the minimal mean-square dis-
tance (MMSD) estimator [40]. Notice that since the MSD is a
parametrization-invariant quantity, we can then directly obtain
the corresponding MMSD estimate of θ as θ̄ (x) = λ−1λ̄(x),
where λ−1 denotes the inverse of the function λ.

2. Expected mean-square distance

Having introduced the mean-square distance as a measure
of confidence, the next problem is to identify a suitable crite-
rion for optimal measurement design. We immediately face
the difficulty that the mean-square distance is a stochastic
quantity, i.e., in identifying the optimal measurement one
must consider the full ensemble


 ≡ {MSD(λ̄; x) for x ∈ X }. (16)

In an actual experiment we sample this ensemble according to
the likelihood p(x|θtrue) with respect to the true quantum state
of the sample. Since the true state is unknown a priori, we
cannot gauge the expected confidence in an estimate resulting
from a measurement based on the true likelihood. Instead we
must assume that the ensemble 
 is sampled according to the
marginal density p(x), giving the likelihood averaged over the
prior density.

In the simplest case we suppose that the ensemble 
 is
well captured by its average behavior, which constitutes a
deterministic quantity, typically referred to as the Bayesian
mean-squared error [24,29]. As in our work we interpret it
as the average evaluated over the marginal density of the
MSD (14), we refer to it as the expected mean-square distance
(EMSD), i.e.,

EMSD[λ̄] :=
∫

dx p(x)MSD(λ̃; x) (17)

=
∫

dλ dx p(λ, x)[λ̄(x) − λ]2. (18)

In (17) we use square brackets to denote the choice of esti-
mator. Hence, a natural criterion for determining the optimal
measurement design is to minimize the EMSD. Note that
the optimal measurement will generally be a functional of
the prior probability distribution; in other words, the optimal
choice of measurement depends on the prior knowledge.

E. Connection to the local paradigm

We now consider the local limit of a narrow posterior
distribution. In this limit the EMSD is lower bounded, as well
as typically well approximated, by the expected Cramér-Rao
bound (ECRB) [26,27]. To derive this bound, we first rewrite
the EMSD as

EMSD[λ̃] =
∫

dλ p(λ)�2λ̃, (19)

where we have decomposed the joint probability and defined
the frequentist mean-square error (MSE) [24]

�2λ̃ :=
∫

dx p(x|λ)[λ̃(x) − λ]2. (20)

Adopting an asymptotically unbiased estimator implies that
the MSE satisfies the Cramér-Rao bound [24], and upon sub-
stitution we obtain the ECRB

EMSD[λ̃ub] � ECRB :=
∫

dλ
p(λ)

h�(λ)

=
∫

dθ p(θ )
hL(θ )

h�(θ )
, (21)

where λ̃ub denotes any unbiased estimator and we recall that
h� is the Fisher information associated with the implemented
measurement. The final equality follows from a change of
parametrization and an application of Eq. (12). The ECRB is
typically tight in the asymptotic limit, i.e., the limit of a large
number of measurement repetitions [26].

The expression for the ECRB given here offers a general-
ization of the results reported in [20,22]; these correspond to
hL(θ ) ∝ 1 and hL(θ ) ∝ θ−2, respectively. The ECRB shows
that the EMSD converges to a generalized version of the
relative error averaged over the prior probability, i.e., relative
to the metric structure of the manifold. Note that the ECRB
shows that the noise-to-signal ratio is only meaningful if the
geometry of the problem is scale invariant, i.e., hL(θ ) ∝ θ−2.
For general geometries a physically meaningful notion of rel-
ative error is given by the mean-square distance. This insight
alters the data analysis even in the asymptotic limit.

F. Bayesian Cramér-Rao bounds

As noted above, the expected thermometric performance
is naturally quantified via the EMSD and the optimal mea-
surement strategy is the one for which the EMSD is minimal.
As an alternative to directly considering the EMSD, we can
assess the expected performance by studying bounds on the
attainable precision. In many cases this is computationally
advantageous. The cost of considering lower bounds is that
we do not know in general if the EMSD saturates them.

An advantage of working in the �M parametrization is that
the EMSD takes the form, as mentioned, of the BMSE. The
EMSD can then be directly lower bounded by means of the so-
called Van Trees inequalities [29], which are valid when p(λ)
and λp(λ) vanish at the boundaries of �M. We first consider
the tightened Bayesian Cramér-Rao bound (TBCRB) [26,46]

EMSD[λ̄] � TBCRB :=
∫

dx p(x)Q(x)−1, (22)

given in terms of the Bayesian information

Q(x) =
∫

dλ p(λ|x)[∂λ log10 p(λ|x)]2. (23)

The EMSD saturates the TBCRB, i.e., the bound is tight, when
the posterior probability density takes the form of a Gaussian
distribution in the �M parametrization with inverse variance
Q(x) [26]. According to the Laplace–Bernstein–von Mises
theorem, this condition is satisfied in the asymptotic limit
[46].
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Evaluating the TBCRB is in general no less demanding
than computing the EMSD, and our reason for starting with
the TBCRB is that it comes with a condition for when it is
tight. Often it is more convenient to consider the Bayesian
Cramér-Rao bound (BCRB), which is obtained via an appli-
cation of Jensen’s inequality [26,47]

TBCRB−1 � BCRB−1

:= Qprior +
∫

dθ p(θ )
h�(θ )

hM(θ )
, (24)

where the prior information content is quantified by

Qprior =
∫

dλ p(λ)[∂λ log10 p(λ)]2, (25)

which is simply the Bayesian information evaluated for
the initial prior. The TBCRB saturates the BCRB if the
Bayesian information function is a constant independent of
the measurement data. The advantage of working in the �M
parametrization is that the derived bound is automatically
parametrization invariant.

Both the TBCRB and the BCRB are applicable at the
single-shot level of the measurement protocol. In many cases
the TBCRB is as difficult to compute as the EMSD; this
leaves BCRB optimization as a viable choice of optimization
strategy.

G. Specifying the initial prior

Within the Bayesian approach, prior densities are updated
to posterior densities as measurement data are acquired. Ap-
plying the Bayesian framework requires specifying an initial
prior and it is crucial to choose a prior which correctly rep-
resents ones prior knowledge or does not strongly effect the
inference process. If we recall that the QFI metric encodes
the thermodynamic geometry of the sample space, then it is
convenient to express a general prior as a product

p(θ ) = h1/2
L (θ ) f (θ ), (26)

where f (θ ) is a parametrization-invariant density. If we are
interested in applying an equal a priori probability postulate
on a specific domain of parameter space, i.e., we want an
uninformative prior over the specified domain, then this cor-
responds to having a constant, f (θ ) = const, prior density on
this domain. For a constant density the prior is proportional to
the QFI metric; in other words, the probability assigned to an
infinitesimal parameter interval is proportional to the length
of the interval. In this case we recover the so-called Jeffrey
prior, which is the prior expressing complete ignorance given
the metric structure of the parameter space [48]. For all sim-
ulations performed in the next section we adopt a smoothed
density

f (θ ) = 1

N

{
exp

[
α sin2

(
π

λ(θ ) − λmin

λmax − λmin

)]
− 1

}
(27)

with a normalization factor given by

N ≡ (λmax − λmin)[exp(α/2)I0(α/2) − 1], (28)

where θ ∈ [θmin, θmax], λmin,max = λ(θmin,max), and I0 is the
modified Bessel function of the first kind. The resulting prior
is essentially the one studied by Li et al. [46]; however, we

FIG. 3. Illustration of the smoothed Jeffrey prior [Eqs. (26) and
(27)] for a flat reference hL(θ ) ∝ 1 (blue dashed lines) and a curved
metric hL(θ ) ∝ 1/θ2 (green solid lines). (a) Plot for α = −10. In
this limit we approach an equal a priori probability postulate on
the bounded interval θ ∈ [θmin, θmax]. For a flat metric this gives a
constant prior density with smoothed boundaries. For the curved
metric the prior density is concentrated at small parameter values
as the metric assigns the majority of metric length to this regime.
(b) Plot for α = 0. In this regime, the prior resembles a Gaussian
distribution on a bounded interval.

specify the density with respect to the Euclidean parametriza-
tion. In the limit of large negative α, the density goes to a
constant on the parameter domain and we thus recover Jef-
frey’s prior. The prior is illustrated in Fig. 3 for a flat reference
metric hL(θ ) ∝ 1 and a curved reference metric given by
hL(θ ) ∝ θ−2.

III. APPLICATIONS

In this section we consider some applications of the above
estimation theory to the problem of thermometry. First, we
argue for a suitable form of the reference metric when the
sample system can be represented as a thermalizing channel
and show that in this case the relative error is given by the
standard noise-to-signal ratio. Second, we consider the case
of thermal spin-1/2 particles and illustrate the difference be-
tween a thermometric scenario in which the spin-1/2 particles
are considered as a thermometer for an underlying heat reser-
voir and a scenario in which the spin-1/2 particles themselves
constitute the sample-system of interest. These two scenarios
correspond to scenarios B and A illustrated in Fig. 1.

A. Preliminaries

We consider the case where the one-parameter family of
sample-system states is the thermal Gibbs states with respect
to a Hamiltonian operator H and take θ to denote the temper-
ature. Recall that the Gibbs state takes the form [18,19]

ρ(θ ) = exp(−H/kBθ )

Tr[exp(−H/kBθ )]
. (29)

As our reference measurement we take a projective measure-
ment of the SLD operator, which for Gibbs states takes the
form [18,19,49]

L(θ ) = H − Tr[τ (θ )H]

2kBθ2
, (30)

where kB is the Boltzmann constant. Measuring the SLD
thus corresponds to a projective measurement of the sample-
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system energy. Noting that the Hamiltonian operator is
temperature independent and that this feature carries over
to the eigenbasis of the SLD, it follows that a projective
measurement of the SLD operator provides a valid reference
measurement. For a projective energy measurement the asso-
ciated Fisher information (FI), or equivalently the QFI, is then
directly related to the sample-system heat capacity [18,19,49],
i.e.,

hL(θ ) = ∂θTr[τ (θ )H]

kBθ2
=:

C(θ ; H )

kBθ2
. (31)

The square root of the QFI then provides a metric on the
manifold of thermal Gibbs states. Recall that the associated
metric-based distance is called the thermodynamic length
[30–33]. Below we evaluate the thermodynamic length in the
case of a bosonic mode and a spin-1/2 particle. First, however,
we discuss how to represent a thermalizing channel.

B. Thermalizing channel

A common scenario in quantum thermometry is that of a
quantum probe subject to a thermalizing channel. A thermaliz-
ing channel can in general be modeled as induced by a sample
system which is effectively an infinitely large heat reservoir.
Here we model such an ideal heat reservoir by a heat capacity
which, either approximately or by definition, equals a constant
value kBV across the range of relevant temperatures, i.e., the
sample energy is a linear function of the temperature. Note
that a constant heat capacity corresponds to the QFI metric
hL(θ ) = kBV/θ2. In this case we can evaluate the thermody-
namic length analytically and find

D(θ0, θ1) = |log10(θ1/θ0)|, (32)

where for convenience we set V = 1. The form of the MSD
resulting from this distance function is called the mean-square
logarithmic error (MSLE). The MSLE can be adopted when-
ever it can be assumed that the manifold of thermal states is
generated via a weak coupling to an infinite heat reservoir. In
practice, this assumption might break down at low tempera-
tures, and more fundamentally there are cases where thermal
behavior cannot be linked to an infinite heat reservoir, e.g., the
case of subsystem thermalization described by the eigenstate
thermalization hypothesis [38,50].

The MSLE was recently proposed by Rubio et al. [20]
as a suitable measure of confidence, in the special case of
a reference measurement for which the associated likelihood
function satisfies the scale-invariance property

p(x |θ ) = g(x/θ )∫
dx g(x/θ )

, (33)

where x denotes the outcome from a projective measurement
of the sample energy and g(x/θ ) is a function only of the
dimensionless ratio x/θ . This scale-invariance property of
the likelihood function is satisfied for sample systems with
a constant density of states or, equivalently, a constant heat
capacity.

When considering the MSLE, it follows that the reference
QFI takes the form hL(θ ) = θ−2, and we then find that the

associated ECRB for an unbiased estimator is given by

ECRB =
∫

dθ
p(θ )

θ2h�(θ )
. (34)

The quantity θ2h�(θ ) provides an upper bound on the signal-
to-noise ratio within the frequentist estimation paradigm
[51,52]. This shows that when the sample can be modeled
as an ideal heat reservoir, the standard notion of relative
error is recovered in the local limit where p(θ ) is sharply
peaked. However, our analysis also points out that the standard
relative error is not suitable unless the sample system has
an approximately constant heat capacity across the range of
relevant temperature. This condition typically breaks down at
sufficiently low temperatures.

1. Thermodynamic length for a bosonic mode

A specific system approximately realizing the above as-
sumptions on an ideal heat reservoir is a Bose gas at a fixed
density well above the critical temperature [51]. As an illus-
tration we consider a gas of bosonic modes with energy gap ε.
In this case the QFI per mode is given by [18]

hL,boson(θ ) = ε2/k2
Bθ4

4 sinh2(ε/2kBθ )
. (35)

For this QFI the associated λ function [see Eq. (12)] can be
given an analytic expression

λboson(θ ) = − log10[tanh(ε/4kBθ )], (36)

which implies that �L,boson = [0,+∞). The bosonic QFI and
the associated λ function are shown in Figs. 4(a) and 4(b),
together with the corresponding quantities for an ideal heat
reservoir. We observe that in the limit where the temperature
is large compared to the boson energy gap, the bosonic modes
approximate the ideal heat reservoir, i.e., hL,boson(θ ) → 1/θ2.
This suggests that we can generically represent an ideal ther-
malizing channel physically by a collection of low-frequency
bosonic modes.

C. Noninteracting spin-1/2 particles

We now consider N noninteracting spin-1/2 particles, or
qubits, with identical energy gaps ε. The spin-1/2 particles
are in a thermal Gibbs state and as above we take the θ

parametrization to be the temperature. We are going to com-
pare and contrast two scenarios: scenario A, in which the
spin-1/2 particles themselves constitute the sample system
of interest, e.g., we are interested in thermometry of the spin
degrees of freedom of the ultracold atoms themselves [8,34],
and scenario B, where the spin-1/2 particles are employed
as equilibrium thermometers of an underlying heat reservoir,
e.g., the particles could model impurities within an ultracold
gas, mapping motional information of gas atoms onto the
quantum-spin state [10,35].

In scenario B, as argued above, the MSLE is the suitable
measure of confidence and the QFI metric takes the form
hL,res(θ ) = θ−2. In scenario A we take the MSD resulting
from adopting the QFI metric of a thermal spin-1/2 particle
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FIG. 4. (a) Plot of the QFI for a spin-1/2 particle (blue dashed
line), the QFI for a bosonic mode (red dash-dotted line), and the
QFI for the ideal heat reservoir (green solid line). (b) Plot of the λ

functions associated with the various QFI.

as our reference, i.e., [51]

hL,spin(θ ) = ε2/k2
Bθ4

4 cosh2(ε/2kBθ )
, (37)

which, we recall, corresponds to a projective energy measure-
ment of a single spin-1/2 particle. When referring to the MSD
below, we refer to the spin-1/2 particle QFI metric. For the
spin-1/2 reference, the inverse derivative function λ(θ ) can
be obtained analytically; it takes the form

λspin(θ ) = π − 2 arctan(eε/2kBθ ), (38)

and thus �L,spin = [0, π/2]. In Fig. 4(a) we plot the spin-1/2
QFI and compare it with the heat reservoir reference and in
Fig. 4(b) we plot the associated λ functions. We observe that
for temperature around kBθ/ε ≈ 0.3 the two λ functions ex-
hibit a similar gradient; however, away from this temperature
regime the specific thermometric scenario considered plays a
role.

The estimation strategy employed consists of projectively
measuring the energy of a subset of μ particles; this is written
as the number of measurements in Fig. 5. For thermalized
spin-1/2 particles, projective energy measurements maximize
the associated FI for all temperatures [53], and it follows that
the FI associated with this measurement can be expressed as

h�(θ ) = μhL,spin(θ ). (39)

In Figs. 5(a)–5(c) we show stochastic simulations of mea-
surement trajectories sampled according to three different
true temperatures. In all cases we plot the minimal MSLE
(MMSLE) estimator and the MMSD estimator and note that

only negligible differences exist between these, despite dif-
ferent priors being used. This feature is to be expected as
the respective λ functions rapidly become approximately con-
stant across the posterior; when this is the case the estimator
is simply the maximum a posteriori temperature, i.e., the
temperature at which the posterior takes its maximum value,
independently of the specific λ function.

Although the various temperature estimates are only neg-
ligibly different, the confidence assigned to the estimates
depends on the thermometric scenario. In Figs. 5(e) and 5(f)
we show the expected MSLE (EMSLE) and the EMSD, re-
spectively, as a function of the subset size μ, or equivalently
the number of independent measurements, and compare these
with the associated BCRB and the associated ECRB. The
EMSLE and the EMSD are evaluated using the corresponding
smoothed Jeffrey priors shown in Fig. 5(d). In the case of the
EMSLE, we do not observe convergence to the BCRB. This is
to be expected since hL,res/h� is generally not constant across
the domain of the employed prior. This feature also means
that we do not observe a convergence to have an ECRB at
the trajectory level, i.e., we observe fluctuations around the
average. For the EMSD we observe rapid convergence to the
BCRB and trajectory level convergence to the ECRB. This is
due to the fact that hL,spin/h� = 1/μ is a constant independent
of the temperature.

When considering the spin-1/2 particles as thermome-
ters of a underlying heat reservoir, it is sensible to consider
adaptation of the energy gap ε to optimize the thermometric
performance.1 That is, we consider a protocol consisting of
thermalizing a spin-1/2 particle and projectively measuring
the energy. Based on the observed outcome, the energy gap
of the particle employed in the following measurement is
adapted. In Fig. 5(e) we also show the adaptive EMSLE,
which is obtained via a BCRB optimization strategy of the
spin-1/2 energy gap ε in each iteration of the protocol. By
a BCRB optimization strategy we refer to a minimization of
the BCRB with respect to the energy gap ε in each iteration.
In this case we observe a rapid convergence to the optimized
local result, i.e., the adaptive EMSLE ∼ maxθ [hL,res/h�].
Furthermore, the adaptive EMSLE converges to a lower bound
on the set of MSLE trajectories. This is to be expected as the
energy gap can be tuned to the optimal ratio of the energy gap
to the temperature sampled from the prior.

IV. CONCLUSION

In this paper we have developed a general Bayesian ap-
proach to quantum thermometry based on the concept of
thermodynamic length. The basic idea is that a meaningful
measure of the precision of a temperature estimate should be
based on the ability to distinguish states at different tempera-
tures, i.e., colder from hotter, and should be independent of the
particular parametrization of the states, e.g., temperature. The
theory allows us to meaningfully quantify the thermometric
performance of a given measurement strategy and to design

1See the companion paper [54] focusing explicitly on the role of
adaptivity in saturating fundamental precision bounds on Bayesian
quantum thermometry via equilibrium quantum probes.
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FIG. 5. (a) Smoothed Jeffrey prior [Eqs. (26) and (27)] for α = −4.5 and kBθ ∈ [ε/10, 10ε], corresponding to the spin-1/2 particle and
the reservoir reference metric. (b)–(d) Simulated stochastic measurement trajectories sampled according to a specific true temperature (red
horizontal line). The posterior probability density function is shown as a colormap. Both the MMSLE and the MMSD estimators are shown.
(e) Simulation of the EMSLE (scenario B) for thermometry employing free spin-1/2 particles. The simulation is performed by averaging over
250 stochastic trajectories where the measurement data are generated with respect to a true temperature sampled according to the prior density.
The EMSLE is compared with the ECRB, convergence is observed for μ � 103, and we note that the generated trajectories do not converge
to the mean asymptotically. Furthermore, we plot the BCRB and observe that this is not a tight bound. Finally, we plot the adaptive EMSLE.
This is obtained by adapting the energy gap ε in each repetition of the measurement. Here we employ a BCRB optimization strategy, which
is described in more detail in the text. (f) Simulation of the EMSD (scenario A) for thermometry of free spin-1/2 particles. The simulation is
performed by averaging over 250 stochastic trajectories where the measurement data are generated with respect to a true temperature sampled
according to the prior density. The EMSD is compared with the BCRB and convergence is observed for μ � 102. Furthermore, we observe
that the generated trajectories converge to the average.

optimal measurements under conditions of prior temperature
uncertainty. Furthermore, the framework is applicable at the
single-shot level, which allows us to consider adaptive mea-
surement schemes. Insisting on a framework which satisfies
both parametrization invariance and any other symmetry of
the sample system considered leads us to gauge the thermo-
metric performance using a distance function defined relative
to the quantum Fisher information metric on the manifold of
thermal states of the sample, i.e., the thermodynamic length.
Formulating the problem in terms of the thermodynamic
length then leads to the realization that any meaningful notion
of relative error must be given with respect to the specific sam-
ple system considered. Furthermore, we demonstrate that the
suitability of both Bayesian and local Cramér-Rao bounds is
contingent on the specific sample system which is measured.

The generalization of the notion of relative error is par-
ticularly important in the low-temperature regime, where it
shows that the standard signal-to-noise ratio is not a good

indicator of estimation precision, and provides an alternative
point of view on the problems of low-temperature quantum
thermometry [51,52]. In addition, the generalization is impor-
tant at the microscale, where we are often not interested in
thermometry of ideal heat baths, but rather in characterizing
the thermodynamics of operating quantum devices such as
quantum simulators.
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