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Quantum kernels to learn the phases of quantum matter

Teresa Sancho-Lorente , Juan Román-Roche , and David Zueco
Instituto de Nanociencia y Materiales de Aragn (INMA), CSIC–Universidad de Zaragoza, Zaragoza 50009, Spain

(Received 4 October 2021; accepted 6 April 2022; published 25 April 2022)

Classical machine learning has succeeded in the prediction of both classical and quantum phases of matter.
Notably, kernel methods stand out for their ability to provide interpretable results, relating the learning process
with the physical order parameter explicitly. Here we exploit quantum kernels instead. They are naturally related
to the fidelity, and thus it is possible to interpret the learning process with the help of quantum information
tools. In particular, we use a support vector machine (with a quantum kernel) to predict and characterize second-
order quantum phase transitions. We explain and understand the process of learning when the fidelity per site
(rather than the fidelity) is used. The general theory is tested in the Ising chain in transverse field. We show that
for small-sized systems, the algorithm gives accurate results, even when trained away from criticality. Besides,
for larger sizes we confirm the success of the technique by extracting the correct critical exponent ν. Finally,
we present two algorithms, one based on fidelity and one based on the fidelity per site, to classify the phases of
matter in a quantum processor.
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I. INTRODUCTION

It is suggestive to merge quantum computing and machine
learning (ML), looking for their constructive combination
in hopes of increasing the number of problems that can be
solved in the near future. Both are disruptive technologies that
cross the boundaries of current computational capabilities.
Classical ML has found several applications for optimizing
tasks in quantum information processing. Some examples are
quantum state tomography [1,2], quantum gate optimization
[3–5], and ground-state estimation [6], among others. See
the reviews [7,8]. Quantum machine learning (QML), in-
stead, seeks to extend the algorithms of classical ML to be
run in a quantum computer [9–11]. An incomplete list of
reported examples includes the quantum versions of neural
networks [12], principal component analysis [13], classifi-
cation [14–18], or support vector machines [19]. The key
question here is whether they have any kind of advantage over
their classical counterparts [20–23].

Both in classical and quantum ML, input data is encoded
in M vectors x j , j = 1, . . . , M of dimension d . They are pro-
cessed in different ways, depending on the chosen algorithm
and/or type of learning. In this work we are interested in
kernel methods [24]. Here the learning is based on the kernel,
which is the inner product of these vectors Ki j = xi · x j or,
more generally, the inner product defined in a feature space.
The latter is given by a nonlinear map x j → �(x j ). Thus
Ki j = �(xi ) · �(x j ). To understand this, we can think of a
classification task where the data is split into two classes.
The feature map should clump data belonging to the same
class while dispersing data from different classes, so that
the resulting distribution is separable. The kernel defines
distances on the feature space on which classification takes
place.

In QML, data is loaded in a quantum computer; thus the
first step is encoding it onto a quantum state:

x j → |ψ (x j )〉 = Uθ (x j )|0〉. (1)

Here |0〉 is the initial state [25] and θ a set of parameters
that, eventually, can be optimized. Thus the quantum kernel
is given by [19,26–28]

K (θ )
i j = |〈ψθ (x j )|ψθ (x j′ )〉| = |〈0|U †

θ (xi ) Uθ (x j )|0〉|. (2)

Mapping (1) offers a quantum advantage if the quantum
circuit is difficult to simulate on a classical computer and
provides a better performance than classical maps. It is not
trivial to obtain instances of quantum advantage. A heuristic
approach, implementing entangled maps that are shown to
be classically hard, has been followed in [29,30]. From these
seminal works, attempts to (rigorously) determine under what
conditions q kernels are superior have been discussed [31,32].
Finally, a quantum speed-up has been shown for the task of
classifying integers according to the so-called discrete loga-
rithm problem [33]. This is quite a formal problem, so the
challenge posed in the first section of this article persists—
the identification of tasks of practical use where QML is
advantageous.

One possible shortcut to achieving the goal is to consider
quantum data. The idea is simple: generating the data already
requires a quantum computer, and the step of loading classical
data onto a quantum RAM is skipped. The task we propose is
classifying the phases of matter. For classical models, clas-
sical ML techniques have been discussed with both kernel
methods [34–36] and beyond [37–44]. For quantum models,
neural networks trained with different observables [10,45–
47], among other ML techniques [48–50] or, even experi-
mentally, with a quantum simulator [51], have been used to
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classify phases in strongly correlated electron systems. Here
we propose to use quantum kernels as (2) [52,53]. Then the
classification is done with a support vector machine (SVM).
Borrowing from quantum information, we argue that by em-
ploying the fidelity (or related measures) as a kernel, the
classification can be interpreted to extract the phase bound-
ary [54–57]. We show that the machine predicts the critical
point and that it is capable of learning the critical exponents.
Remarkably, it does so despite being trained with samples far
from the critical point. Here, by way of illustration we use the
one-dimensional Ising model in a transverse field. This is an
exactly solvable model, but our arguments are pretty general.
In fact, we present two algorithms to classify the quantum
states of matter in the general scenario where the ground states
are computed in a quantum processor. To be concrete, we
discuss the use of a variational quantum eigensolver to find
the ground state [58,59].

We overview the rest of the paper here. In the next sec-
tion, Sec. II, the theory of fidelity-based characterization of
quantum phase transitions (QPTs) is summarized following
the seminal works of Zanardi. Then, in Sec. III we sketch the
idea behind SVMs and the kernel trick. Quantum kernels are
introduced. Importantly, in Sec. III we discuss the process
of learning and how the machine learns to characterize a
second-order QPT, which explains the results of the rest of the
paper. Our general theory is tested in the quantum Ising model
in one dimension in Sec. IV. We also present two algorithms
to implement the ideas of this paper in a quantum computer,
see Sec. V. The paper ends, as usual, with the conclusions in
Sec. VI. Some identities for quantum states, used throughout
the paper, can be found in the Appendix.

II. QUANTUM PHASE TRANSITIONS AND FIDELITIES

Consider a Hamiltonian H (J ) such that at J = Jc the sys-
tem undergoes a quantum phase transition. Whether first,
second order, or topological, the QPT can be studied from
the distinguishability between ground states. Following the
original idea of Zanardi and Paunković, a measure of this
distinguishability is the fidelity between two ground states,

F (J, J ′) := |〈ψ0(J )|ψ0(J ′)〉|. (3)

In a nutshell, and considering F (J, J + ε) with ε small
enough, only at the critical point (or close enough) is F ex-
pected to deviate from 1. Thus, an abrupt change in the fidelity
signals criticality [54,60] (see [61] for a review). Following
this idea, Zhou and co-workers argue in terms of renormaliza-
tion [55–57,62]. This is specially useful for continuous QPTs,
occurring at the thermodynamic limit. The rest of this article
assumes this type of QPT.

In what follows we find it convenient to discuss general
expressions for the fidelity between two quantum states using
the matrix product state (MPS) formalism. This allows us to
anticipate the N dependence of the fidelity and to introduce a
new distance measure between ground states that will be used
throughout this work. In the case of a translational invariant
lattice with local dimension l , the ground state can be writ-
ten in its MPS form [63], |ψ0(J )〉 = Tr[Ai1 ...AiN ]|i1, . . . , iN 〉.
Here, {Aij } are D × D matrices that depend on the local quan-
tum number i j = 1, . . . , l . D is the bond dimension, which

is related to the amount of entanglement contained in the
state. Using the MPS representation, the fidelity takes the
convenient form [60] (see also the Appendix):

F (J, J ′) =
D2∑

k=1

λk (J, J ′)N
N�1∼= λ1(J, J ′)N . (4)

Here λk are the eigenvalues of the transfer matrix E (J, J ′) =∑l
i=1 Ai(J ) ⊗ Ai(J ′). The state is normalized so |λk| � 1. If

we denote λ1 the largest (in absolute value) of these eigen-
values, the second equality is obvious and motivates the
definition of the fidelity per site:

ln[λ(J, J ′)] := ln F [(J, J ′)]/N. (5)

Importantly, it inherits the properties of F , thus being a dis-
tance measure fully characterizing the QPT. It also has an
important advantage (over F ). In (4) the orthogonality catas-
trophe is explicit. For N large enough, two ground states with
J 	= J ′ have exponentially small fidelity, regardless of whether
or not they belong to the same phase. This points to the failure
of F as a distance measure to resolve the transition. Using
(4) and (5) we note that λ1 = limN→∞ λ, i.e., λ1 is a scale
factor independent of size. The use of the fidelity per site as a
measure prevents the orthogonality catastrophe.

III. PHASE CLASSIFICATION AND SVMS

Identifying the phases in quantum many-body systems can
be formulated as a classification task. To simplify the discus-
sion, let us assume that the system has two phases separated at
J = Jc. Classifying means assigning a label yJ = ±1 to every
ground state |ψ0(J )〉 depending on J ≷ Jc, respectively. In this
work, the training data are the ground states themselves, i.e.,
x j = |ψ0(Jj )〉. In other words, we choose a set {Jj} and com-
pute the corresponding ground state, presumably in a quantum
computer. This is the training set, used in a supervised learn-
ing algorithm for classifying the data. In this paper we use a
support vector machine. This algorithm finds the hyperplane
that optimally splits the data in two, given a training set [24].
It turns out that the hyperplane is found by minimizing a
Lagrangian, L(α) = ∑

α j − 1
2

∑
αiα jyiy jK (xi, x j ), that de-

pends on the kernel, with constraints
∑

α jy j = 0. The α j’s
are the Lagrange multipliers found in the Lagrangian mini-
mization. Only a subset of them will be non-null, attending to
Eq. (6). These determine the classification, i.e., define the sep-
arating hyperplane. They are termed support vectors (SVs).
Then, given a ground state |ψ0(J )〉, its signed “distance” to
the hyperplane is given by

d (J ) =
M∑

j=1

α jy jK (J, Jj ) + b, (6)

where b is the offset parameter (we use here the standard
notation). It is given by

b = 1

M

∑
i, j

αiyiK (xi, x j ) − y j . (7)

If the optimization is successful, the separating hyperplane
will lie at the phase boundary between the two phases and
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new data points will be classified attending to the sign of their
“distance” to the hyperplane.

The crux of the matter is the kernel matrix. The better it
measures the similarity between the data points the more it
facilitates classification. Based on our fidelity discussion, we
are going to consider two kernels that, as argued above, can
measure the distance between quantum states and thus are
useful to discriminate different phases. Using Eqs. (2), (3),
and (5) we can define the following:

K (F )(Ji, Jj ) := F (Ji, Jj ), (8)

K (λ)(Ji, Jj ) := λ(Ji, Jj ). (9)

We expect that the fidelity-based kernel K (F ) will fail for a
sufficiently large system size N (orthogonality catastrophe).
In this case the kernel is “overfitted” (see also Refs. [52,64]).
Therefore it seems that it cannot fully characterize QPTs at
the thermodynamic limit. However, below we show that K (λ)

learns the QPT. This will be complemented (in Sec. IV) with
numerical simulations where we will also test the failure of
K (F ) as the system size grows.

What does the SVM learn?

In this section we argue that, under reasonable conditions
(to be explained), the SVM learns the critical Jc in a second-
order QPT using the kernel K (λ)(Ji, Jj ) := λ(Ji, Jj ), Eq. (9).
However, some remarks are necessary. We assume that the
data is separable. As one sweeps (in values of J) across the
phase transition, for every new J the ground state |φ(J )〉 is
increasingly further (fidelity closer to zero) from any given
ground state in the other phase. In other words, there is a
direction in the Hilbert space endowed with distance λ(Ji, Jj )
such that the projection of the ground states |φ(J )〉 along
this direction is a strictly monotonic function of J . This is
(by definition) what happens in a phase transition when we
look at it in parameter space: phases are separated by a clear
boundary, i.e., the critical point. What we are assuming is
that this intuitive property applies as well to the Hilbert space
when the distance λ(Ji, Jj ) is used. This view is supported by
the results in [54,56,61]. A separable set allows us to train
the SVM with a hard margin, which will have consequences
for the result of the learning process, mainly that, barring a
failure of the learning process due to a deficient kernel, we
will find only two SVs—one on each side of the separating
hyperplane. Let us denote by |ψ (J±)〉 the SVs on the right
and left side of the transition (respectively). In addition, the
ground state located at the separating hyperplane, d (J̃c) = 0,
is |ψ (J̃c)〉. Consequently, if J̃c = Jc, the SVM has learned the
critical point.

Let us first prove that for QPTs and using K (λ), b = 0 in
(6). We use that only SVs have a non-null multiplier, α j 	=
0, and that they are equidistant to the separating hyperplane,
λ(J+, J̃c) = λ(J−, J̃c). Therefore

b = λ(J+, J̃c)

2
(α+ − α−) = 0.

Here we have used the constraint
∑

α jy j = 0, which implies
α+ = α−. If b = 0, then d (J̃c) ∝ λ(J+, J̃c) − λ(J+, J̃c) = 0.
To show how the intersection of the two curves λ(J±, J ) re-

FIG. 1. Critical point from the SVM. λ(J±, J ) in the one-
dimensional quantum Ising model, see Eq. (10), with J− = 0.73 and
J+ = 1.27 for N = 1000 spins. J has units of energy (h̄ = 1). J± are
represented by the open circles. Inset: Zoom of the intersection. The
gray dotted line points out the intersection between the two curves,
i.e., the J at which d = 0, and so the boundary predicted by the SVM,
J̃c(N ). The maximum of the derivative ∂xλ(J+, x) is marked with the
black dashed line, Jc(N ).

lates to the QPT, we plot Fig. 1. It shows a generic situation of
how two fidelity curves intersect. It is a calculation using the
quantum Ising model, to be discussed below, but other models
with a second-order QPT show the same phenomenology.
Starting from λ(J+, J+) = 1, the fidelity remains close to 1.
As J → Jc, see Sec. II, there is a nonanalyticity in λ(J+, J ),
with a sudden increase in the slope. This is the signature of
the transition. The same occurs for λ(J−, J ). For our purposes
here, it means the intersection of the two curves occurs in
the vicinity of Jc. The nonanalyticity corresponds to the point
where ∂xλ(J±, x) is maximum. In fact, a way of finding QPTs
is by looking at this maximum, i.e., defining Jc(N ) as the point
where the derivative is maximum, then Jc = limN→∞ Jc(N ).
Since the slope ∂x=Jc (N )λ(J−, x) grows with N , we find that the
larger the N the closer the intersection moves towards Jc(N ),
i.e., the closer J̃c(N ) to Jc(N ). In that case, the SVM learns the
transition point as predicted by the fidelity theory.

IV. APPLICATION: THE QUANTUM ISING MODEL

We consider the one-dimensional quantum Ising model in
a transverse field with Hamiltonian (h̄ = 1 through this paper)

H (J ) =
N∑

i=1

σ z
j − J

N∑
i=1

σ x
j σ

x
j+1. (10)

σα
j are the Pauli matrices acting on the j-lattice site. The

lattice size is N . Periodic boundary conditions (PBCs) are
considered. This Ising model has a second-order phase tran-
sition occurring at Jc = 1(−1) in the N → ∞ limit. For
Jc > 1(Jc < −1) the Z2 (parity) symmetry is spontaneously
broken and the ground state is ferromagnetically (antiferro-
magnetically) ordered. Without loss of generality, we fix our
attention on the paramagnetic-ferromagnetic transition occur-
ring at Jc = 1.
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FIG. 2. Quantum kernels learning phases of matter. (a) Jc(N ) using the kernel K (F ) for the three trainings discussed in this work. Namely,
by intervals taking points failing in the � subsets δ1 = [0.8, 0.9] ∪ [1.2, 1.3], δ2 = [0.6, 0.7] ∪ [1.6, 1.7], and taking M = 133 points randomly
distributed over � (random). The set � are 1000 ground states taking Js equally spaced in � = [0.25, 1.75]. J has units of energy (h̄ = 1). Open
circles are SVM results using the class sklearn.svm.SVC from Sklearn [65]. The crosses stand for a finite-size scaling analysis following
[56]. The corresponding dashed lines are fittings (see Table I). (b) Distance function, Eq. (6), for two sizes N . The open circles are the SVs and
the shaded (gray) zones mark the training interval, δ2. (c, d) Contour plots of the matrix K (F )

i j where i, j run on the total �. The labels mark the
(theoretical) phases of the model for Ji (Jj). Lower row, panels (e), (f), (g), and (h), are the counterparts but using the kernel K (λ).

For our interest here, the QPT has been discussed in terms
of the ground-state fidelity F (J, J ′) and the fidelity per site
λ(J, J ′), Eqs. (3) and (5) [54,56,61]. Thus it is an ideal test-
bed for our proposal. Besides, it is exactly solvable via the
Jordan Wigner (JW) transformation, so an explicit formula for
F between two ground states can be found:

F (Ji, Jj ) =
∏

k

|cos (θk (Ji ) − θk (Jj ))|. (11)

Here,

cos (2θk (Jj )) = 1 + 2Jj cos k√
1 + 4Jj cos k + 4J2

j

. (12)

Considering even N and PBC, k = (2n − 1)π/N with n =
1, . . . , N/2.

With (11) at hand, kernels (8) and (9) can be computed.
In this paper, the data sets are obtained by taking 1000 J’s
equally spaced in the range � = [0.25, 1.75]. For the training
set we explore three possibilities. Two consist of training with
J’s belonging only to specific intervals. From � we take
the points falling in the subsets δ1 = [0.8, 0.9] ∪ [1.2, 1.3]
and δ2 = [0.6, 0.7] ∪ [1.6, 1.7]. Notice that they are nonsym-
metric (around Jc = 1) in order to challenge our algorithm
abilities in the classifying task. Besides, and importantly
enough, they are far away from the critical value. The third

training set is formed by taking M = 133 points randomly
distributed over the whole set � [66].

Our main results are summarized in the different panels of
Fig. 2. The top row of panels contains results for the fidelity
kernel K (F ) (8). They are compared to the results from the
λ kernel K (λ) (9) (bottom row). In panel (a) we plot the pre-
dicted J̃c(N ), using the kernel K (F ). This is obtained from the
distance function (6) after interpolating the point that fulfills

d (J̃c(N )) != 0. We do it for the three training sets (empty

TABLE I. Jc and ν critical exponent results. The numbers are
obtained by fitting the points in Fig. 2(e) as a function of N to the
function Jc(N ) = Jc + a N−ν with fitting parameters a, Jc, and ν.
Jc(N ) are given by the SVM algorithm. They are compared to the
procedure developed in [56] based on the fidelity per site, λ (see main
text). The (∗) means that the error given by the fitting is smaller than
10−8. Other error sources, such as the number of training data or the
� discretization, limit the accuracy.

Jc ν

λ as [56] 0.99827(12) 0.966(17)
SVM (δ1) 1.00414 (∗) 0.974(60)
SVM (δ2) 1.00404 (∗) 1.003(75)
SVM (random) 0.99975 (∗) 0.966(46)
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circles) as a function of N . For small sizes the tendency is
expected. The estimation of J̃c(N ) improves with the system
size N . Going to larger sizes, K (F ) fails. To understand why, in
Fig. 2(b) we plot the distance to the separating hyperplane (6).
We only show the δ1-interval training. The other training sets
behave similarly and can be found in [67]. For small N the
distance is a smooth function, which confirms that the SVM
is able to generalize well to the test data and provides a good
estimation of J̃c(N ). Increasing N , the distance function flat-
tens in the critical region, hindering the extrapolation of J̃c(N ).
The explanation for this failure, as we have anticipated, is
the orthogonality catastrophe. In Figs. 2(c) and 2(d) we show
further proof of this by plotting the kernel matrix K (F )(Ji, Jj )
for the whole set �. For small sizes (N = 100) there is a block
structure, marking the ability to distinguish between the two
phases. On the other hand, for N = 1200, all entries are close
to zero (bar the diagonal), i.e., any two states are orthogonal.
This is in accordance with the fact that the training using the
interval δ1 breaks down earlier, as it is the furthest away from
the critical point, while random training has points closest to
the transition point and breaks down last. The corresponding
kernels trained with intervals can be found in [67].

One way to get around the catastrophe is by using K (λ)

instead. For small sizes, both kernels give comparable predic-
tions. However, as shown in panel 2(e) the prediction always
improves with N , approaching J̃c(N ) → Jc

∼= 1 in the limit
N → ∞, see Table I. This confirms what was said in Sec. III.
In Fig. 2(f) we plot the distance, confirming convergence in
the thermodynamic limit [cf. Fig. 2(b)]. Finally, the kernel
matrix shows a marked block diagonal structure at any lat-
tice size. See Figs. 2(g) and 2(h) and compare them to their
counterparts 2(d) and 2(e), respectively.

To benchmark the SVM predictions, after our last discus-
sion in Sec. III and following [56] we can define Jc(N ) as the
point at which the function ∂J log λ(J, J ′ = 1.75) is maximal.
For a fair comparison, we do it on the same set of J’s (�)
as the SVM training. The SVM works better at small lattice
sizes. A tentative explanation is that our SVM training sets δ1

and δ2 are comprised of ground states far from criticality (less
so for the random set), whereas the benchmark uses the full
dataset �, which includes ground states close to the transition.
This is relevant because far from criticality the correlation
length is finite, and not-too-large systems seem to be sufficient
for learning. This is good news for medium-sized quantum
processors.

In addition, for the SVM to characterize the QPT, we must
check whether it is capable of learning the critical exponents.
For thermal transitions, the critical exponents are learned
when the distance (6) can be related to the order parameter
[34,36] such that the distance inherits the scaling exponents of
the latter. In our case, the distance to the hyperplane is a linear
combination of the fidelity per site. Thus we expect to have the
same finite scaling as λ, from which the corresponding criti-
cal parameters can be extracted. This is plotted in Fig. 2(e).
Dashed lines are the best fittings to the scaling formula,

|Jc − Jc(N )| ∼ N−1/ν . (13)

The fitted ν are summarized in Table I. For the Ising model,
Hamiltonian (10), ν = 1. Thus the SVM with K (λ) is able to
learn the critical exponent.

Algorithm 1. Classification using K (F ).

Require: Training set {Jj, y j}M
j=1, i.e., parameter values of the

parameterized Hamiltonian H (J ) along with the labels of the
corresponding phase, y j = ±1.

1: Compute the corresponding ground states. Here we are thinking
of a visual question answering (VQA) algorithm, where the
circuit depends on some variational parameters θ j :

|ψ (Jj )〉 = Uθ j |0〉.
Uθ j is the quantum circuit.

2: Store the classical parameters θ j (in a classical memory).
3: Prepare the circuit

U †
θi

Uθ j |0N 〉 (≡ |ψJi,Jj 〉)

4: if i = j then

K (F )
ii = 1

5: else Measure all bits for the state |ψJi,Jj 〉 in the
computational basis. The frequency p0N of the all-zero
outcome corresponds to the state overlap, i.e., the kernel
entrance

(K (F )
i j )2 = p0N ,

see Fig. 2(a).
6: end if
7: Use SVM (hard margin).

V. QUANTUM ALGORITHMS

The Ising model allowed us to demonstrate the usefulness
of quantum kernels and their performance in the classification
of quantum phases. Our arguments are both interpretable and
based on the wave function; thus they are exportable to other
Hamiltonians, cf. Sec. III, particularly to those where the
ground states can be obtained within a quantum processor. For
those cases we introduce here two algorithms for computing
K (F )(Ji, Jj ) and K (λ)(Ji, Jj ), respectively (see Fig. 3).

While K (F )(Ji, Jj ) fails for a sufficiently large system, it
gives a very good estimate of Jc for medium sizes, which is
the realistic situation within the NISQ era. See the following,
Algorithm 1: Notice that the depth of the circuit to calculate
any kernel entrance Ki j is the sum of the depths to obtain the
corresponding |ψ (Ji )〉 and |ψ (Jj )〉. The complexity scales as
O(ε−2M4). Here ε is the largest sampling error ε ∼ O(R−1/2).
R is the number of shots to estimate p0N [29].

In principle, the most demanding part is obtaining ground
states (step 1). It is hard even for a quantum computer.
This task is within the QMA complexity class [68], roughly
speaking, the NP-complete analog for quantum computers.
Nevertheless, quantum computers can be better than classical
methods such as density-functional theory [69], density nor-
malization group [70], tensor networks [63], quantum Monte
Carlo [71], or even ML-inspired techniques [6] in certain
cases. See a recent discussion in [72]. In particular, heuristic
quantum algorithms such as adiabatic [73] or variational ones
[74] can be efficient for some Hamiltonians. This has been
shown, for example, for noncritical spin systems [75]. This
justifies the combined use of SVM and quantum computing.
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FIG. 3. Classification algorithms. (a) Trial quantum circuit constructed to estimate the fidelity between quantum stated. This measurements
are the key of the classification of the phases in the system of study. (b) Our proposal of a quantum algorithm to estimate the fidelity per site in
the chain, minimizing the scaling errors.

We have found that classification is successful even if trained
away from criticality.

Fidelity per site algorithm

A complete characterization of a QPT requires a scaling
analysis of the fidelity per site, so an algorithm to compute
this quantity must be devised. An option would be to compute
the N th root of each element K (λ)

i j = [K (F )
i j ]1/N . It does not

work. The inevitable error in K (F )
i j explodes (with N) when

performing the N th root.
This can be fixed by modifying Algorithm 1 as follows.

After step 3 there, if only n < N qubits are measured [cf.
Figs. 2(a) and 2(b)], the frequency, p0n , of all-zero outcome
corresponds to

f 2
n := 〈On〉J,J ′ ∼ (λn

1)2. (14)

Here On = |0n〉〈0n| and 〈 〉J,J ′ is the expectation using the
state |ψJi,Jj 〉) (cf. Algorithm 1). For the second relation we use
(A5). The latter follows from further identities summarized
in the Appendix. Furthermore, using (4) and (5), λ1 → λ

in the thermodynamic limit. Therefore λ can be inferred by
repeating the protocol for different Ns and fitting the value of
the scaling parameter. This completes our second algorithm:

Like in Algorithm 1, the complexity scales as O(ε−2M4).
Now, ε ∼ O((RR′)−1/2).

VI. CONCLUSIONS

In this work we have discussed the capabilities of quan-
tum kernels to characterize QPTs. For second-order QPTs,
we have shown that, using the fidelity per site as kernel, a
SVM characterizes a QPT, for both the transition point and
critical exponents. Let us emphasize that the kernels rely on
the fidelity and thus solely on the wave function. Accordingly,
the classification does not need any previous knowledge of the
order parameter or the symmetries of the Hamiltonian.

The theory has been applied in the quantum Ising model.
This is an exactly solvable model. For nonsolvable models
we have presented two quantum algorithms, one based on the
fidelity and the other on the fidelity per site. In both of them
the most expensive part is obtaining the ground states. Since

the SVM training can done out of criticality, we argued that
this alleviates this task.

We believe that this work shows a fruitful synergy between
quantum information processing (in this work for obtaining
the quantum data, i.e., the ground states) and ML (here, for
learning the phases of matter) in a classically hard problem
[76,77].
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APPENDIX: UNIFORM MATRIX PRODUCT STATES
IDENTITIES

Let us follow [78]. Any translational invariant state can be
written as

|ψ〉 =
∑
{s}

v†
L

[ ∏
m∈Z

Asm

]
vR|{s}〉

= · · · A A A · · ·
(A1)

The boundary vectors vL and vR must be irrelevant for larger
sizes. In the thermodynamical limit, physical states cannot de-
pend on the boundary conditions. Those where the boundary
conditions do matter have measure zero in the space of all
possible MPS tensors.
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The fidelity can be written

〈Ψ(Ā2)|Ψ(A1)〉 = . . .

A1

Ā2

A1

Ā2

A1

Ā2

. . .

= lim
N→∞

⎛
⎜⎜⎝

A1

Ā2

⎞
⎟⎟⎠

N

= lim
N→∞

EN = lim
N→∞

λN
1

(A2)

Here Ā is the complex conjugate of A, E = A1 ⊗ Ā2 is the
so-called transfer matrix, and λ1 is the leading E eigenvalue.
This formula is used in the main text, Sec. II.

The state is uniquely defined by the tensor A. The opposite
is not true. Different tensors can yield the same state. In
fact, the gauge transform A → XAX −1 leaves the state (A1)
invariant. This being said, it is convenient to introduce left
and right canonical forms AL = LAL−1 (AR = RAR−1) such
that the identities are

AL

ĀL

= , (A3a)

AR

ĀR

= . (A3b)

Algorithm 2. Classification using K (λ).

Require: Same as in Algorithm 1.
1: Steps 1, 2, and 3 are as in Algorithm 1
2: if i = j then

K (λ)
ii = 1

3: else
4: Initialize n such that 1 � n � N .
5: for l = 0, 1, ..., R′ do

Measure n qubits (t1, t2...tn), see Fig. 2(b).
Obtain f 2

n , Eq. (14).
n = n + l

6: end for
7: Fit K (λ)

i j := λi j ∼ ( fn)1/n.
8: end if
9: Use SVM (hard margin).

Canonical forms are useful for computing observables. For
our purposes it is sufficient consider observables of the form

O = O0 ⊗ · · · ⊗ On, (A4)

where O0 acts on a single site that without loss of generality
we can label as an 0 site, then 0i acts on site i with respect
to this 0 site. Using the canonical forms (A3a) and (A3b), the
expectation value can be computed as

〈O〉 = O0

AL

ĀL

O1

AL

ĀL

. . .

AL

ĀL

On−1

AC

ĀC

On (A5)

Here, AC = L−1AR. This formula is used in Algorithm 2.
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