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Optimal classical and quantum real and complex dimension witness
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We find the minimal number of independent preparations and measurements certifying the dimension of
a classical or quantum system limited to d states, optionally reduced to the real subspace. As a dimension
certificate, we use the linear independence tested by a determinant. We find the sets of preparations and
measurements that maximize the chance to detect larger space if the extra contribution is very small. We discuss
the practical application of the test to certify the space logical operations on a quantum computer.
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I. INTRODUCTION

Few-state systems have become standard building blocks
in current classical and quantum technologies. In particular
two-state (bit) classical logic is the base of computers and
information transfer. Qubits (quantum two-state systems) are
basic logical elements of quantum computers. To increase the
quality of classical and quantum computation and communi-
cation, these systems need precise certification. For instance,
the contribution of external states to qubit operations can lead
to systematic errors, accumulating in long operation circuits
and difficult to correct.

To certify that the number of classical or quantum states
is limited, one can use a dimension witness (the dimension is
the number of states). The usual construction of the witness is
based on a two-stage protocol, the initial preparation and final
measurement [1], which are taken from several respective
possibilities and are independent of each other. Importantly,
the preparation phase must be completed before the start of
the measurement. Such early witnesses were based on linear
inequalities, tested experimentally [2–5], but they could not
detect, e.g., small contributions from other states. In the latter
case, it would be better to use a nonlinear witness [6]. A
completely robust witness must be based on equality, i.e., a
quantity which is exactly zero up to a certain dimension and
can be nonzero above [7,8].

A good witness test is the linear independence of the
specific outcome probability p(y|x) for the preparation x and
measurement y by a suitable determinant [7,8]. In previous
works, a witness of dimension d needed 2k preparations and k
measurements, with d � k for the classical system and d2 � k
for the quantum system. Equality-based tests, like the Sorkin
equality [9] in the three-slit experiment [10–12] testing Born’s
rule [13], belong to a family of precision tests of quantum
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mechanics, benchmarking our trust in fundamental quantum
models and their actual realizations.

Here we show that the number of preparations can be
reduced to k + 1, preserving the properties of the witness, i.e.,
being zero for k � d, (d + 1)d/2, d2 for classical, real, and
complex quantum systems, respectively. The real quantum
system is described by a Hilbert subspace of only real vectors,
which occur, e.g., when the Hamiltonian is purely imaginary
and the unitary operations become real rotations in real space
[14]. The witness is essentially a determinant of the matrix
with entries p(y|x) and an extra row of ones. The construction
of the witness allowed us to analyze both its extremal violation
by additional states and minimal deviations. The extremal
examples for a bit, trit, or qubit can be described in the hybrid
analytical-numerical form, while only the numerical form can
be used for qutrits and higher dimensions. This analysis
should help us to estimate the bounds in practical tests of the
dimension and in the effort to eliminate parasitic states.

II. DIMENSION CERTIFICATE

We consider the standard prepare and measure scenario
with a binary (yes or no or 1 or 0) outcome (Fig. 1). The state
is prepared in one of m possibilities represented by Hermitian
matrices 0 � X̂1, . . . , X̂m, TrX̂ j = 1. The probability of the
measurement of an outcome of 1 (yes) is applied out of k
possibilities p(yi|x j ) ≡ pi j = TrŶiX̂k for the measurement op-
erators 0 � Ŷ1, . . . , Ŷk � 1̂. If the system is classical, with d
states, then pi j = ∑

a qiara j , with a = 1, . . . , d and r describ-
ing the transfer probabilities from the prepared state to the
classical d-dimensional register, while q is the transfer prob-
ability from the register to the measurement outcome. The
quantum states and measurements can be either real or fully
complex. The real register of a d-level quantum state consists
of (d + 1)d/2 Gell-Mann basis matrices with all zeros except
a single 1 on the diagonal or a symmetric off-diagonal pair of
two 1’s, and the complex register is enlarged by (d − 1)d/2
antisymmetric matrices with entries (i,−i).
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FIG. 1. Preparation and measurement scenario; the state is pre-
pared as x and measured by y to give an outcome of either 1 or 0.

Main theorem. Suppose a witness of dimension d ,
W ({pi j}), is always equal to zero for a system of dimension �
d . Then the minimal number of measurements is k = d2 and
k = (d + 1)d/2 in the complex and real spaces, respectively,
while the minimal number of prepared states is m = k + 1.

Proof. We set k = d2 and k = (d + 1)/2 in the complex
and real spaces, respectively. Then each operator Ŷi has k
independent entries, while X̂ j has k − 1 independent entries
(the trace is 1). If either the number of measurements is
k′ < k or the number of preparations is m < k + 1, then the
number of all pi j is k′m, and the dimension of available space
is not smaller, either k′k or m(k − 1), meaning that pi j are
essentially independent.

On the other hand, setting m = k + 1 and Ŷk+1 = 1̂ (the
auxiliary always-yes measurement, which is actually not
performed, meaning pk+1, j = 1) to get a (k + 1) × (k + 1)
matrix of pi j , we can define the witness

Wk = det p. (1)

Note that the determinant can be reduced to a k × k matrix
without changing its value, subtracting, e.g., the last column
from each previous one, i.e.,

pi j → pi j − pi,k+1, (2)

to make it equivalent to the previous one, with all odd
preparations being identical [7]. In our way, the number of
preparations is reduced from 2k to k + 1. Nevertheless, the
original (k + 1) × (k + 1) form is better suited for the analy-
sis of the extremal cases. Now, Wk = 0 for d � k classically,
(d + 1)d/2 � k in the real quantum case, and d2 � k in the
complex quantum case. The determinant is a sum of signed
products of permuted elements of every column. This means
that the given column or row can occur only once in a sin-
gle product. Therefore, whenever the prepared state X̂i is a
convex combination of pure states, the determinant is also
a convex combination of the cases with X̂i replaced by the
pure states. Looking for the extreme case, one can reduce the
search to pure states. For the measurement Ŷj the situation is
a bit different; the search can be reduced to projections but
not necessarily to one dimension. Because of the always-yes
measurement, it suffices to consider the maximal dimension
of the projection space up to d/2.

III. MAXIMAL NONZERO VALUE

The relevant question about the dimension witness is how
nonzero it is, which allows determining whether the system
has the desired dimension. First of all, there always exists a
classical maximum, by linearity obtained for pi j equal to 0
or 1, known as the Hadamard determinant. The general upper
bound is (k + 1)(k+1)/2/2k but is not reached for particularly
low values of k, for which the maximum can be found using

TABLE I. The classical maximum of Wk equivalent to a maximal
determinant of the k × k matrix with entries of 0 or 1.

k 1 2 3 4 5 6 7 8 9

maxWk 1 1 2 3 5 9 32 56 144

algebraic methods [15–17], as summarized in Table I. Second,
for a classical system, the maximum is achieved immediately
when d > k, taking the initial classical state m = 1, rm1 = 1
and 0 otherwise, and qim = pi j for a given p (a maximal
example is given in Table II). Third, the above classical max-
imum is also obtained for a quantum state with d > k, using
analogous reasoning. The nontrivial bounds are for a quantum
system such that d2 > k � d . Due to the antisymmetry of the
determinant, the bounds are always symmetric.

A special case is k + 1 = (d + 1)d/2 and k + 1 = d2 for
real and complex quantum states of dimension d , respectively.
In these cases the determinant can be written as a product of

determinants of separate square matrices for the preparations
X̂i and measurements Ŷj so that (a) the maximum can be de-
termined separately for x and y and (b) the same maximum is
reached if either preparations or measurements are rotated by
an arbitrary orthogonal (unitary) matrix in the real (complex)
case, i.e., X̂i → R̂X̂iR̂T or X̂i → Û X̂iÛ †.

The maximum W2 = (3/4)3/2 � 0.65 in both real and com-
plex qubit space is reached by

x1 = (0, 0, 1),

x2 = (
√

3/2, 0,−1/2), (3)

x3 = (−
√

3/2, 0,−1/2)

(i.e., the vertices of the equilateral triangle) and y1 = (0, 0, 1),
y = (1, 0, 0) using the Bloch sphere notation

2Ŷ = 1̂ + y · σ̂, 2X̂ = 1̂ + x · σ̂, (4)

with |y| = |x| = 1; standard Pauli matrices σ̂ = (σ̂1, σ̂2, σ̂3),
where σ̂1 = |1〉〈2| + |2〉〈1|, σ̂2 = i|2〉〈1| − i|1〉〈2|, and σ̂3 =
|1〉〈1| − |2〉〈2|; and 1̂ = |1〉〈1| + |2〉〈2|.

For a complex qubit, the maximum W3 = 2
√

3/9 � 0.38 is
achieved for

y1 = (1, 0, 0), y2 = (0, 1, 0), y3 = (0, 0, 1),

x1 = (1, 1, 1)/
√

3,

x2 = (1,−1,−1)/
√

3, (5)

x3 = (−1,−1, 1)/
√

3,

x4 = (−1, 1,−1)/
√

3,

i.e., axes for y and the vertices of the regular tetrahedron for
x.

For higher k and d , the search for the maximum of the
determinant-based dimension witness becomes an arduous
task if tackled only from the analytic point of view, although
it is always some algebraic number. That is why we shall
resort to numerical computations in order to maximize the
determinant of the corresponding (k + 1) × (k + 1) matrix.
Therefore, approximate or heuristic methods are required in
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TABLE II. Binary matrices (k + 1) × (k + 1) (without the last row of 1’s) with the maximal Wk given in Table I. They reduce to a k × k
determinant; for example, the last (not shown) row is subtracted from those rows with 1 in the first column, reversing the sign of those rows.

(1 0),
(

1 0 0
0 1 0

)
,

(
1 0 0 1
0 1 0 1
0 0 1 1

)
,

⎛
⎝

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞
⎠,

⎛
⎜⎝

1 0 0 1 1 0
0 1 0 1 1 0
0 0 1 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1

⎞
⎟⎠,

⎛
⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
1 0 0 1 1 1 0
0 1 0 0 1 1 0
1 0 1 0 0 1 0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1 1 0 0
1 1 0 1 0 0 1 1 0
1 1 1 0 1 0 0 1 0
0 1 1 1 0 1 0 0 0
0 0 1 1 1 0 1 0 0
1 0 0 1 1 1 0 1 0
0 1 0 0 1 1 1 0 0
0 0 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0
1 0 0 1 0 1 0 1 1 0
1 0 1 0 0 1 1 0 1 0
1 1 0 0 0 1 1 1 0 0
1 1 1 1 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

practice to find the optimal states. The most successful sta-
tistical method to date, the one we employ, is the stochastic
model of simulated annealing [18], that is, the Metropolis
Monte Carlo algorithm with a fixed temperature T at each
state of the annealing schedule. Other methods exist which are
not of a statistical nature, such as the downhill or amoeba or
gradient methods [19], which involve finite differences when
considering the corresponding function in terms of all real
variables involved.

The optimization is taken over the states x1, . . . , xk+1 and
measurements y1, . . . , yk , which are real or complex unit
vectors in Rd and Cd , depending on the particular instance
(e.g., d = 2 refers to qubits, d = 3 corresponds to qutrits,
and so on). For d = 4, 5 we add a second set of vectors
y′

1, . . . , y′
k (and a third one, y′′, for d = 6) and Gram-Schmidt

orthogonalize it to y, covering all possible dimensions of the
projection space in a single run. With a proper parametriza-
tion, the problem consists of finding the supremum of the
determinant (1). Initially, the temperature is set to the high
value T0, which implies that the domain of possible values for
the variables � is broadly spread. Finishing one cycle means
visiting all the variables in � one after the other. After that,
we compute Wk , which is the cost function. Then, the cycle
starts anew with a different temperature T1 (we choose the
temperature to decrease as Ts+1 = r Ts, r = 1/4, with s being
the number of runs). As the temperature drops, the domain �s

continuously decreases until we reach the desired precision
(10−9 in our case); that is, the algorithm terminates when some
stopping criterion is met. The details of the algorithms, their
use, and the results are given in Appendix A.

The numerical results are presented in Table III. We found
a few remarkable features: (i) The maximum needs the max-
imal dimension of the projection space, i.e., 2 for d = 4, 5
and 3 for d = 6. (ii) For d close to k, the real and complex
cases give the same maximum, so that the witness cannot
distinguish them. (iii) For some maxima the corresponding
states and measurements are surprisingly regular (e.g., hep-
tagonal symmetry for k = 7, d = 5 in the complex case), and
the maximum is rational, while others are almost completely
irregular (e.g. k = 5, d = 3 complex). (iv) The value increases
with d but not always with k.

IV. DETECTION OF HIGHER DIMENSION

The most practical application of the determinant-based
witness is the diagnostic test of a finite-dimensional quantum
system. Suppose the system is designed to be a perfect d-level
state and we want to check it with high accuracy. A possible
contribution from an imaginary part (for a real state) or a
higher level (a complex state) is expected to be small, so
even a small nonzero value of Wk would detect this. Making a
decomposition,

Ŷi = Ŷ 0
i + δŶi, X̂ j = X̂ 0

j + δX̂ j, (6)

with Ŷ 0 and X̂ 0 restricted to a d-dimensional Hilbert space
(real or complex) and only (small) deviations δŶ and δX̂ in
the imaginary or higher-dimensional states. To detect higher
(imaginary) states one must use the witness for k � (d2 +
d )/2 (real case) or k � d2 (complex case) because lower k
will give a nonzero value even for clean d levels. The Jacobi
identity implies in the lowest perturbative order

Wk � Tr(δpAdj p0), (7)

where Adj p is the adjoint matrix of p0
i j = TrŶ 0

i X̂ 0
j and δpi j =

TrδŶiδX̂ j . For k > (d + 1)d/2 or k > d2 all the minors in
the zeroth order are zero, so the optimal choice is k = (d +
1)d/2, d2. Moreover, as stressed earlier for this particular k,
the values of the minors do not depend on the basis of x
or y. To maximize the witness with respect to a potential
higher-space contribution one has to maximize the minors. In
particular, if a single preparation and measurement are sus-
pected, we simply maximize the corresponding minor, taking
the determinant with k → k − 1 whose maximum we have
already discussed.

The practical application of the test requires N repeti-
tions of k2 + k experiments for all values of i and j, with
pi j → Ni j/N for Ni j positive results. Assuming independence
between experiments, the variance of Wk in the null case (a
perfect d-level state) can then be estimated as

N〈W 2
k 〉 �

∑
i j

pi j (1 − pi j )(Adj p)2
ji. (8)
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TABLE III. The quantum maximum of Wk for the (k + 1) × (k + 1) matrix for a d-dimensional system, either real (r) or complex (c). An
empty cell means the value is the nearest number to the left in the row.

k 2r 2c 3r 3c 4r 4c 5r 5c 6r 6c

1 1
2 0.65 1
3 0 0.38 0.84 2
4 0 0 0.60 0.63 1.87 3
5 0 0 0.42 0.46 1.78 3.14 6
6 0 0 0 0.33 1.61 1.68 3.40 5.04
7 0 0 0 0.23 1.41 1.64 3.51 3.72 6.05 6.18
8 0 0 0 0.15 1.30 1.47 3.65 3.79 7.49 7.50
9 0 0 0 0 1.29 1.39 3.77 3.84 10.14 10.34

For large N this equation allows us to estimate how perfect the
qubit (or any d-dimensional system) is. For d = 2 (complex),
we numerically found the constraint 〈W 2

4 〉 � 1/6N , saturated
by preparations and measurements given by

x1 = x2 = (0, 0,−1), x3 = (2
√

2/3, 0, 1/3),

x4,5 = (−
√

2/3,±
√

2/3, 1/3),

y1 = (0, 0, 1), y2 = (1, 0, 0),

y3,4 = (−1/2,±
√

3/2, 0), (9)

using the notation (4). If the measured deviation squared is
of the order of the variance, then we cannot claim the higher
state contribution. For larger Wk formula (7) will reveal the
estimated magnitude of the deviation. As a side remark, this
protocol applies also classically for k = d to test contributions
from higher classical states.

Generalization of the above protocol to higher k is possible
but more complicated. For instance, if k = d2 + 1 or d (d +
1)/2, the deviation is of higher order,

Wk =
∑
i j,i′ j′

sgn( j′ − j)δpi jδpi′ j′Mj j′,ii′ (−1)i+ j+i′+ j′ , (10)

where i < i′, j 	= j′, and Mj j′,ii′ is the minor obtained by
removing columns i, i′ and rows j, j′. On the other hand, the
variance in the null case (qubit) is

N2〈W 2
k 〉 �

∑
i j,i′ j′

pi j pi′ j′ (1 − pi j )(1 − pi′ j′ )M
2
j j′,ii′ . (11)

Equation (11) shows that detection of nonzero Wk for a given
number of repetitions N for k = d2 + 1 or d (d + 1)/2 + 1 has
the same confidence level as for d2 and d (d + 1)/2 for small
deviations δp.

As examples, for a qubit or qutrit we can take pure states
X̂ 0

j = |x j〉〈x j | and Ŷ 0
i = |yi〉〈yi|, and the smallest deviations

should have the forms δX̂ j = |x′
j〉〈x j | + |x j〉〈x′

j | and δŶi =
|y′

i〉〈yi| + |xi〉〈y′
i| with some small vectors |x′

j〉 and |y′
i〉 being

either just purely imaginary (for a real-state test) or in higher-
level space (for a complex-state test). Let us consider a test of
a qubit X̂ 0

j = Ŷ 0
j defined by (4) with

x1 = −x2 = (1, 0, 0), x3 = (0, 1, 0),

x4 = (0, 0, 1) = −x5, (12)

which gives

4W4 =
∑
i=1,2

(δpi1 + δpi2 − δpi4 − δpi5) (13)

and 〈W 2
4 〉 � 1/16N . Certainly, our proposal does not exclude

other choices, and the potential higher-level contributions can
occur in different operations. One should remember that the
test can only falsify the assumed dimension since obtaining
Wk = 0 (within the error bounds) can happen in an accidental
configuration.

V. DISCUSSION

An equality-based dimension witness with an optimal
number states and measurements can help in efficient diag-
nostics of the working Hilbert space of supposed quantum
systems. Deviations from zero can reveal the influence of
parasitic states. By testing various sets of preparations, one
should quantify them and take measures to eliminate them.
The witness can be generalized to various suboptimal con-
figurations, e.g., combinations of more preparations and/or
measurements. In any case, the applicability of this scheme
can depend on the actual physical system and conjectured con-
tributions from extra states. Even more generally, the witness
can, in principle, test any dimension-limited subalgebra of the
Hilbert space. At high dimensions, it becomes problematic to
find maximal Wk , which is essential to estimate the sensitivity
of the witness to extra space contributions.
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APPENDIX A: NUMERICAL SEARCH
FOR THE MAXIMUM

Our basic algorithm to find the maximum of Wk (1) is as
follows:

1 init ial set of states {xi} and observables {y j} given

2 T ← T0

3 repeat until stopping criterion is met
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4 repeat (k, d ) t imes

5 orientate all unit vectors

6 move to the next term within the set

7 endrepeat

8 set the matrix p

9 compute Wk

10 Ts+1 ← r Ts

11 endrepeat

12 return the supremum of Wk (A1)

The number of updates (k, d ) depends on the way the states
are parametrized (k is the number of xi states, and d is their
dimension)

In order to illustrate the dynamics of the numerical analysis
we shall reproduce the numerics of the case k = 4 and a
ququart (a four-level system, d = 4) for two cases, namely,
Ŷj are (i) only one-dimensional projections |y j〉〈y j | and
(ii) two-dimensional projections |y(1)

j 〉〈y(1)
j | + |y(2)

j 〉〈y(2)
j |. In

this last case, |y(1)
j 〉 and |y(2)

j 〉 ought to be orthogonal, so we
must implement a Gram-Schmidt orthogonalization process.
In both instances, we must maximize the absolute value of the
determinant of the matrix pi j with pi j = 〈xi|Ŷj |xi〉 for i < 5
and p5 j = 1

In principle, for d = 4 the general parametrization for a
complex ray xi requires 2×4 = 8 real numbers, which reduce
to 6 after normalization and a global phase, which is irrelevant
for the computation of pi j . However, this number can be
lowered a bit further after some rotations (unitary operations).
Thus, we shall have

x1 = [1, 0, 0, 0],

x2 = [cos A(1), sin A(1), 0, 0],

x3 = [cos A(2) cos A(3), eiA(4) sin A(2) cos A(3),

sin A(3), 0],

x4 = [sin A(5) sin A(6) cos A(7),

eiA(8) sin A(5) sin A(6) sin A(7), (A2)

eiA(9) sin A(5) cos A(6), cos A(5)],

x5 = [sin A(10) sin A(11) cos A(12),

eiA(13) sin A(10) sin A(11) sin A(12),

eiA(14) sin A(10) cos A(11),

eiA(15) cos A(10)].

The additional {y1, y2, y3, y4} follow the general expression of
state x5 in (A2), adding a total of 39 angles, such that A( j) ∈
[0, 2π ) for j = 1–39. Similarly, for the case of two projec-
tors, we have a total of 63 angles, that is, A( j) ∈ [0, 2π ) for
j = 1–63.

In Fig. 2 we depict the evolution of the value of |Wk| versus
each individual determinant evaluation over the set of A( j) ∈
[0, 2π ), j = 1–39 angles. The evolution of |Wk| is bounded
from above by the value 0.936442615, which, upon identi-
fication of the corresponding states {xi, y j}, easily leads to

FIG. 2. Plot of the evolution of the maximum determinant for
k = 5, d = 4 and one projector for the measurement during the sim-
ulated annealing computation. See text for details.

the analytic result Wk = 211/37. Likewise, the evolution of the
value of |Wk| for the case of two projectors is shown in Fig. 3,
returning the maximum value Wk = 212/37 � 1.87288523.

Other instances are tackled exactly in the same vein, chang-
ing only the number of variables, which requires further
computational effort.

APPENDIX B: SPECIAL CASES WITH THE
HALF-ANALYTIC REPRESENTATION

For k = 2 and k = 3 and a qubit we can use the Bloch
representation (4), writing

pi j = (1 + yi · x j )/2, (B1)

so by a quick algebra we get

W2 = [(x1 − x3) × (x2 − x3)] · (y1 × y2)/4, (B2)

W3 = [x1 − x4, x2 − x4, x3 − x4][y1, y2, y3]/8,

FIG. 3. Plot of the evolution of the maximum determinant for
k = 5, d = 4 and two projectors for the measurement during the
simulated annealing computation. See text for details.
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where [a, b, c] = a · (b × c) is the mixed product. Now with
|x j | = |yi| = 1 we quickly find that the maximum is achieved
if yi are the two or three axes while|(x1 − x3) × (x2 − x3)|/2
is the area of the triangle and [x1 − x4, x2 − x4, x3 − x4]/6
is the volume of the tetrahedron with vertices x j . To get the
largest volume, the triangle (tetrahedron) inscribed in a circle
(sphere) of radius 1 must be regular. A simple argument is
that the area (volume) can always be increased by moving an
apex to the diameter perpendicular to the opposite side (face),
making the edges adjacent to the apex equal.

For other cases we can guess the partial symmetry of the
states and measurement configurations.

For k = 3 and a qutrit, the optimal case (real and complex)
is

|x j〉 = a cos
2π j

3
|1〉 + a sin

2π j

3
|2〉) + b|3〉,

|y j〉 = q cos
2π j

3
|1〉 + q sin

2π j

3
|2〉 + r|3〉 (B3)

for j = 1, 2, 3, and |x4〉 = |3〉, with a2 + b2 = q2 + r2 =
1, gives W3 = (27/32)(4br + aq)2(3q2 − 2)a4q2. The naive
choice a = q = 1 gives 27/32, but the actual maximum
0.8447648009582842 = 1.0012 × 27/32 is higher for a =
0.993819, q = 0.996329.

For k = 4 and a real qutrit, we take

|x1〉 = |1〉,

|x2,3〉 = −|1〉 ± √
3|2〉

2
, |x4,5〉 = −|1〉 ± √

3|3〉
2

, (B4)

|y1,2〉 = a|1〉 ± b|2〉, |y3,4〉 = q|1〉 ± r|3〉,
with a2 + b2 = q2 + r2 = 1, aq = 1/2. Then, W4 =
27

√
5/4 − z(7/4 − z)/8 for z = a2 + q2. From maximization

we get z = 9/8 and W4 = 27
√

2/64 � 0.5966213466261494.
When searching for the maximum for a complex qutrit,

the numerical analysis shows that the maximal case lies in a
particular subset of all possibilities given by projection onto

|x j〉 = a|1〉 + bω j |2〉 + cω2 j |3〉, |x4〉 = |1〉, |x5〉 = |2〉,
|y j〉 = q|1〉 + ω j r|2〉 + ω2 j s|3〉, |y4〉 = |1〉 (B5)

for j = 1, 2, 3, with a, b, c, p, q, r ∈ [−1, 1], a2 + b2 + c2 =
q2 + r2 + s2 = 1. Then

det p = 27c2(s2 − r2)(aqbr + brcs + csaq)2, (B6)

and maximizing over two spheres gives approximately
0.6319201017558774. For a ququart (a four-level system) the
maximum is larger, and we can distinguish two cases, Ŷ , as
only one-dimensional projections and up to two-dimensional
projections. In both cases we take

√
3|x j〉 =

√
3|y1〉 = ±|1〉 ± |2〉 ± |3〉 (B7)

for j = 1, 2, 3, 4, taking the cases with an even number of
minus signs (again, vertices of a regular tetrahedron) and
|x5〉 = |4〉. Then for Ŷj = |y j〉〈y j | we get det = 211/37 �
0.94, while for Ŷj = |y j〉〈y j | + |4〉〈4| we get W4 = 212/37 �
1.872885230909922.

For k = 5, we can maximize det with a real qutrit, with x
and y being in the independent bases, with

|x3a+b〉 = [|a〉 + (−1)bφ|a + 1〉]/
√

φ + 2 (B8)

for a = 0, 1, 2 and 0 ≡ 3, b = 1, 2, and the golden ratio φ =
(1 + √

5)/2, i.e., (pairs of) vertices of a regular icosahedron,
while

|y j〉 = α[cos(2π j/5)|1〉 + sin(2π j/5)|2〉] +
√

1 − α2|3〉.
(B9)

We have to maximize (t − 1)(3t − 2)t3, α = t2, which has
the derivative t2(15t2 − 20t + 6) with the nontrivial roots t =
(10 ± √

10)/15. The larger W5 = (25 + 34
√

10)25/5334 �
0.4188205525198219 is for +.

A complex qutrit gives a larger maximum 0.457413503 in
the real 10-parameter family of vectors

|y1〉 = |1〉, |x j〉 = a j |1〉 + b j |2〉,
|x34〉 = f |1〉 + g|2〉 ± h|3〉,
|x56〉 = f ′|1〉 + g′|2〉 ± ih′|3〉, (B10)

|y23〉 = q|1〉 + r|2〉 ± s|3〉,
|y45〉 = q′|1〉 + r′|2〉 ± is′|3〉

for j = 1, 2, with a2
j + b2

j = f 2 + g2 + h2 = q2 + r2 + s2 =
f ′2 + g′2 + h′2 = q′2 + r′2 + s′2 (two circles and four
spheres).

For a ququart, the maximum is found for two-dimensional
Ŷj (real and complex). We take

|x12〉 = a|1〉 ± b|3〉,
|x34〉 = a|3〉 ± b|4〉), (B11)

|x56〉 = (|2〉 ± |4〉)/
√

2,

and Ŷj = |y j〉〈y j | + |y′
j〉〈y′

j |,

|y1〉 = |y2〉 = (|1〉 + |2〉)/
√

2, |y3〉 = |1〉,
|y45〉 = s|2〉 ± c|4〉,
|y′

12〉 = (|3〉 ± |4〉)/
√

2,

|y′
345〉 = |3〉, (B12)

with a2 = (5 + √
5)/10, b2 = (5 − √

5)/10, and c =
cos(π/5) = (1 + √

5)/4, s = sin(π/5) =
√

(5 − √
5)/8.

Then

W5 = (1 + 1/
√

5)5/2/
√

2 � 1.78162618305857. (B13)

For a real and complex ququint (d = 5) and the case of sin-
gle projections Ŷj = |y j〉〈y j |, we take the vertices of a 5-cell (a
generalization of a tetrahedron in four dimensions) in space
1234

|x1〉 = |4〉, |x6〉 = |5〉,
|x2〉 = [

√
5(|1〉 + |2〉 + |3〉) − |4〉]/4,

|x3〉 = [
√

5(|1〉 − |2〉 − |3〉) − |4〉]/4,

|x4〉 = [
√

5(|2〉 − |3〉 − |1〉) − |4〉]/4,

|x5〉 = [
√

5(|3〉 − |1〉 − |2〉) − |4〉]/4, (B14)

and |y j〉 = |x j〉, giving W5 = 5534/218.
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The case of double projections Ŷj = |y j〉〈y j | + |y′
j〉〈y′

j | for

|x j〉 = a|1〉 + cos
2π j

3
b|2〉 + sin

2π j

3
b|3〉,

|y j〉 = q|1〉 − cos
2π

3
r|2〉 − sin

2π j

3
r|3〉,

|y′
j〉 = sin

2π j

3
|2〉 − cos

2π j

3
|3〉, (B15)

|x4〉 = |y4〉 = |4〉, |x5〉 = |y5〉 = |5〉,
|x6〉 = |y′

4〉 = |y′
5〉 = |1〉

for j = 1, 2, 3, with a2 + b2 = q2 + r2 = 1. Then W5 =
(27/32)b4q2(2 + q2)(4ar + bq)2. Maximizing with respect to
b at constant c and a gives the condition

c2 = (8 − 12b2)2

(8 − 12b2)2 + 9b2(1 − b2)
. (B16)

Inserting it into the formula, we get

W5 = 64b6(3b2 − 2)2(32 − 93b2 + 69b4)

(64 − 183b2 + 135b4)3
, (B17)

whose maximum 3.144615108566082 is for the largest
root of

2048 − 12032b2 + 26409b4 − 25668b6 + 9315b8 = 0.

(B18)

For k = 6, 7 and d = 3 the complex case gives the re-
spective maxima 0.330364646,0.225213334. For k = 6 and
d = 4 in the real and complex cases we got 1.61439616 and
1.68093981, respectively, with two-dimensional Ŷ . For d = 5
in the real case we get 3.39847186, and the complex case is
the same. In this case the maximum is realized for

|x12〉 = a|1〉 ± b|2〉,
|x34〉 = a|1〉 ± b|3〉,
|x56〉 = a|1〉 ± b|4〉,
|x7〉 = |5〉, (B19)

with a2 + b2 = 1, while Ŷi = |yi〉〈yi| + |y′
i〉〈y′

i|, with

|y12〉 = c|1〉 ± d|1〉, |y′
12〉 = |3〉,

|y34〉 = c|1〉 ± d|3〉, |y′
34〉 = |4〉, (B20)

|y56〉 = c|1〉 ± d|4〉, |y′
56〉 = |2〉,

with c2 + d2 = 1 giving W6 = 512a3b7c3d3[3a2c2 + (1 +
d2)b2](c2 + d4). The maximum is 3.3984718576415207 for
a being the root of the equation,

0 = −1 + 5a2 + 24a4 − 296a6 + 1480a8

−5088a10 + 11392a12 − 14336a14 + 8192a16, (B21)

a2 = 0.3016492773799042. For d = 6 we get the same max-
imum in the real and complex case for states

|x1〉 = a|1〉 + b|2〉, |x23〉 = a|1〉 + b

2
(−|2〉 ±

√
3|2〉),

|x4〉 = a|1〉 + b|4〉, |x56〉 = a|1〉 + b

2
(−|4〉 ±

√
3|5〉),

|x7〉 = |6〉, (B22)

while Ŷj = |y j〉〈y j | + |y′
j〉〈y′

j | + |6〉〈6|, with

|y1〉 = |3〉, |y23 = |3〉/2 ±
√

3|2〉/2, (B23)

|y4〉 = |5〉, |y23 = |5〉/2 ±
√

3|4〉/2,

|y′
1〉 = c|1〉 + d|2〉, |y′

23〉 = c|1〉 + d

2
(−|2〉 ±

√
3|2〉),

|y′
4〉 = c|1〉 + d|4〉, |y′

56〉 = c|1〉 + d

2
(−|4〉 ±

√
3|5〉)

for a2 + b2 = c2 + d2 = 1, giving

W6 = 36

210
b6c2(1 + d2)(2 + c2 + 2a2 − 5a2c2)

×[c4 + 98a2d2(c2 − a2) − 2a2c2 + a4 + 343a4d2

−16abc3d − 16a3bcd (17d2 − 1)], (B24)

giving the numerical maximum 5.0467662420644475.
For k = 7 and d = 4 in the real and complex cases, we

get W7 = 1.41149223 and 1.63898287, respectively (two-
dimensional Ŷ ). For d = 5 in the real and complex cases
(two-dimensional Ŷ ) we get 3.50557203 and 77/21333 =
3.723338939525463, respectively. In the latter case the states
read |x8〉 = |5〉, while the rest are, in the basis |1〉, |2〉, |3〉, |4〉,

|x j〉 = Û j

2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠, Û =

⎛
⎜⎜⎝

1 0 0 0
0 ζ 0 0
0 0 ζ 2 0
0 0 0 ζ 4

⎞
⎟⎟⎠,

Ŷj = Û j

⎛
⎜⎝

1/2 ξ ξ ξ

−ξ 1/2 ξ −ξ

−ξ −ξ 1/2 ξ

−ξ ξ −ξ 1/2

⎞
⎟⎠Û † j (B25)

for ζ = exp(2π i/7) and ξ = i/2
√

3. Then, due to the Gauss
identity

1 + 2(ζ + ζ 2 + ζ 4) = i
√

7 (B26)

we obtain

|〈xi|x j〉|2 =
⎧⎨
⎩

1 for i = j,
1/8 for i 	= j and i, j < 8,

0 otherwise,
(B27)

Tr ŶjŶi = 5/6 for i 	= j, and

p ji = 〈xi|Ŷj |xi〉

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for j = 8,

0 for i = 8 and j < 8,

1/2 for i = j < 8,
1
2 +

√
7

4
√

3
for i, j < 8 and j − i = 1, 2, 4 mod 7,

1
2 −

√
7

4
√

3
otherwise.

(B28)

For d = 6 in the real and complex cases, we get 6.05145518
and 6.17876168.

We can maximize W8 with a complex qutrit with x and y
with optimal x,

|x3a+b〉 = (|a〉 + eiαaωb|a + 1〉)/
√

2 (B29)
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for ω = e2π i/3 = (i
√

3 − 1)/2, a = 0, 1, 2, b = 1, 2, 3, and
|0〉 ≡ |3〉 with free angles αa, and optimal y,

|y j〉 =
√

5/6|y′
j〉 +

√
1/6|3〉, (B30)

with y′
j defined in |1〉, |2〉 space,

|y′
j〉 = i

√
1/3|1〉 + ω j

√
2/3|2〉 (B31)

for j = 1, 2, 3, |y′
4〉 = |1〉, and |y′

j+4〉 = −|y′
j〉. Then the max-

imum is W8 = 55/3428 � 0.1507040895061728.
For d = 4 in the real and complex cases, W8 = 1.2962761

and 1.47025989, while for d = 5 in the real and complex
cases W8 = 3.64938453 and 3.79495481 and for d = 6 in
the real and complex cases 7.48985655 and 7.49786979,
respectively.

The next nontrivial case is k = 9, which discriminates be-
tween a qutrit and ququart. For instance, taking Ŷj−1 = X̂ j

with

|x j〉 = | j〉, j = 1–4,

2|x j〉 =
4∑

m=1

im j |m〉, j = 5–8, (B32)

2|x9〉 = |1〉 + |2〉 − |3〉 − 4〉,
2|x10〉 = |1〉 − |2〉 − |3〉 + |4〉,

we get W9 = 1/8. However, the numerical maximum for
d = 4 is W9 = 1.28868526 and 1.39037781 for the real
and complex cases, respectively. For d = 5 we get, respec-
tively, 3.76568067 and 3.83579182, and for d = 6, we get
10.1361814 and 10.3359304.
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