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Robust quantum control using hybrid pulse engineering
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The development of efficient algorithms that generate robust quantum controls is crucial for the realization
of quantum technologies. The commonly used gradient-based optimization algorithms are limited by their
sensitivity to the initial guess, which affects their performance. Here we propose combining the gradient method
with the simulated annealing technique to formulate a hybrid algorithm. Our numerical analysis confirms its
superior convergence rate. Using the hybrid algorithm, we generate spin-selective π pulses and employ them for
experimental measurement of local noise spectra in a three-qubit nuclear magnetic resonance system. Moreover,
here we describe a general method to construct noise-resilient quantum controls by incorporating noisy fields
within the optimization routine of the hybrid algorithm. Upon experimental comparison with similar sequences
obtained from standard algorithms, we find remarkable robustness of the hybrid sequences against dephasing
errors.
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I. INTRODUCTION

Driven by quantum technology goals, the control of quan-
tum mechanical systems has become an important topic of
research in recent years. Robust quantum control lies at the
cornerstone of any efficient and reliable quantum processor.
The building blocks of a quantum processor, the qubits, must
be precisely controlled and protected against systematic de-
viations in the control fields, as well as against the random
noise-induced by the surrounding environment. Accordingly,
a plethora of control techniques have been developed, which
include gradient-based approaches such as strongly modu-
lated pulses [1,2], gradient ascent pulse engineering (GRAPE)
[3,4], gradient optimization of analytical control [5], truncated
basis approaches such as chopped random basis optimization
[6,7], variational-principle-based techniques like relaxation
optimized pulse engineering [8], Krotov optimization [9–11],
a combination of gradient and variational controls like the
K-BFGS algorithm [12], evolutionary algorithm-based con-
trols [13,14], and neural network and reinforcement learning
inspired approaches [15,16].

Quantum control techniques have been realized in nu-
clear magnetic resonance (NMR) [17–20], nitrogen-vacancy
centers [21], superconducting qubits [22], ion traps [23], mag-
netic resonance imaging [24], cold atoms [25], etc. Here we
use NMR systems as a quantum platform to develop robust
quantum control techniques. The availability of long-lasting
spin coherences and highly adaptable control fields make
NMR an ideal test bed for quantum control developments
[26,27].
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Generally, quantum control techniques are limited by two
challenges: (i) sensitivity to the initial guess as well as local
optima which limit the convergence efficiency of the opti-
mization algorithms, and (ii) susceptibility to losing fidelity
due to incoherence, decoherence, or a combination of both. In
this article, we propose methodologies to combat both of these
limitations (see Fig. 1). First, we propose combining GRAPE
and simulated annealing (SA) [28,29] to realize a hybrid
optimization technique called simulated annealing gradient
ascent pulse engineering (SAGRAPE) that can overcome local
optima and converge faster toward better solutions. Second,
we propose optimizing SAGRAPE sequences along with
certain random fields, yielding a robust algorithm, namely,
robust simulated annealing gradient ascent pulse engineer-
ing (RSAGRAPE). It can generate control sequences that
are resilient against environmental noises. Additionally, we
describe integrating these sequences with standard dynami-
cal decoupling sequences such as Carr-Purcell-Meiboom-Gill
(CPMG) [30,31], which enhances their robustness. We numer-
ically analyze the convergence efficiency and experimentally
demonstrate the robustness of the hybrid sequences.

This article is organized as follows. In Sec. II, we de-
scribe the quantum system and revisit the GRAPE algorithm.
Subsequently, we introduce the hybrid algorithm SAGRAPE
and analyze its convergence efficiency. We then describe the
NMR implementation of SAGRAPE sequences. In Sec. III
we describe the SAGRAPE optimization in the presence of
a random field to obtain RSAGRAPE, and we experimentally
demonstrate the robustness of the RSAGRAPE sequence. Fi-
nally, we present the summary and the outlook in Sec. IV.

II. GRAPE AND SAGRAPE

In this section, we first describe the quantum system in
which we are interested in establishing quantum control, in
terms of both state-to-state transfer and realizing general
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FIG. 1. Comparison of quantum control algorithms with respect
to convergence efficiency and robustness against noise.

quantum gates. After reviewing the GRAPE and the SA al-
gorithms, we explain the hybrid algorithm SAGRAPE and
analyze its convergence efficiency. Finally, we describe an
NMR application of SAGRAPE sequences.

A. The quantum system

We consider an n-qubit NMR system with a total rotating-
frame (RF) Hamiltonian,

H (t ) = H0 + HRF(t ), where

H0 = −
∑

k

�kIkz + 2π
∑

kl

Jkl Ik · Il , (1)

where �k is the resonance offset, Jkl is the indirect spin-spin
coupling constant, and Ikα with α ∈ {x, y, z} are components
of the kth spin operator Ik . Generally, we discretize the entire
sequence of duration T into N equal segments each of dura-
tion τ = T/N . We assume that the n spin qubits belong to s
different species (isotopes) and the qth species is controllable
with an RF sequence {ωqα ( j)}. The RF Hamiltonian for the
jth segment is of the form

HRF( j) =
s∑

q=1

∑
α=x,y

ωqα ( j)Hqα,

with Hqα =
∑

k∈{species q}
Ikα. (2)

In this work, we consider only one type of nuclear species, i.e.,
q = 1, and hence we drop the subscript q from now onward.

In practice, there exists a spatial inhomogeneity of RF
amplitudes which are modeled by a scaling factor rm with an
associated probability pm. Thus for the mth subensemble, the
total Hamiltonian of the jth segment is

Hm( j) = H0 + Hm
RF( j), with

Hm
RF( j) = rm{ωx( j)Hx + ωy( j)Hy}. (3)

The propagator for the entire sequence is written as

U m = U m
N U m

N−1 · · ·U m
2 U m

1 , where (4)

U m
j = exp[−ιτHm( j)]

are the segment propagators. The control algorithms aim to
generate the sequence {ωx( j), ωy( j)} that performs a given

quantum control task. In the following, we revisit the GRAPE
algorithm that is commonly used for this purpose.

B. Gradient ascent pulse engineering (GRAPE)

Given a target operation, GRAPE starts with a random
sequence {ω0

x ( j), ω0
y ( j)}, which is updated based on the local

gradients. In our work, we consider the GRAPE algorithm
whose gradients are correct up to the first order. Generally,
we consider the following two types of quantum control.

1. State control

The objective here is to find a sequence that transforms an
initial state ρ0 into a target state ρF by finding a sequence that
maximizes the average state fidelity:

	 =
∑

m

pm〈ρF |U mρ0U
m†〉 =

∑
m

pmTr[ρFU mρ0U
m†], (5)

where the summation is carried out on the subensembles cor-
responding to RF inhomogeneity (RFI). The update rule for
the ith iteration is [3]

ωi+1
α ( j) = ωi

α ( j) + εGi
α ( j), where the gradient

Gi
α ( j) = −ιτ

∑
m

pm
〈
λmi

j

∣∣[Hα, ρmi
j

]〉
, with

ρmi
j = U mi

j · · ·U mi
1 ρ0U

mi†
1 · · ·U mi†

j and

λmi
j = U mi†

j+1 · · ·U mi†
N ρFU mi

N · · ·U mi
j+1 (6)

being the forward and backward propagated states, respec-
tively, and ε being the step size. The iterations are continued
until the fidelity 	 reaches the desired value.

2. Gate control

Here the objective is to generate a sequence that realizes
the desired propagator UF by maximizing the gate fidelity:

	 =
∑

m

pm|〈U |UF 〉|2 =
∑

m

pm|Tr[U †UF ]|2. (7)

The update rule for the ith iteration is [3]

ωi+1
α ( j) = ωi

α ( j) + εGi
α ( j), where the gradient

Gi
α ( j) = −2ιτ

∑
m

pmRe
{〈

Pmi
j |HαX mi

j

〉〈
X mi

j |Pmi
j

〉}
,

with X mi
j = U mi

j U mi
j−1 · · ·U mi

2 U mi
1 and

Pmi
j = U mi†

j+1 U mi†
j+2 · · ·U mi†

N−1 U mi†
N UF (8)

being the forward and backward propagators. Again, the
iterations are continued until the fidelity 	 reaches the
desired value.

C. Simulated annealing (SA)

SA is a single candidate-based metaheuristic algorithm
that is used to reach the neighborhood of the global opti-
mum of optimization function. Generally, one uses either a
probabilistic-based selection [28] or a threshold-based selec-
tion [29,32]. In our work, we use the latter as explained in
the following. The general idea of SA can be described as

042437-2



ROBUST QUANTUM CONTROL USING HYBRID PULSE … PHYSICAL REVIEW A 105, 042437 (2022)

FIG. 2. Threshold-based acceptance function (�i) plotted versus
temperature T i and the fidelity variation δ	i. Note that �i is bounded
by [−1, 0].

two modes—an exploration mode and an exploitation mode.
In every iteration, a solution {ω′

α} of fidelity 	({ω′
α}) is ran-

domly selected from the search space in the neighborhood of
the current solution {ωi

α} with fidelity 	({ωi
α}). The current

solution is replaced with the random solution if the fidelity
variation is above a certain threshold function �i such that

δ	i = 	({ω′
α}) − 	({ωi

α}) � �i. (9)

In our work, we define the threshold function �i as follows:

�i = − min

[
1, T i exp

(
δ	i

T i

)]
. (10)

Here T i is referred to as the temperature of the current itera-
tion in analogy to the thermodynamical processes. If δ	i � 0,
then the fidelity has improved with the random solution, and
naturally {ωi+1

α } is set to {ω′
α}. However, notice that even if

δ	i < 0, i.e., the random solution is worse than the current
solution, then we may still set {ωi+1

α } to {ω′
α} as long as the

threshold condition Eq. (9) is satisfied. Thus the algorithm is
in an exploration mode, where it looks for a neighborhood
with favorable solutions. This is the salient feature of the
simulated annealing algorithm that enables it to get over the
local optima. As explained above, the temperature parameter
controls the threshold function for selecting nonoptimal so-
lutions for subsequent iterations. The higher the temperature
is, the greater are the chances for the random solution to lie
within the threshold and become the next solution. However,
as the algorithm approaches the global optimum, it should
promote only candidates that increase the fidelity. Thus, in the
initial iterations of SA, the temperature is kept high, and as
iterations pass, the temperature is gradually reduced, thereby
increasingly restricting nonoptimal solutions from passing
through. Accordingly, the algorithm gradually shifts from ex-
ploration mode to exploitation mode. This is illustrated in
Fig. 2, wherein the threshold function is plotted versus δ	i

as well as temperature T i.

FIG. 3. Illustrating the progress of the SAGRAPE algorithm in
bumpy parameter space. The green and white backgrounds respec-
tively depict the regions where GRAPE and SA contribute toward
minimization. GRAPE relies on monotonic convergence, while SA
allows jumping over local maxima. As the algorithm proceeds, the
temperature parameter of SA is gradually reduced to keep the solu-
tion trapped in the global minimum by restraining any further jumps.

D. SAGRAPE algorithm

Even though SA is efficient in getting out of the local
optima and identifying a good neighborhood, it takes many
iterations to get to the global optimum. On the other hand,
a gradient-based algorithm like GRAPE [3] is much faster
in identifying the best solution once a good neighborhood is
reached. Thus, here we now introduce a hybrid algorithm of
both SA and GRAPE (see Fig. 3). This way we can incorpo-
rate the best of both optimization techniques.

The flowchart for the SAGRAPE algorithm is shown in
Fig. 4. We carry out κ iterations of SA before each GRAPE
iteration to create one iteration of the SAGRAPE-κ algorithm.
In every iteration i of SA, we need to generate a random solu-
tion and compare it with the threshold criterion of Eq. (9). In
our implementation, we generate a set of 20 random solutions,
each of which is obtained by perturbing the current solution
{ωi

α} with a random spline function ωs, i.e., ωi
α + ε jωs, where

ε j is the step size that determines the size of the neighbor-
hood. We reduce ε j with the SAGRAPE iteration number j
to gradually shrink the neighborhood size. Now we select the
random solution {ω′

α} with the highest fidelity 	({ω′
α}) and

compare it with the threshold criterion of Eq. (9). In each
SAGRAPE iteration, the temperature parameter T is initially
set to 0.5 (i.e., T 0 = 0.5) and then gradually reduced to move
from exploration mode to exploitation mode. This is achieved
by defining

T i+1 = γ jT i, whereγ j =
[

1 − 	({ωG
α })

2

]1/κ

(11)

is the cooling factor, and {ωG
α } is the final solution of the

( j − 1)th SAGRAPE iteration.
The solution from the GRAPE algorithm of the current

SAGRAPE iteration is chosen as the initial solution for the
SA algorithm of the next SAGRAPE iteration (see Fig. 3).

Another possible benefit often observed in the hybrid
algorithm is the following. The first-order approximation
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Randomly choose {ω0
α}, set

T = T 0, & γ0 =
1−Φ({ω0

α})
2

1/κ

Randomly
choose {ωα}

Set T = T 0 &
γ from Eq. (11)

Find δΦi

Is δΦi ≥ Δi?

Set
{ωi+1

α } = {ωα}
Set

{ωi+1
α } = {ωi

α}

Is i < κ?

Apply GRAPE
on {ωκ

α}

Set
T i+1 = γjT i

Is i < κ?

Apply GRAPE on
{ωκ

α} to get {ωG
α }

Is j < K?
Set

{ω0
α} = {ωG

α }

Stop

yes

no

no

yes

yes

no

FIG. 4. Flowchart for the SAGRAPE algorithm. Here i � κ and
j � K indicate iterations over SA and SAGRAPE, respectively.

(|�kτ | � 1 ∀ k ∈ {species q}) used in the GRAPE algorithm
limits the maximum length of the time duration (τ ) of the
control sequence. Hence, for generating pulses with long time
durations, it becomes necessary to use a large number of
time steps (N), which increases the computation time. The
SAGRAPE algorithm is resilient against this constraint to a
certain extent due to the inclusion of SA which randomly se-
lects a candidate based on the threshold function (�i) without
relying on the first-order approximation.

E. Convergence analysis of SAGRAPE

We now demonstrate the convergence of the SAGRAPE
algorithm for state control and gate control in a two-qubit
system. As an example, we consider a homonuclear two-spin
system with resonance offsets �1(2)/(2π ) = ±63.7 Hz and
an indirect spin-spin coupling constant J12 = 8.8 Hz (corre-
sponding to an experimental system described in Sec. III).

For state control, we generate the RF sequence {ωα ( j)} that
transforms the two-spin NMR thermal equilibrium state to the
pseudo-singlet-triplet order, i.e.,

Iz1 + Iz2
{ωα ( j)}−→ −(I+

1 I−
2 + I−

1 I+
2 ) = |S0〉〈S0| − |T0〉〈T0|, (12)

0 200 400 600
Computational time (s)

10 -3

10 -2

10 -1

10(a)

(b)
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GRAPE
SAGRAPE-10
SAGRAPE-20
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SAGRAPE-50
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SAGRAPE-10
SAGRAPE-20
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SAGRAPE-40
SAGRAPE-50
SAGRAPE-100
SAGRAPE-200

FIG. 5. Average infidelity 〈1 − 	i〉 in the ith iteration of
SAGRAPE versus computational time taken by GRAPE and
SAGRAPE-κ algorithms for (a) state control (preparing pseudo-
singlet-triplet order) and (b) gate control (preparing CNOT gate)
respectively. Each SAGRAPE-κ data point corresponds to κ number
of SA iterations followed by one GRAPE iteration. Here each curve
is obtained by averaging over five different trials starting from the
random initial guess {ω0

α ( j)}. In each trial, the initial guess was kept
the same across all the different cases.

where S0 = (|01〉 − |10〉)/
√

2 and T0 = (|01〉 + |10〉)/
√

2 are
the singlet and triplet components, respectively. Similarly,
for the gate control, we generate the sequence realizing the
CNOT gate,

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx, (13)

where σx is the Pauli x operator which applies the NOT gate on
the second qubit only if the first qubit is in state |1〉.

All the sequences prepared with the GRAPE and
SAGRAPE algorithms have the same time duration of 120
ms discretized into 600 equal-duration segments. We carried
out the convergence analysis of “SAGRAPE-κ” with varying
numbers of SA iterations (κ) and compared the computational
time with the GRAPE algorithm. The numerical results are
shown in Fig. 5. Here Fig. 5(a) corresponds to the state
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FIG. 6. (a) Molecular structure of BTFBz showing three 19F nu-
clei and the table of resonance offsets �k/(2π ) (diagonal elements)
and indirect spin-spin coupling constants Jkl (off-diagonal elements)
in Hz. (b) Experimentally obtained local noise spectrum for each
19F spin.

control, where we prepare the pseudo-singlet-triplet order,
wherein we see a significant improvement of convergence
by the hybrid algorithm. Figure 5(b) corresponds to the gate
control, wherein we observed an improvement, but not as
pronounced as in the state control. It is evident that SA sig-
nificantly improves the convergence efficiency in both state
and gate control tasks.

F. NMR demonstration of SAGRAPE

Now we demonstrate an experimental utilization of
SAGRAPE by generating qubit-selective π pulses and
employing them to perform noise spectroscopy. For this
purpose, we consider the three 19F spins of 1-bromo-2,4,5-
trifluorobenzene (BTFBz) that is partially oriented in the
liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The
molecular structure, resonance offsets �k/(2π ), and indirect
spin-spin coupling constants Jkl of the 19F spins are shown in
Fig. 6(a). We applied spin-decoupling to remove the effects of
the two hydrogen spins. The noise spectroscopy experiments
were carried out in a Bruker 500-MHz NMR spectrometer at
an ambient temperature of 300 K.

Noise spectroscopy allows us to characterize the noise
spectral density function S(ν) [33–35] as a function of the
noise frequency νδ . The experiment involves measuring the
decay time-constant T2(δ) of the transverse magnetization
with a set of CPMG sequences each with a specific inter-π -
pulse delay δ, which allows us to sample the noise spectrum

S(2πνδ ) ∼ π2

4T2(δ)
(14)

at frequencies νδ = 1/(2δ) [33]. Understanding noise spectra
is helpful to develop methods that protect quantum coher-
ence against environmental noise [36]. Carrying out the local
noise spectroscopy for each 19F spin needs a set of CPMG
sequences involving spin-selective π pulses. Since a train of
such π pulses is used for finding the noise amplitude at each
noise frequency, the cumulative pulse errors need to be small,
thus necessitating the construction of high-fidelity π pulses.

Using SAGRAPE-20 (κ = 20), we generated three spin-
selective π pulses, one for each of the three 19F spins. Each
sequence was of the total duration of 360 µs discretized
into 360 equal-time segments and had an average fidelity
over 0.99 for the RFI parameters rm = [0.8, 1, 1.2] and
pm = [0.2, 0.6, 0.2], respectively. Using the pulses thus
obtained, we performed the experimental local noise spec-
troscopy on each of the three 19F spins of BTFBz, and the
results are shown in Fig. 6(b). These noise spectra are not
only helpful in understanding the environment surrounding
the spins but also in generating noise-resilient quantum con-
trols tailored for them [36,37]. For the short-pulses discussed
here, we may ignore the pulse errors occurring due to external
noises. However, for a long control sequence, errors gradually
accumulate. In the following section, we describe a general
method to train the control algorithm against the external
noises.

III. THE ROBUST SAGRAPE (RSAGRAPE)

We now describe generating a control sequence that is
robust against the dephasing noise, which generally is the
predominant process limiting the coherence time of quantum
systems. To train the optimization algorithm against dephas-
ing noise, we introduce an additional term in the Hamiltonian
of Eq. (3):

Hm( j) = H0 + Hm
RF( j) + Hm

noise( j),

where Hm
noise( j) = 2πηm( j)Hz. (15)

Here ηm( j) ∈ [−ζ/2, ζ /2] is chosen from a uniform ran-
dom distribution of range ζ . Optimizing in the presence of
such a random phase noise renders the control sequence ro-
bust against the dephasing effects of the environment. We
incorporate this technique of making robust controls with
the SAGRAPE algorithm explained in Sec. II to create the
RSAGRAPE (robust SAGRAPE) algorithm. Additionally, we
can introduce other decoherence-suppression methods such
as dynamical decoupling. Here we integrate CPMG pulses
within the control sequence as explained below.

We demonstrate the state controllability of RSAGRAPE by
preparing controls {ωα ( j)} for two 1H nuclear spins of 2,3,6-
trichlorophenol (TCP) dissolved in dimethyl sulphoxide-D6.
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FIG. 7. (a) Molecular structure of TCP, its reference spectrum
(labeled thermal), and its LLS spectrum. (b) The NMR pulse se-
quence for preparing, storing, and detecting the singlet order. A
pulsed-field-gradient (PFG) with amplitude randomly varying with
time is used to induce phase noise.

The molecular structure and the 1H reference spectrum (in
blue) are shown in Fig. 7(a) with the two protons labeled
as HA and HB. For this system, the difference in the reso-
nance offsets |�1 − �2|/(2π ) is 127.4 Hz and the indirect
spin-spin coupling constant J12 is 8.8 Hz. The spin-lattice
relaxation time constants (T1) obtained from the inversion
recovery experiment were 5.5 and 5.6 s for the spins HA and
HB, respectively [38].

Our objective is to generate a control sequence {ωα ( j)}
that transforms the state of the spin system from thermal
equilibrium to the pseudo-singlet-triplet order [see Eq. (12)],
which relaxes to the long-lived singlet state (LLS) −I1 · I2 up
to an identity representing the background population [39].
While most nonequilibrium quantum states decay to ther-
mal states with a spin-lattice relaxation time constant T1, the
long-lived spin states can retain their spin-order for durations
much longer than T1 [39]. Buoyed by a number of interesting
applications in several fields including spectroscopy, medical
imaging, and quantum information [40], LLS has recently
gained significant attention [41]. Typically, it takes a sequence
longer than 1/(2J ) to prepare the LLS, during which time the
noise can cause significant effects.

We prepared the following three control sequences: (i)
GRAPE, (ii) GRAPE with CPMG, and (iii) RSAGRAPE-ζ
with CPMG. Both (ii) and (iii) are integrated with six CPMG
pulses. The robust sequence RSAGRAPE-5 is generated using
the RSAGRAPE algorithm with the noise parameter ζ = 5 Hz

FIG. 8. (a) The RF components ωx ( j) (blue solid lines, in rad/s)
and ωy( j) (red dashed lines, in rad/s) corresponding to the three
control sequences obtained with GRAPE, GRAPE with CPMG, and
RSAGRAPE-5 with CPMG plotted versus time. The latter two se-
quences are integrated with six CPMG π pulses, each of amplitude
+9941 rad/s, but their corresponding plots are cropped at ±1000
rad/s for the visibility purpose. (b) The experimentally observed
singlet order versus the maximum gradient strength Gz (in %) for
the three control sequences shown in panel (a).

and the SA iteration κ = 10. Each sequence is of duration
t1 = 79 ms, uniformly discretized into 250 segments, and
had an average fidelity over 0.99 with the same RFI param-
eters rm = [0.9, 1.0, 1.1] and pm = [0.2, 0.6, 0.2]. The three
sequences are plotted in Fig. 8(a).

The robustness of the three sequences is tested experi-
mentally again in the Bruker 500-MHz spectrometer at an
ambient temperature of 300 K. The NMR pulse sequence for
preparing, storing, and measuring the singlet order is shown
in Fig. 7(b). After preparing the LLS using each of the control
sequences of duration t1, we stored the LLS under a WALTZ-
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16 spin-lock of 2 kHz in amplitude for duration t2. Finally, we
converted the LLS into observable single-quantum magneti-
zation with a free-evolution duration of t3 = 1/(4J ) followed
by a (π/2)x pulse. The resulting LLS spectrum consists of
a characteristic down-up–up-down spectrum as shown in the
top trace of Fig. 7(a). By varying the storage duration t2, we
estimated the lifetime of the singlet order to be 25 s, which is
more than four times the T1 values of the two 1H spins, thus
confirming the preparation of the LLS state.

We now experimentally compare the robustness of the
three sequences against the dephasing noise. To systemati-
cally control the dephasing noise, we introduced a pulsed-field
gradient (PFG) Gz that applies a spatial inhomogeneity along
the direction of the Zeeman field, i.e., z axis [see Fig. 7(b)].
The amplitude of the PFG was randomly varied over time
within a range [−Gz, Gz] in each experiment. In subsequent
experiments, the amplitude Gz was systematically increased
from 0 to 0.08%, where 100% refers to 50 G/cm. In the
solution state, the nuclear spins are subjected to controlled
decoherence under the combined effects of random PFG and
the random molecular motion due to translational diffusion.
Finally, we monitored the singlet order by measuring the
absolute area of the singlet spectrum obtained after a storage
time of t2 = 10 s. The experimental results are shown in
Fig. 8(b). Here all the data are normalized with respect to
a common datum corresponding to the highest singlet order.
It is clear that the simple GRAPE sequence (blue diamond)
decays rapidly with the dephasing noise. The singlet order of
the GRAPE sequence is lowest even at Gz = 0, indicating that
it is affected by the intrinsic noise of the spin system and the
NMR setup. On the other hand, the GRAPE sequence inte-
grated with CPMG pulses (green square) performs relatively
better. In fact, it has the highest singlet order in the absence
of external dephasing, i.e., Gz = 0. Of course, CPMG only
suppresses the dephasing noise up to a cutoff frequency equal
to the inverse of the inter-π -pulse delay. Nevertheless, it is
evident that RSAGRAPE-5 with CPMG (red circle) is the
most robust sequence, which generates high singlet order for a
wide range of dephasing noise. Thus, it clearly establishes the
superiority of the robust state control sequence generated by
the RSAGRAPE algorithm in combating the dephasing noise.

IV. SUMMARY AND OUTLOOK

Quantum control, which is crucial for realizing quantum
technologies, is limited by two key factors: (i) convergence
efficiency of the optimization algorithms, and (ii) the robust-

ness of the control sequence against external noises. In this
work, we address both of these factors.

First, we combined simulated annealing (SA) with the
commonly used gradient ascent algorithm (GRAPE) to real-
ize a hybrid algorithm (SAGRAPE). Our numerical analysis
confirmed that the convergence efficiency of the SAGRAPE
algorithm is significantly improved over the GRAPE algo-
rithm. As a demonstration of an experimental application,
we used the SAGRAPE algorithm to generate spin-selective
π pulses for three spins in a homonuclear NMR system and
obtained their local noise spectra.

Second, we proposed a general method to obtain noise-
resilient quantum operations by optimizing the control
sequences in the presence of a noisy field. In particular,
we designed the RSAGRAPE (robust SAGRAPE) algorithm
which generates robust control sequences against dephas-
ing noise. Additionally, we incorporated CPMG pulses
along with the control sequence which enhanced their
robustness against the external noise. By experimentally
comparing the preparation efficiency of long-lived singlet
states in the presence of controlled external noise, we con-
firmed the superiority of the RSAGRAPE sequence over the
GRAPE sequences.

Even though this work used the NMR implementation
to demonstrate the efficacy of SAGRAPE pulses, the hy-
brid algorithm can be employed in other architectures such
as nitrogen-vacancy centers, superconducting qubits, cold
atoms, etc. The concept of incorporating SA can be gen-
eralized to other gradient or nongradient algorithms. The
computational efficiency of SAGRAPE can be further en-
hanced by incorporating advanced numerical techniques such
as machine learning [42]. The convergence efficiency of the
hybrid algorithm may also be further improved by incorpo-
rating more advanced variants of simulated annealing such
as adaptive simulated annealing [43]. We believe that such
hybrid algorithms will play an important role in the fu-
ture as we attempt to control larger quantum systems with
higher precision.
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