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We achieve the controllable multipartite Einstein-Podolsky-Rosen (EPR) steering and its monogamy relations
by means of the dynamical Casimir effect in the frame of superconducting quantum network. We employ the
external driving flux of the superconducting quantum interference device as a switch. It is interesting that the
system exhibits different types of the EPR steering and monogamy relations by tuning parameters. In the system,
the one-way or two-way EPR steerings for different parties have been realized, and the direction of the one-way
EPR steering is reversed by tuning coupling parameters. Remarkably, we can also obtain the EPR steering orderly
sudden death for different modes. In addition, the system not only shows the type-I and type-II monogamy
relations, but also converts steering parties to get monogamy relations’ swapping and cycling. Finally, we discuss
the influence of temperature. In the system, the higher the temperature is, the earlier sudden death for the EPR
steering is. These results are important for quantum information and lay a foundation for us to better understand
the important role of the multipartite EPR steering in secure quantum communication.
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I. INTRODUCTION

The dynamical Casimir effect (DCE) [1,2] is the phe-
nomenon that pairs of photons are generated due to the
nonadiabatic change of boundary condition [3,4] or refractive
index [5,6]. The DCE was observed experimentally for the
first time in superconducting quantum circuit modulated by
superconducting quantum interference device (SQUID) [7].
Since the photon pairs generated by the DCE are nonclassical
[8], the DCE is used as a coherent light source to study
the quantum correlations such as entanglement [9–13] and
Einstein-Podolsky-Rosen (EPR) steering [14–21].

More discussions about the DCE were reported in Ref. [22]
in the superconducting quantum circuit. The superconducting
quantum circuit has attracted much attention because of its
excellent controllability and integration [23–25]. In addition
to the experimental observation for the DCE, many physicists
also considered the superconducting quantum circuit as a tool
to study Unruh effects [22], Hawking radiation [22], state
transition in off-resonant coupling [26], and quantum commu-
nication [11,27]. In this paper, based on the superconducting
quantum circuit which generates the DCE, we design more
complex dynamical Casimir arrays (DCA) shown in Fig. 1
to study the multipartite EPR steering and its monogamy
relations [28–30].

It is necessary to discuss the EPR steering before intro-
ducing the multipartite EPR steering. The word “steering”
was first proposed by Schrödinger [31] to represent the phe-
nomenon “a distanced spooky action” exhibited in famous
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EPR paradox [32,33]. The EPR steering is an intermediate
quantum correlation between quantum entanglement [9–13]
and Bell nonlocality [34,35], where the local measurement
on Alice can steer the state of Bob [16,17,36,37]. This
correlation indicates connatural asymmetric feature, which
mainly contributes to the subchannel discrimination [38], one-
sided device-independent quantum cryptography [39–43], and
quantum teleportation [44–46]. Multipartite EPR steering
contains distinct parties that cannot be absolutely trusted.
Recently, the multipartite EPR steering is regared as a critical
source for secure quantum communication. However, only
one party can share this source, that is, two diverse parties
cannot steer the third one simultaneously. The property is
called the monogamy of multipartite EPR steering. He et al.
have introduced the monogamy relations by means of three

FIG. 1. (a) Diagram of the system, consisting of three subsys-
tems that are composed of finite coplanar waveguides and resonant
microwave resonators. Three coplanar waveguides are grounded
through a SQUID. (b) Diagram of the circuit. TLRs are described
by LC oscillation circuits and RLC resonators are represented by
inductor, capacitor, and resistor.
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cascaded four-wave mixing (FWM) processes [28,29]. In-
stead, we choose superconducting quantum circuit to study
monogamy relations of multipartite EPR steering.

In this paper, on the basis of the superconducting circuit
framework (Fig. 1), with the help of perturbation theory and
the EPR steering criterion [33,36], we study the multipar-
tite EPR steering and discuss the corresponding monogamy
relations [28,29]. The controllable external driving flux of
the SQUID results in the controllable EPR steering and
monogamy relations. In such a well-designed system, there
are some interesting phenomena. We have achieved the
one-way or two-way EPR steering generation and orderly
sudden death, and the direction of the one-way EPR steer-
ing can be reversed by controllable parameter inversion. On
the other hand, based on the multipartite EPR steering, the
system exhibits type-I and type-II monogamy relations, and
the monogamy relations’ swapping and cycling can also be
obtained with the adjustment of detunings or coupling param-
eters.

The structure of this paper is as follows. In Sec. II, we
present the model and its Hamiltonian. We show the results
and discussion in Sec. III, in which Sec. III A introduces
the perturbative results, Sec. III B exhibits the multipartite
EPR steering criterion, Sec. III C discusses the multipartite
EPR steering in the DCA, Sec. III D discusses the monogamy
relations of the multipartite EPR steering in the DCA, and
Sec. III E shows the influence of temperature on the system.
We summarize this paper in Sec. IV.

II. MODEL AND HAMILTONIAN

We study the system depicted in Fig. 1(a), consisting of
three finite coplanar waveguide-microwave resonator subsys-
tems. In the subsystem, the microwave resonator is a parallel
resistor-inductor-capacitor (RLC) resonator, which is strongly
coupled with the transmission line resonator (TLR), as shown
in Fig. 1(b). The TLRs interact with each other through a
superconducting quantum interference device (SQUID) [47].
Changing the external magnetic flux φext of SQUID generates
the time-dependent boundary conditions.

The Hamiltonian describing the above system is written as

H = h̄
3∑

k=1

(�ka†
kak + ωkb†

kbk )

+ h̄
3∑

k=1

Gk (b†
kak + bka†

k )

+ h̄
∑
〈k.l〉

βk,l (t )(a†
k + ak )(a†

l + al ). (1)

The subscript k represents different subsystems, a†
k and ak

are the creation and annihilation operators of the TLR modes
with characteristic frequency �k , and b†

k and bk represent
the creation and annihilation operators of the RLC resonator
modes with characteristic frequency ωk . In Eq. (1), the second
line contains three different energy-exchange interactions,
each TLR resonantly interacts with the corresponding RLC
resonator with the strength Gk . The third line represents the

interaction of the different TLR, and βk,l (t ) is the coupling
strength between kth TLR mode and lth TLR mode.

It should be noted that the driving frequency of SQUID
�d must be less than its plasma frequency �p, therefore, the
external flux φext (t ) of SQUID is written as [11]

φext

2ϕ0
= φ̄ +

∑
〈k,l〉

�k,l cos
(
�k,l

d t
)
, (2)

with φ̄ is a constant offset and �k,l is little variation, ϕ0 =
φ0/2π , φ0 is magnetic flux quantum. The time-dependent
coupling parameter βk,l (t ) is given by [11]

βk,l (t ) = βk,l
0 cos

(
�k,l

d t
)
, (3)

where

βk,l
0 = ϕ2

0

4EJ

sin φ̄

cos2φ̄

√
�k�l

CkCl

I

ZkZl
�k,l , (4)

and Ck and Zk are corresponding capacitance and impedance
of TLRk . According to Eqs. (2) and (4), controllable φext

allows us to obtain tunable driving frequency and coupling
strength βk,l

0 . Turning off the external flux of SQUID at rea-
sonable time, the external driving and interaction of the TLRs
will disappear.

III. RESULTS AND DISCUSSION

A. Perturbative results

When the system satisfies the condition βk,l
0 /�k � 1, we

can ignore the fast-oscillating term and go to the interac-
tion frame by means of rotating-wave approximation [11,48].
Therefore, in the interaction picture Eq. (1) is rewritten as [11]

Heff = h̄
3∑

k=1

Gk (b†
kak + bka†

k ) + h̄

2

(
β1,2

0 a†
1a†

2ei(�1+�2 )t

+β2,3
0 a†

2a†
3ei(�2+�3 )t + β1,3

0 a†
1a3ei(�1−�3 )t + H.c.

)
.

(5)

We use the perturbative theory to derive the state |	(t )〉
expanded up to the third order from state |000〉TLR ⊗
|000〉q under Eq. (5), where |0〉, |1〉, |2〉, and |3〉
are Fock-number states of TLRs and RLC resonators.
|	(t )〉 has projections into the state |ϕn〉, |ϕn〉 is specifi-
cally written as |000〉TLR ⊗ |m〉q (m = 110, 011), |n〉TLR ⊗
|001〉q, |n〉TLR ⊗ |100〉q (n = 010, 021, 120), |x〉TLR ⊗ |000〉q
(x = 000, 110, 011, 022, 220, 330, 033, 132, 231, 121), and
|y〉TLR ⊗ |010〉q (y = 001, 100, 111, 012, 210).

|	(t )〉 can be written as a linear superposition of the |ϕn〉.
In terms of the average value formula, we present all average
values expressed in the EPR criteria in the system. Some
are shown here, and the rest of the values are shown in the
Appendix:

〈b1b3〉 = 〈b3b1〉 = 0,

〈b1b2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (3)
|000〉TLR⊗|110〉q

,

〈b2b1〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (3)
|000〉TLR⊗|110〉q

,

〈b2b3〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (3)
|000〉TLR⊗|011〉q

,
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〈b3b2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (3)
|000〉TLR⊗|011〉q

,

〈b†
1b1〉 = ∣∣ f (2,3)

|010〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|000〉TLR⊗|110〉q

∣∣2

+ ∣∣ f (3)
|021〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|100〉q

∣∣2
,

〈b†
3b3〉 = ∣∣ f (2,3)

|010〉TLR⊗|001〉q

∣∣2 + ∣∣ f (3)
|000〉TLR⊗|011〉q

∣∣2

+ ∣∣ f (3)
|021〉TLR⊗|001〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|001〉q

∣∣2
,

〈b†
2b2〉 = ∣∣ f (3)

|000〉TLR⊗|110〉q

∣∣2 + ∣∣ f (3)
|000〉TLR⊗|011〉q

∣∣2

+ ∣∣ f (3)
|012〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|210〉TLR⊗|010〉q

∣∣2

+ ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2 + ∣∣ f (2,3)
|001〉TLR⊗|010〉q

∣∣2

+ ∣∣ f (2,3)
|100〉TLR⊗|010〉q

∣∣2
, (6)

where f is the perturbative coefficient of |	(t )〉, and the
superscripts represent the orders in the perturbative expression
at which the f appears. The expression of f is shown in the
Appendix.

B. Criteria for the multipartite EPR steering

EPR steering criteria [33] proposed by Reid are typically
used to study the EPR steering, and we will employ the criteria
to our system. Defining two quadrature operators as Xdk =
dk + d†

k , Ydk = −i(dk − d†
k ), dk = ak, bk . The EPR steering

criteria are given by [33,36]

Wdl →dk = Vinf (Xdk )Vinf (Ydk ) < 1 (dl → dk ) (7)

or
Wdk→dl = Vinf (Xdl )Vinf (Ydl ) < 1 (dk → dl ), (8)

and the variances mentioned are defined as

Vinf (Xdk (dl ) ) = V (Xdk (dl ) ) − V 2(Xdk , Xdl )

V (Xdl (dk ) )
, (9)

k, l = 1, 2, 3, k �= l , and V (n) = 〈n2〉 − 〈n〉2, V (n, m) =
〈nm〉 − 〈n〉〈m〉. In our system, 〈d2

k 〉 = 0 and 〈dkd†
l 〉 = 0

[49,50]; we employ witness to determine whether the EPR
steering occurs:

wdl →dk = 〈d†
k dk〉

(〈d†
l dl〉 + 1

2

)
|〈dkdl〉|2

< 1, (10)

wdk→dl = 〈d†
l dl〉

(〈d†
k dk〉 + 1

2

)
|〈dldk〉|2

< 1. (11)

The condition wdl →dk < 1 (wdk→dl < 1) proves the one-way
EPR steering for dl → dk (dk → dl ). The one-way EPR steer-
ing occurs when one of them holds. If inequality (10) and
inequality (11) hold simultaneously, there will be two-way
EPR steering for dl ↔ dk .

C. Multipartite EPR steering in the DCA

In this section, we focus on the multipartite EPR steering.
The EPR steering for RLC resonator modes vary with time in
Fig. 2. Due to the DCE, there are pairs of Casimir photons
created in the system. The state of field will be influenced by
photon generation and increases with time, which results in

FIG. 2. Time evolution of witnesses wbk→bl in (a)–(c). In (d),
the red, blue, and green circles represent RLC resonator modes b1,
b2, and b3, respectively. The green solid arrow (with red crosses)
represents no EPR steering, and the blue arrows disappear earlier
than the red ones. As for the same color arrows, the dashed arrow
disappears earlier than the solid arrow. The related parameters are
�1/2π = 3.2 GHZ, �2/2π = 4.8 GHZ, and �3/2π = 7 GHZ for
the three TLRs. The TLR-TLR coupling strengths are β1,2

0 = β2,3
0 =

β1,3
0 = 0.005�1. Each RLC resonator resonantly interacts with corre-

sponding TLR with the coupling strength Gk = 0.04�2 (k = 1, 2, 3).

sudden death for the EPR steering in the system [51]. Fig-
ure 2 also exhibits disappearance orders of the EPR steering
for different modes. At first, there are two pairs of two-way
EPR steerings for b1 ↔ b2 and b2 ↔ b3; these EPR steer-
ing correlations have disappeared successively over time in
Figs. 2(a) and 2(b), and corresponding disappearance orders
represented by different colors and types of arrows are de-
scribed in Fig. 2(d). We can clearly see that the EPR steering
for b2 → b1 shows the strongest robustness against the time.
The time-dependent external driving flux φext (t ) of SQUID
can be considered as a switch, and the different types of the
EPR steering will be obtained through operating the switch
in the system. In Fig. 2, turning off the φext at t = 0.07 or
(0.11) ns, EPR steering decoherence source caused by the
DCE will be cut off, and the system remain desired two-
way EPR steering for b2 ↔ b1 or one-way EPR steering for
b2 → b1, respectively. We have realized the multipartite EPR
steerings’ orderly sudden death in Fig. 2, and the system is
convenient for turning on or off the external flux of SQUID
to control the state of the system. These characteristics are
conducive to different quantum researches, such as quantum
secret sharing [52]. If we change TLR frequencies, such as
�1/2π = 5 GHZ, �2/2π = 4 GHZ, and �3/2π = 6 GHZ,
the disappeared orders are different and the EPR steering
for b3 → b2 shows the strongest robustness against the time
(not shown here). The superconducting circuit used in the
model has excellent controllability, and it is convenient to
turn on or off the external driving flux φext and control TLR
frequencies in the system. Now we take the time as a constant
and study the effect of other parameters on EPR steering.
Figure 3(a) shows that b2 can steer b1 but b1 cannot steer
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FIG. 3. wb2→b1 and wb1→b2 vary with G1/�2 under the condition
of G2/G1 = 2 in (a), G2/G1 = 0.4 in (b). In (a) and (b), param-
eters we choose are �1/2π = 3.2 GHZ, �2/2π = 4.8 GHZ, and
�3/2π = 7 GHZ, t = 0.18 ns, G3 = 0.04�2, β1,2

0 = β2,3
0 = β1,3

0 =
0.005�1. wa3→b2 and wb2→a3 vary with detuning �32/�1 in (c) and
(d), other parameters we choose are �1/2π = 3.2 GHZ, �2/2π =
4.8 GHZ, t = 0.6 ns, G1 = G3 = 0.6G2 = 0.04�2, β1,2

0 = β2,3
0 =

β1,3
0 = 0.005�1.

b2 simultaneously with G2/G1 = 2. On the contrary, we have
made G2/G1 = 0.4 in Fig. 3(b) and the one-way EPR steering
for b1 → b2 occurs. According to the Figs. 3(a) and 3(b), if
G1 is relatively smaller than G2, it is easier to realize the
EPR steering for b2 → b1 and the reverse is true. That is,
we can reverse the direction of one-way EPR steering via
controllable parameter (G2/G1) inversion in the system. In
addition, Figs. 3(c) and 3(d) realize the one-way EPR steer-
ing for a3 → b2 or b2 → a3 in terms of controlling different
detuning (�32) region. The direction of one-way EPR steering
can also be reversed via tuning parameter (�32). In summary,
our superconducting waveguide system has the advantage of
being simple for controlling parameters, which is conducive
to reverse the direction of the one-way EPR steering.

The preceding parts show a detailed discussion about the
EPR steering. The system not only realizes the EPR steerings’
orderly sudden death, but also reverses the direction of the
EPR steering by tuning parameters. The multipartite EPR
steering is useful for the quantum information transmission
[53], provides a suitable way to realize quantun secure com-
munication [54], and lays a foundation for constructing more
complex quantum networks [54]. Tunable external driving
flux φext plays an important role in the system, turning it
off at reasonable time to get desired state of the system. We
can obtain completely different results compared with Fig. 2,
and realize the controllability of the quantum state with the
adjustment of TLR frequencies.

D. Monogamy relations in the DCA

We have discussed the multipartite EPR steering for dif-
ferent modes and found some interesting phenomena in

FIG. 4. Time evolution of wa2→a1 and wb2→a1 in (a), wa2→a3 and
wb2→a3 in (b). The corresponding parameters are the same as Fig. 2.

Sec. III C. In this section, we focus on the monogamy relations
of multipartite EPR steering, which play an important role
in quantum information transmission. He et al. have studied
four diverse types of monogamy relations based on the cas-
caded FWM [29]. Here, we propose coupled TLR and RLC
resonators in the DCA to investigate monogamy relations of
multipartite EPR steering.

We note the first photon-RLC resonator interaction term
in Hamiltonian (5), h̄

∑3
k=1 Gk (b†

kak + bka†
k ), which can be

used to swap states between photon modes and resonator
modes. Therefore, the model can realize quantum information
swapping between different modes, as shown in Fig. 4. In
Fig. 4(a), the EPR steering for a2 → a1 occurs during the
region of 0 < t (ns) < 0.58, b2 cannot steer a1 at the same
time. The phenomenon belongs to the type-I monogamy re-
lation [29]; two diverse modes cannot steer the same third
one simultaneously. However, when 0.58 < t (ns) < 1.1, the
EPR steering for a2 → a1 disappears and b2 begin to steer
a1, which is the type-I monogamy relation of b2 → a1. As
for a same steered party a1, the above process can be un-
derstood as the conversion of steering party from a2 ⇒ b2,
and the system achieves the type-I monogamy relation swap-
ping. As shown in Fig. 4(a), there is continuous swapping
between steering parties of the type-I monogamy relation
over time. In Fig. 4(b), as for a same steered party a3, the
system realizes the type-I monogamy relation swapping for
(a2 → a3) ⇔ (b2 → a3) (⇔ represents monogamy relation
swapping, → represents the EPR steering) due to steering
party conversion between a2 and b2, switching off the external
driving flux in reasonable time to obtain desired monogamy
relation. If changing TLR frequencies, such as �1/2π = 5
GHZ, �2/2π = 4 GHZ, and �3/2π = 6 GHZ, we can realize
the monogamy relation swapping in terms of the steering party
conversion between a3 and b3 (not shown here).

Now we take the time as a constant and study the effect
of other parameters on monogamy relation. We focus on the
three-mode combination in Fig. 5. This is shown in Fig. 5(a),
where b2 as steered party, b1 can steer it but b3 cannot simul-
taneously. This is the type-I monogamy relation of b1 → b2,
corresponding monogamy relation is shown in Fig. 5(c). Com-
pared with Fig. 5(a), we change the detuning �32 and get
the type-I monogamy relation of b3 → b2 in Fig. 5(b); the
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FIG. 5. wb1→b2 and wb3→b2 as function of detuning �32/�1 in
(a) and (b). Corresponding type-I monogamy relations are shown
in (c) and (d). Other parameters are �1/2π = 3.2 GHZ, �3/2π =
7 GHZ, t = 0.06 ns, G1 = 1.5G2 = G3 = 0.09�1, β1,2

0 = β2,3
0 =

β1,3
0 = 0.005�1.

corresponding monogamy relation is shown in Fig. 5(d). The
steering party can be converted between b1 and b3 by tuning
detuning �32 to obtain a type-I monogamy relation swapping
in the system.

Figure 6 shows another two three-mode combinations. a1

can steer b2 during the region of 1.09 < �12/�3 < 1.66 in
Fig. 6(a), but a3 cannot steer b2 in the same region in Fig. 6(b),
which indicates the type-I monogamy relation of a1 → b2.
However, if tuning parameter �12, the type-I monogamy re-
lation of a1 → b2 can be lifted and we will realize the type-I
monogamy relation of a3 → b2 for the case of 1 < �12/�3 <

1.05 or 1.7 < �12/�3 < 1.8 in Figs. 6(a) and 6(b). As for
a same steered party b2, the system realizes the steering
party swapping between a1 and a3, which can be regarded
as the monogamy relation swapping. Similarly, the system
also realizes the monogamy relation of a1 → a2 or a3 →
a2 and obtains corresponding monogamy relation swapping
in Figs. 6(c) and 6(d). The above discussion confirms that

FIG. 6. wa1→b2 , wa3→b2 , wa1→a2 , and wa3→a2 as functions of
detuning �12/�3 and coupling strength G2/�3 in (a)–(d), respec-
tively. Other parameters are �2/2π = 4.8 GHZ, �3/2π = 7 GHZ,
t = 0.1 ns, G1 = G3 = 0.04�2, β1,2

0 = β2,3
0 = β1,3

0 = 0.032π GHZ.

FIG. 7. wa1→b2 , wb1→b2 , and wb3→b2 vary with G2/�2 under the
condition of G1 = 0.06�1, β1,2

0 = 0.003�1, �2/2π = 6.1 GHZ in
(a), G1 = 0.12�1, β1,2

0 = 0.003�1, �2/2π = 4.8 GHZ in (b), G1 =
0.06�1, β1,2

0 = 0.008�1, �2/2π = 4.8 GHZ in (c). Each figure plots
the witness with the same region of G2/�2 in (a)–(c). Correspond-
ing type-I monogamy relations described in (d)–(f) and monogamy
relation cycling shown in (g). Other parameters are �1/2π = 3.2
GHZ, �3/2π = 7 GHZ, G3 = 0.12�1, t = 0.06 ns, β2,3

0 = β1,3
0 =

0.005�1.

the steering party can be converted between a1 and a3 in
terms of tuning detuning �12 to obtain type-I monogamy
relation swapping. Comparing Fig. 6(a) with Fig. 6(c), the
mode a1 can steer b2 and a2 with same parameter range
when 1.09 < �12/�3 < 1.66. This is shown in Figs. 6(b) and
6(d), a3, as steering party, can also steer b2 and a2 when
1 < �12/�3 < 1.05 or 1.7 < �12/�3 < 1.8. In addition to
realizing type-I monogamy relation swapping by convert-
ing steering parties between a1 and a3, the steering party
(a1 or a3) can also steer two steered parties (b2 and a2)
simultaneously.

Figure 7 discusses the four-mode combination in which b2

as steered party, and b1, b3, and a1 as steering parties. It is
clear that only the wb3→b2 < 1 in Fig. 7(a), which indicates the
type-I monogamy relation of b3 → b2 depicted in Fig. 7(d). In
addition, Fig. 7(a) exhibits the robustness of the EPR steering
for b3 → b2 against the coupling. Compared with Fig. 7(a),
we tune the parameters G1 and �2 in Fig. 7(b) and parame-
ters �2 and β1,2

0 by adjusting the external flux of SQUID in
Fig. 7(c). The type-I monogamy relation of b3 → b2 is lifted,
and the type-I monogamy relations of b1 → b2 and a1 → b2

are obtained, respectively. The steering party cycling for b3 ⇒
b1 ⇒ a1 ⇒ b3 is realized in terms of controlling parameters,
which can be understood as the monogamy relation cycling
for (b3 → b2) ⇒ (b1 → b2) ⇒ (a1 → b2) ⇒ (b3 → b2) (⇒
represents monogamy relation cycling, → represents the EPR
steering), as shown in Fig. 7(g). The system also realizes
the robustness of the EPR steering for b1 → b2 and a1 → b2

against the coupling in Figs. 7(b) and 7(c), respectively. Sim-
ilarly, we also realize the monogamy relation cycling in the
opposite direction via tuning parameters G1, �2, and β1,2

0
in Fig. 7(g). In a word, the steering party can be converted
in the order of blue arrows in Fig. 7(g), which is the type-I
monogamy relation cycling. It is similar to the three-mode
combinations, and the controllable type-I monogamy relation
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FIG. 8. wa3→a1a2b2 , wb1→a1a2b2 , wa1a3→a2b2 , and wb1→a2b2 vary
with β1,2

0 /�1 under the condition of t = 2.55 ns in (a)–(c). Each
figure plots the witness with same region of β1,2

0 /�1 in (a)–
(c). Corresponding type-II monogamy relations are shown in
(d) and (e). Other parameters are �1/2π = 3.2 GHZ, �2/2π = 4.8
GHZ, �3/2π = 7 GHZ, G1 = G2 = G3 = 0.04�2, β2,3

0 = β1,3
0 =

0.005�1.

has been realized through tunable parameters in four-mode
combination in the system.

Finally, we begin with the five-mode combination contain-
ing a1, a2, a3, b1, b2 and investigate corresponding monogamy
relations of the multipartite EPR steering. In Fig. 8(a), there
is the EPR steering for a3 → a1a2b2, but b1 cannot steer the
group (a1a2b2) during the region of 1 � β1,2

0 /�1(×10−3) �
8.1. In Fig. 8(b), the group (a1a3) can steer the group (a2b2),
but the mode b1 cannot steer the group (a2b2) under the
condition of 5 � β1,2

0 /�1(×10−3) � 10.2. The above EPR
steerings have the common characteristic, that is, the steered
parties consist of more than one mode and can only be
steered by one independent group, which belongs to the type-
II monogamy relation [29]. Comparing Figs. 8(a) and 8(b),
we find that the two type-II monogamy relations hold in
different parameter regions. The type-II monogamy relation
of a3 → a1a2b2 is obtained and the type-II monogamy rela-
tion of a1a3 → a2b2 is lifted when 1.0 < β1,2

0 /�1(×10−3) <

5.0. However, during the region of 8.1 < β1,2
0 /�1(×10−3) <

10.2, the type-II monogamy relation of a3 → a1a2b2 is lifted
and the type-II monogamy relation of a1a3 → a2b2 is real-
ized. The above process can be regarded as the monogamy
relation swapping. The steering party can be converted be-
tween the mode a3 and the group (a1a3) to obtain the
type-II monogamy relation swapping with the adjustment
of parameter β1,2

0 , where controllable β1,2
0 can be obtained

through tuning flux φext of SQUID. In addition to realizing
type-II monogamy relation of the multipartite EPR steering,
the system can also convert steering party to obtain type-II
monogamy relation swapping.

It is innovative to discuss the monogamy relations in the
frame of superconducting circuit based on the DCE, which is
different from the paper [28,29]. We can get type-I and type-II
monogamy relation swapping and cycling by converting steer-
ing parties with the adjustment of corresponding parameters in
such a conveniently manipulative superconducting circuit.

FIG. 9. Witnesses wb2→b1 vary with time with different tempera-
tures. Other parameters are the same as Fig. 2.

E. Influence of temperature on the system

In superconducting circuit experiments, the environment
temperature must be taken into account. Therefore, we discuss
the influence of temperature in this section. For the sake of
simplicity, we only consider the temperature of the TLR1.
The initial state of the system becomes |n100〉TLR ⊗ |000〉q,

where n1 = (e
h̄�1
kT − 1)−1. Figure 9 plots the witness b2 → b1

varying with time at different temperatures. The higher the
temperature is, the earlier sudden death for the EPR steering
is. The low temperature is beneficial to the existence of the
EPR steering. Figure 10 shows time evolution of the EPR
steering for RLC resonator modes when the system contains
a reasonable amount of measurement noise. Compared with
Fig. 2, there are the same disappearance orders of the EPR
steering in Fig. 10, but corresponding sudden death for the
EPR steering is faster. For example, there is the sudden death
for the EPR steering of b2 → b1 when t = 0.13 ns in Fig. 2
and t = 0.10 ns in Fig. 10. Therefore, reducing measurement
noise is necessary for quantum information operation and
transmission.

FIG. 10. Time evolution of witnesses wbk→bl in (a)–(c). In (d),
different colors and types of arrows represent disappearance orders;
more details refer to Fig. 2 caption. The related temperature is
T = 4 mK, and other parameters are the same as Fig. 2.
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IV. CONCLUSION

In conclusion, we have studied the multipartite EPR steer-
ing and type-I and type-II monogamy relations by means of
the DCE in the frame of conveniently manipulative super-
conducting waveguide circuit. We get the following results
through analysis and calculation.

The external driving flux of the SQUID plays an important
role in the system, and we can control the EPR steering and
monogamy relations by switching on or off the flux. The
system has achieved the one-way or two-way EPR steer-
ing generation and orderly sudden death for RLC resonator
modes, and reversing the direction of the one-way EPR steer-
ing with the adjustment of coupling parameters. Furthermore,
the type-I and type-II monogamy relations have been obtained
in the system, and we also get monogamy relations swapping
and cycling via converting steering parties in suitable param-
eter ranges of detunings or coupling strengths. A proposed

circuit cannot avoid measurement noise. We find that low
temperature is conducive to the existence of the EPR steering.

We implement an innovative way to investigate the
monogamy relations of the multipartite EPR steering, in
the DCA under the framework of superconducting quantum
circuit. In summary, based on all the above conclusions,
the paper is conducive to the research and development of
quantum information, provides a suitable way for the secure
quantum communication, and lays a foundation for construct-
ing more complex quantum networks.
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APPENDIX

We exhibit some average values 〈dkdl〉 and 〈d†
k dk〉 in Sec. III A, and the rest of the values are expressed as follows:

〈a1b2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (2,3)
|100〉TLR⊗|010〉q

+
√

2 f (1,2,3)∗
|110〉TLR⊗|000〉q

f (3)
|210〉TLR⊗|010〉q

+ f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|111〉TLR⊗|010〉q

,

〈b2a1〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (2,3)
|100〉TLR⊗|010〉q

+
√

2 f (1,2,3)∗
|110〉TLR⊗|000〉q

f (3)
|210〉TLR⊗|010〉q

+ f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|111〉TLR⊗|010〉q

,

〈a3b2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (2,3)
|001〉TLR⊗|010〉q

+
√

2 f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|012〉TLR⊗|010〉q

+ f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|111〉TLR⊗|010〉q

,

〈b2a3〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (2,3)
|001〉TLR⊗|010〉q

+
√

2 f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|012〉TLR⊗|010〉q

+ f (1,2,3)∗
|011〉TLR⊗|000〉q

f (3)
|111〉TLR⊗|010〉q

,

〈a1a2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (1,2,3)
|110〉TLR⊗|000〉q

+ f (2,3)∗
|001〉TLR⊗|010〉q

f (3)
|111〉TLR⊗|010〉q

+
√

3 f (2,3)∗
|022〉TLR⊗|000〉q

f (3)
|132〉TLR⊗|000〉q

+
√

6 f (2,3)∗
|121〉TLR⊗|000〉q

f (3)
|231〉TLR⊗|000〉q

+ 2 f (1,2,3)∗
|110〉TLR⊗|000〉q

f (2,3)
|220〉TLR⊗|000〉q

+ 3 f (2,3)∗
|220〉TLR⊗|000〉q

f (3)
|330〉TLR⊗|000〉q

+
√

2
(

f (1,2,3)∗
|011〉TLR⊗|000〉q

f (2,3)
|121〉TLR⊗|000〉q

+ f (2,3)∗
|100〉TLR⊗|010〉q

f (2,3)
|210〉TLR⊗|010〉q

+ f (2,3)∗
|010〉TLR⊗|001〉q

f (2,3)
|120〉TLR⊗|001〉q

+ f (2,3)∗
|010〉TLR⊗|100〉q

f (3)
|120〉TLR⊗|100〉q

)
,

〈a2a1〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (1,2,3)
|110〉TLR⊗|000〉q

+ f (2,3)∗
|001〉TLR⊗|010〉q

f (3)
|111〉TLR⊗|010〉q

+
√

3 f (2,3)∗
|022〉TLR⊗|000〉q

f (3)
|132〉TLR⊗|000〉q

+
√

6 f (2,3)∗
|121〉TLR⊗|000〉q

f (3)
|231〉TLR⊗|000〉q

+ 2 f (1,2,3)∗
|110〉TLR⊗|000〉q

f (2,3)
|220〉TLR⊗|000〉q

+ 3 f (2,3)∗
|220〉TLR⊗|000〉q

f (3)
|330〉TLR⊗|000〉q

+
√

2
(

f (1,2,3)∗
|011〉TLR⊗|000〉q

f (2,3)
|121〉TLR⊗|000〉q

+ f (2,3)∗
|100〉TLR⊗|010〉q

f (2,3)
|210〉TLR⊗|010〉q

+ f (2,3)∗
|010〉TLR⊗|001〉q

f (2,3)
|120〉TLR⊗|001〉q

+ f (2,3)∗
|010〉TLR⊗|100〉q

f (3)
|120〉TLR⊗|100〉q

)
,

〈a3a2〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (1,2,3)
|011〉TLR⊗|000〉q

+ f (2,3)∗
|100〉TLR⊗|010〉q

f (3)
|111〉TLR⊗|010〉q

+
√

3 f (2,3)∗
|220〉TLR⊗|000〉q

f (3)
|231〉TLR⊗|000〉q

+
√

6 f (2,3)∗
|121〉TLR⊗|000〉q

f (3)
|132〉TLR⊗|000〉q

+ 2 f (1,2,3)∗
|011〉TLR⊗|000〉q

f (2,3)
|022〉TLR⊗|000〉q

+ 3 f (2,3)∗
|022〉TLR⊗|000〉q

f (3)
|033〉TLR⊗|000〉q

+
√

2
(

f (1,2,3)∗
|110〉TLR⊗|000〉q

f (2,3)
|121〉TLR⊗|000〉q

+ f (2,3)∗
|010〉TLR⊗|100〉q

f (2,3)
|021〉TLR⊗|100〉q

+ f (2,3)∗
|010〉TLR⊗|001〉q

f (2,3)
|021〉TLR⊗|001〉q

+ f (2,3)∗
|001〉rm TLR⊗|010〉q

f (3)
|012〉TLR⊗|010〉q

)
,

〈a2a3〉 = f (0,2,3)∗
|000〉TLR⊗|000〉q

f (1,2,3)
|011〉TLR⊗|000〉q

+ f (2,3)∗
|100〉TLR⊗|010〉q

f (3)
|111〉TLR⊗|010〉q

+
√

3 f (2,3)∗
|220〉TLR⊗|000〉q

f (3)
|231〉TLR⊗|000〉q

+
√

6 f (2,3)∗
|121〉TLR⊗|000〉q

f (3)
|132〉TLR⊗|000〉q

+ 2 f (1,2,3)∗
|011〉TLR⊗|000〉q

f (2,3)
|022〉TLR⊗|000〉q

+ 3 f (2,3)∗
|022〉TLR⊗|000〉q

f (3)
|033〉TLR⊗|000〉q

+
√

2
(

f (1,2,3)∗
|110〉TLR⊗|000〉q

f (2,3)
|121〉TLR⊗|000〉q

+ f (2,3)∗
|010〉TLR⊗|100〉q

f (2,3)
|021〉TLR⊗|100〉q

+ f (2,3)∗
|010〉TLR⊗|001〉q

f (2,3)
|021〉TLR⊗|001〉q

+ f (2,3)∗
|001〉rm TLR⊗|010〉q

f (3)
|012〉TLR⊗|010〉q

)
,
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〈a†
1a1〉 = ∣∣ f (2,3)

|100〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|001〉q

∣∣2 + ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2 + ∣∣ f (1,2,3)
|110〉TLR⊗|000〉q

∣∣2

+ ∣∣ f (2,3)
|121〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|132〉TLR⊗|000〉q

∣∣2 + 2
(∣∣ f (3)

|210〉TLR⊗|010〉q

∣∣2 + ∣∣ f (2,3)
|220〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|231〉TLR⊗|000〉q

∣∣2)
+ 3

∣∣ f (3)
|330〉TLR⊗|000〉q

∣∣2
,

〈a†
3a3〉 = ∣∣ f (2,3)

|001〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|021〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|021〉TLR⊗|001〉q

∣∣2 + ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2 + ∣∣ f (1,2,3)
|011〉TLR⊗|000〉q

∣∣2
,

+ ∣∣ f (2,3)
|121〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|231〉TLR⊗|000〉q

∣∣2 + 2
(∣∣ f (3)

|012〉TLR⊗|010〉q

∣∣2 + ∣∣ f (2,3)
|022〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|132〉TLR⊗|000〉q

∣∣2)
+ 3

∣∣ f (3)
|033〉TLR⊗|000〉q

∣∣2
,

〈a†
2a2〉 = ∣∣ f (2,3)

|010〉TLR⊗|001〉q

∣∣2 + ∣∣ f (2,3)
|010〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|012〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|210〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2

+ 2
(∣∣ f (3)

|021〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|021〉TLR⊗|001〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|100〉q

∣∣2 + ∣∣ f (3)
|120〉TLR⊗|001〉q

∣∣2 + ∣∣ f (2,3)
|220〉TLR⊗|000〉q

∣∣2

+ ∣∣ f (2,3)
|022〉TLR⊗|000〉q

∣∣2 + ∣∣ f (2.3)
|121〉TLR⊗|000〉q

∣∣2) + 3
(∣∣ f (3)

|132〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|231〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|330〉TLR⊗|000〉q

∣∣2

+ ∣∣ f (3)
|033〉TLR⊗|000〉q

∣∣2) + ∣∣ f (1,2,3)
|110〉TLR⊗|000〉q

∣∣2 + ∣∣ f (1,2,3)
|011〉TLR⊗|000〉q

∣∣2
, (A1)

〈a†
1a†

3a1a3〉 = ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2 + ∣∣ f (2,3)
|121〉TLR⊗|000〉q

∣∣2 + 2
(∣∣ f (3)

|132〉TLR⊗|000〉q

∣∣2 + ∣∣ f (3)
|231〉TLR⊗|000〉q

∣∣2)
,

〈a†
2b†

2a2b2〉 = ∣∣ f (3)
|111〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|210〉TLR⊗|010〉q

∣∣2 + ∣∣ f (3)
|012〉TLR⊗|010〉q

∣∣2
, 〈a1a2b2b1〉 = 〈a1a2b1〉 = 0,

〈a†
1a†

2b†
2a1a2b2〉 = ∣∣ f (3)

|111〉TLR⊗|010〉q

∣∣2 + 2
∣∣ f (3)

|210〉TLR⊗|010〉q

∣∣2
, 〈a1a2b2a3〉 = 〈a2b2a1a3〉 = f (0,2,3)∗

|000〉TLR⊗|000〉q
f (3)
|111〉TLR⊗|010〉q

. (A2)

The corresponding coefficients f expressed in Eqs. (6), (A1), and (A2) are expressed as follows:

f (3)
|021〉TLR⊗|100〉q

= 3
√

2β1,2
0 β2,3

0 G1

4a2b
[(eiat − iat − 1)(1 − eibt )],

f (3)
|120〉TLR⊗|001〉q

= 3
√

2β1,2
0 β2,3

0 G3

4b2a
[(eibt − ibt − 1)(1 − eiat )],

f (3)
|111〉TLR⊗|010〉q

= β1,2
0 β2,3

0 G2

4a2b2
[(a + b)(1 − eiat )(eibt − 1) + abit (eiat + eibt − 2)],

f (2,3)
|010〉TLR⊗|001〉q

= β1,2
0 β1,3

0 G3

4ac2
(e−ict + ict − 1) + G3

4b2

(
2β2,3

0 − β1,2
0 β1,3

0 a−1
)
(eibt − ibt − 1),

f (2,3)
|010〉TLR⊗|100〉q

= β2,3
0 β1,3

0 G1

4bc2
(e−ict + ict − 1) + G1

4a2

(
2β1,2

0 − β2,3
0 β1,3

0 b−1
)
(eiat − iat − 1),

f (2,3)
|100〉TLR⊗|010〉q

= β1,2
0 G2(eiat − iat − 1)

2a2
+ β2,3

0 β1,3
0 G2

4b

[(
1 − eiat + ibt

ab

)
− (1 + ibt )(1 − eict )

bc
+ 1 − eiat

a2

]
,

f (2,3)
|001〉TLR⊗|010〉q

= β2,3
0 G2(eibt − ibt − 1)

2b2
+ β1,2

0 β1,3
0 G2

4a

[(
1 − eibt + iat

ab

)
+ (1 + iat )(1 − e−ict )

ac
+ 1 − eibt

b2

]
,

f (3)
|132〉TLR⊗|000〉q

=
√

3β1,2
0 β2,3

0 β2,3
0

4b

(
(a + 3b)(1 − ei(a+2b)t )

2b(a + b)(a + 2b)
+ 1 − eiat

2ab
+ eibt (ei(a+b)t − 1)

a(a + b)
+ ei(a+b)t − 1

(a + b)b

)

+
√

3β1,2
0 β2,3

0 β2,3
0

4a

(
1 − ei(a+2b)t

(a + b)(a + 2b)
+ e2ibt − 1

2b2
+ eibt − 1

b(a + b)
+ 1 − eibt

b2

)
,

f (3)
|231〉TLR⊗|000〉q

=
√

3β1,2
0 β1,2

0 β2,3
0

4a

(
(b + 3a)(1 − ei(b+2a)t )

2a(a + b)(b + 2a)
+ 1 − eibt

2ab
+ eiat (ei(a+b)t − 1)

b(a + b)
+ ei(a+b)t − 1

a(a + b)

)

+
√

3β1,2
0 β1,2

0 β2,3
0

4b

(
1 − ei(b+2a)t

(a + b)(b + 2a)
+ e2iat − 1

2a2
+ eiat − 1

a(a + b)
+ 1 − eiat

a2

)
,
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f (0,2,3)
|000〉TLR⊗|000〉q

= 1 + β1,2
0 β2,3

0 β1,3
0

8

(
(e−iat − 1)(b − c)

a2bc
+ (1 − e−ibt )(c + a)
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where a = �1 + �2, b = �2 + �3, and c = �1 − �3.
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