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Experimental imperfections induce phase and population errors in quantum systems. We present a method
to compensate unitary errors affecting also the population of the qubit states. This is achieved through the
interaction of the target qubit with an additional control qubit. We show that our approach works well for
single-photon and two-photon excitation schemes. In the first case, we study two reduced models: (i) a two-level
system in which the interaction corresponds to an effective level shift and (ii) a three-level one describing two
qubits in the Bell triplet subspace. In the second case, a double Stimulated Raman Adiabatic Passage process is

presented with comparable compensation efficiency with respect to the single-photon case.

DOLI: 10.1103/PhysRevA.105.042431

I. INTRODUCTION

Quantum computation is based on a series of unitary trans-
formations applied to computational qubits. Quantum states
are intrinsically delicate, with decoherence being the main
limitation. In addition, the unitary transformations associated
with quantum gates cannot be implemented with perfect accu-
racy and their small imperfections will accumulate, leading to
a computational failure. Correction schemes must thus protect
against errors. This can be done, for instance, by error correc-
tion codes [1-3], composite pulse sequences [4,5], or other
robust quantum control protocols [6,7]. Additional resources
are required in all cases: more qubits in the first case, longer
times for the qubit preparation and interrogation in the second,
and additional control fields or parameter optimization loops
in the third. Dynamical phase errors can eventually induce
also errors of the qubit-level populations. Our ultimate target
is to determine and compensate the unwanted phase accumu-
lated in the qubit wave function in order to correct coherent
(unitary) computational errors.

The control of the wave-function phase accumulation has
received much attention in different contexts of quantum op-
tics, such as the collapse and subsequent revival of atomic
coherence for Bose-Einstein condensates in [8,9]. Phase cor-
relation destructions and revivals in the time evolution of
dipole-blockaded Rydberg states have been investigated under
a detuned and continuous excitation in [10] and for periodic
excitation in [11] within the context of discrete time crys-
tals. The quantum control of the phase accumulated by laser
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driving for interacting Rydberg atoms was studied in [12,13].
An analysis of laser imperfections in the coherent excitation
to atomic Rydberg states was experimentally investigated in
[14].

We introduce here the approach shown in Fig. 1(a), based
on the interaction between the computation qubit and an ad-
ditional correction qubit, widely used for the implementation
of high-fidelity quantum-nondemolition measurements [1,15].
The idea of using additional qubits for correction is taken from
quantum-error-correction protocols and fault-tolerant quan-
tum computing [1] (see, e.g., [16] for a recent experimental
realization using ion qubits).

In the following, we use the additional phase created by
the interaction to compensate for the above unwanted phase
in the evolution of the computational qubit. By a proper
choice of the interaction strength, we realize compensation
for a long sequence of unitary operations of the computational
qubit. The compensation efficiency is measured by the wave-
function fidelity reached at the end of the sequence. We obtain
a high efficiency for sequence numbers up to 50. For the long
sequence of applied unitary transformations, we derive con-
ditions for the wave-function phase to maintain the targeted
value. In most of the explored qubit level schemes, our ap-
proach leads to a magic condition for the required interaction,
magic because it creates compensation for a large range of
unitary transformation errors. Our approach is similar to the
method of composite pulses [4,5]. In both cases, the phase
of the qubit wave function accumulated by the laser-pulse
sequence produces a more robust qubit excitation. As main
difference, the composite-pulse sequence targets a very high
and stable fidelity for a single excitation. We target instead a
stable and high fidelity in a long sequence of qubit operations.
Our qubit interaction is linked to the excited-state occupa-
tion, for instance, in experimental implementations based on
atomic Rydberg excitations [17-20] or on Rydberg-dressed
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FIG. 1. (a) Scheme of two interacting qubits, for instance, two-
level Rydberg atoms trapped in an optical potential and experiencing
a nearest-neighbor coupling V. They are driven by a common laser
field, periodically switched on for the duration 7; and off for the
time 75, in a sequence with temporal periodicity T = 2T} + 27; as
schematized in (b). For a perfect excitation, as with 7 pulses for
one-photon absorption, the P, ground-state occupation experiences
the temporal evolution shown in (c).

atomic gases [21]. The interaction can, in principle, be tuned
experimentally. Its amplitude depends, e.g., on the atomic
quantum number, and, in addition, in the presence of the
Forster resonances, it may be controlled by an applied electric
field [13,22-24]. Similar tunable interactions are present in
other realizations as well, e.g., in semiconductors [25] or in
artificial atoms, as in the ground-state interactions in double
quantum dots in a nanowire [26].

The compensation scheme is applied here to a compu-
tational qubit that, under proper laser handling, experiences
a Bloch sphere rotation and reinitialization within a given
interrogation time interval. We repeat the same sequence on
a regular basis and introduce small errors on the laser param-
eters. Therefore, the qubit accumulates an unwanted phase
limiting the computation utility. The compensation recovers
its utility through the controlled interaction with the correc-
tion qubit. In the following, we specifically consider three
situations: two models with a one-photon excitation and one
with a two-photon excitation. Limiting to the complete control
of the basic element of quantum computation, as in [1], we
restrict our attention to a single qubit and apply our correction
scheme to single-qubit elementary processes representing, for
instance, a bit-flip or quantum-NOT gate. However, from the
quantum-control viewpoint, our compensation idea remains,

in principle, applicable to more qubit systems, complementary
to spin-echo techniques used, e.g., in [27].

First we consider the one-photon excitation case. Starting
from the two qubits sketched in Fig. 1, under the condition for
which the laser drive does not influence the correction qubit,
the impact of the interaction between the excited levels may
be modeled for the computational qubit as an effective shift of
the excited level. This gives our system (i): a two-level system
exposed to laser pulses driving transitions between the ground
and the excited state. In the second configuration, the laser
drive couples only to the Bell triplet states and thus the four
two-qubit levels can be reduced to three simply by neglecting
the Bell singlet state. This three-level system is our model (ii).
There is a fundamental difference between these two models:
errors in the laser drive can occur only on the computational
qubit in (i), while in (ii) both qubits fully participate, with
errors that can be modeled on both. The compensation works
well in both cases but the magic value is more stable, pro-
ducing a larger compensated area with fidelity error of the
order of 107, for system (i). The compensation is applied to
errors in the dynamics of the computational qubit on a Bloch
sphere: rotation angle errors and rotation axis ones, produced
by imperfections in the laser intensity and in the laser detun-
ing, respectively. We analyze the one-photon excitation by a
7 laser pulse, which produces a bit-flip or quantum-NOT gate,
allowing a transition at the quantum-speed limit, but with a
large sensitivity to the laser excitation parameters [28]. The
7 pulses are employed for both the qubit excitation and its
reinitialization.

In addition to the one-photon population transfer between
ground and upper states, we analyze also a two-photon exci-
tation scheme in which the two levels of each qubit cannot
be directly coupled by the laser, but are coupled through a
third intermediate level. The two-photon excitation analyzed
in this case is implemented via a Stimulated Raman Adiabatic
Passage (STIRAP) in a cascade configuration [29] with a
temporally shifted pump and Stokes laser pulses, providing
a large and stable excitation. In this case, a geometric phase
is gained in the STIRAP evolution of a three-level system as
in [30], producing a phase gate. The application of a double
STIRAP, with inverted pump and Stokes pulses in the second
one, produces the qubit excitation and reinitialization. Similar
double STIRAP pulses are analyzed in [31] for the implemen-
tation of quantum logic gates with Rydberg atomic ensembles.
In several configurations, the three-level STIRAP system may
be reduced to a two-level one, where our one-photon com-
pensation scheme may be applied. Instead, we show that the
compensation even works in the nonadiabatic regime, where
the two-level simplification cannot be used [32-34].

The paper is organized as follows. Section II describes
the temporal sequence of the computation and reinitializa-
tion operations based on the two qubits, the computation
and the correction one. Such a sequence is repeated for a
longer time period, allowing the execution of repeated opera-
tions. Section III describes the laser driving of the qubits, the
corresponding one-photon excitation models, and the double
STIRAP setup for a two-photon excitation. Moreover, Sec. 11
introduces the fidelity as a measure of the compensation effi-
ciency. Section IV describes the results of the compensation
approach, depending on the form of the excitation, based
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on either single- or two-photon processes. Section IV also
presents an alternative and practically useful compensation
search tool. Section V summarizes our work.

II. QUBIT CORRECTION

We deal with two qubits j = 1, 2, the first referred to as
a computational qubit and the second one as a correction
qubit. The computational qubit can be periodically involved
in some operation of a general algorithm and it repeats its
work n times with n up to 50 in our simulations. Concretely,
we will consider the basic operation of a bit-flip gate, which
occurs repeatedly with some idle time, alternatively exciting
and deexciting the atom. Under laser driving, this qubit starts
from the initial ground state |g;) at time # = 0, is excited to
the state |e;), is reinitialized, and is ready for the next round
attime ¢ = T. In a quantum-computing context, this operation
represents, for instance, a sequence of two quantum-NOT gates
where the computational basis is defined by |g;) = |0) and
le;) = |1). However, an imperfect laser driving leads, at time
T, to computation or reinitialization errors that propagate
in the operation sequence. We aim to compensate for these
errors.

Our correction process, schematized in Fig. 1(a), is based
on the interaction of the first qubit with the correction qubit.
These two qubits, supposed either equal or different, experi-
ence in their excited states |e;) an interaction with controllable
amplitude V described by the following Hamiltonian in %
units:

Hy =V|ep)lex){eil{ez]. (D

By a proper choice of the interaction amplitude V, the phase
introduced into the computational qubit will compensate for
laser driving errors.

In our description, the computational process is repre-
sented by an elementary step, for instance, a rotation of the
Bloch vector by an angle s [1]. In this simple approach also
the reinitialization is based on a mw pulse. The computation
or correction sequence is based on the following steps, as in
Fig. 1(b). At time ¢ = 0, the computational qubit, initially in
its ground state, is transferred to the state |e;) by a laser pulse
of time 7). In the following time interval 7, the interaction
V only determines the qubit evolution. Then an additional
laser pulse of duration 7; transfers the occupation of state |e;)
to the ground state. An interaction of duration 7, completes
the sequence with total time 7 = 27} + 27,. Under perfect
laser driving, the occupation probability of the ground state
of the computational qubit follows the time dependence in
Fig. 1(c). More precisely, owing to the parity of the ground
and excited states, the laser driving takes place through either
a one-photon transition or a two-photon one, with a resonant
or nonresonant intermediate level.

In the following, we will consider two configurations for
the correction qubit in the single-photon excitation case. In
the first configuration (i), referred to as the two-level g system
in the following, the control or correction qubit is not exposed
to the drive. Under this assumption, the effect of the second
static qubit on the computational one is modeled by an effec-
tive level shift of its excited state. In contrast, in the second
configuration (ii), referred to as the three-level g system, the

imperfect laser excitation drives both qubits simultaneously,
producing an equivalence to the Rydberg blockade. The last
example we propose is the error compensation in two inter-
acting three-level setups, both driven by the same two-photon
STIRAP excitation process.

III. QUBIT LASER HANDLES
A. Single-photon excitation

For both the two- and three-level cases, the qubits interact
with a laser with detuning § = w;, — wy from the ground-
state w to excited-state transition and Rabi frequency 2. The
Hamiltonian Hy; of each atom (j = 1, 2) in the rotating-wave
approximation (RWA) in the frame rotating with the drive is
written in units of / as

Q
Hoj = —dlej)lejl + = (Igj)lejl + lej){g)D)- 2)

The RWA, in this case, remains valid in the regime where
Q < wr, namely, when the operation frequencies we are in-
terested in are much smaller than the carrier frequency of
the laser [35]. Having in mind typical quantum-optical re-
alizations based on Rydberg atoms, this condition is usually
satisfied.

The transfer to the excited states and back is produced by
pulses with § = 0 and Q77 = m. The ground-state occupation
reported in Fig. 1(c) is obtained under these conditions.

1. Two-level q system (i)

Here we suppose that the computational and the correction
qubit can be addressed independently. Then we may assume
that the laser excitation does not influence the correction
one, e.g., due to a large difference in transition frequency
of two different atoms. For instance, for Rydberg atoms in
the presence of Forster resonance [22], we may suppose that
the correction qubit remains in a long-lived state |e;), the
interaction being controlled by switching on or off an electric
field. The analysis of the two-level g system (i) is a very useful
step, because it is simpler since the interaction reduces here
just to an effective energy shift of the computation qubit. Nev-
ertheless, this case leads to the same general compensation
scheme valid also for our more complex model (ii).

2. Three-level q system (ii)

As mentioned in the preceding section, we now consider
the case in which the laser excitation drives both qubits si-
multaneously and equally. Here the Dicke states represent a
convenient basis for the description, allowing also an analyti-
cal solution [36-38]. Starting from the state |g, g») att = 0,
only the doubly excited state |e;, e;) and the symmetric states
Is) = (g1, €2) + |e1, g2))/~/2 (equivalent to the Bell triplet
states) are occupied by the laser excitation with no occupation
of the antisymmetric Bell or Dicke state (equivalent to the Bell
singlet state). Therefore, the wave function is written as

[Viot) = ng|gl , 82) + CslS) + ceclen, e2) 3)

and we effectively deal with a three-state system. The Hamil-
tonian for the two coupled two-level systems (qubits) and
its reduction to the symmetric Dicke states is given in

042431-3



MICHELE DELVECCHIO et al.

PHYSICAL REVIEW A 105, 042431 (2022)

Appendix A. We examine numerically the case of differences
in the laser excitation of the two qubits.

Let us note important features playing a key role in the
compensation process. Both laser detunings and interqubit
interaction are diagonal terms [see Eq. (A1)]. From a math-
ematical point of view, the evolution depends only on the sign
conformity of those parameters. This feature will apply also
to the compensation results. From a physical point of view,
the diagonal terms may be used to balance each other. This
balance occurs in the Rydberg blockade [17], where the inter-
action is large enough to block the laser excitation to the state
leq, ). Conversely, the tuning of those parameters has been
used to enhance that excitation as in the ultracold Rydberg
atom antiblockade [39,40] or in the Rydberg enhancement of a
room-temperature vapor [41]. We operate with Rabi frequen-
cies of the laser excitation, much larger than the interaction V,
where the above processes should not occur.

B. Two-photon excitation

In the previous sections, we described the single-photon
excitation in the two configurations (i) and (ii). In this sec-
tion, we show the laser handling for a two-photon excitation
scheme. In this case, the ground state |g;) and excited states
le;) (j =1,2), which form the qubits, in a cascade config-
uration are linked by two laser fields (denoted by pump and
Stokes) through the intermediate state |i;). The Hamiltonian
Hy; representing one of the two qubits is in a frame doubly
rotating at the driving frequencies and in the rotating-wave
approximation

Qp(t)

H.(t) = Q?(r) § sz?(z)
@)= | ~5 gA === “4)

0 B A,
with A the intermediate level detuning, A, the two-photon
detuning, and Qp and Qg the pump and Stokes Rabi fre-
quencies, respectively. For the resonant STIRAP excitation
(A, = 0) with temporally shifted pump or Stokes laser pulses
[29], the Rabi frequencies have the Gaussian-shaped temporal

dependences

t—T/2\°
Qp(t) = Qoexp[— <T—G> :|,

2
Qs() = QOCXP[— (%) }

®)

with peak value € and width T5/~/2. They are parametrized
such that the pulse crossing takes place at + =0 and the
separation between two subsequent maxima is 7;. For the
transfer back to the ground state with an inverted pump or
Stokes temporal dependence, the pulse crossing occurs at time
t = T,. The time sequence of the laser driving is represented
by dashed lines in Fig. 2 (see the right vertical scale for the
Rabi frequencies). In order to maintain generality with respect
to the experimental implementations, we work with STIRAP
standard dimensionless quantities Q27 and ATg. This dou-
ble STIRAP sequence was investigated previously in, e.g.,
[13,23].

An efficient and stable STIRAP transfer is realized by
imposing an adiabatic evolution of the dark state [D;) [42,43]

12.0

6.0 &

0.0

FIG. 2. Evolution of the P,; population (blue solid line) and of
the 2, and Qg Rabi frequencies (dashed lines) for a total time T,
based on a double STIRAP transfer sequence to the excited state and
back to the ground, as for an atomic Rydberg state. We consider the
dimensionless time ¢ /7, where Tg is the characteristic pulse width
defined in Eq. (5). The parameters are 7} = 1.275, A = A, =0,
ATg = 1.4, QT = 12, and T, = 10 T;. The P, occupation scale is
on the left and the Q(#)7T scale is on the right. The P,; temporal
evolution over a single T sequence presents the coherent oscillations
discussed in [32].

defined as
[D;(#)) = cosO(t)|g;) — sinb(t)|e;), (6)

with 6(¢) given by tan6(z) = Qp(t)/Q2s(t). If the STIRAP
parameters are slowly varied, the qubit initially prepared in
the ground state |g;) follows adiabatically the instantaneous
dark state, ending up in the target state |e;) with very large
fidelity. Nonadiabatic coupling between the eigenstates is neg-
ligible when the 6(¢) mixing angle rate is smaller than the

A? + Q2 + Q2 separation of the Hamiltonian eigenvalues

[44]. Robust and efficient STIRAP transfers occur at large
values for both Rabi frequencies and intermediate-state de-
tuning. There, an adiabatic elimination of the intermediate
state leads to an effective two-level system where our one-
photon compensation may be applied. Instead, we investigate
a nonadiabatic regime where the stability with respect to im-
perfections in the laser parameter is very limited. This occurs
for low A values, where the fidelity presents large oscillations
as a function of the laser detuning (see, e.g., [45]). This is seen
in Fig. 2, where the fidelity F = 0.98 at the end of the first
double STIRAP is not good enough for quantum computation
purposes. The complex dependence on A will appear below in
Fig. 9(a). While the ground |g;) and excited |e;) states of the
three-level STIRAP system are described by Eq. (4) for the
computation qubit, an identical copy forms the control qubit
(j = 2) that interacts with the first one via an interaction V
only between the two excited states [see Eq. (1)].

C. Fidelity or infidelity

The efficiency of the correction qubit approach will be
measured at the times ¢ = nT by the dimensionless fidelity F,
or the infidelity Z = 1 — F, between the final and the initial
(ground) state |g;) of the first qubit. For the two-state g system
(1), presented in Sec. IIT A 1, the straightforward fidelity is,
given an arbitrary state of the first qubit |y),

Fit =nT) = [(gi 1 (nT)) . (7
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For the three-level setup of Sec. IIT A 2, the required fidelity
is obtained by performing a reduction (partial trace [1]) to the
total density matrix. Using the ¥ wave function in the Dicke
state basis of Eq. (3), the fidelity is given by

Fr=Trl(lg1) (1] ® 12)(|¥10t) (Yior])]
= lege(T)* + Lle,(nT)*. 8)

This fidelity contains the predicted occupation of the compu-
tational ground state and an additional term associated with
the identity of the two qubits.

IV. FIDELITY COMPENSATION

In typical applications as considered here, the Rabi fre-
quency €2 can be much larger than the interaction V between
the control and computational qubit. In this case, the duration
T, of a m pulse is much shorter than the time 7; needed for
the interaction to have a sizable effect. In the limit 7} < T,
it is then justified to treat V as being nonzero only during the
interval 7,. This assumption enables a simpler analytical treat-
ment adopted in the following expressions, while the general
configuration is addressed numerically.

We now address typical errors that lead to imperfect pop-
ulation transfer: in Sec. IV A 1 an error in the rotation angle
of the Bloch vector of the form o, and in Sec. IV A3 of the
rotational axis of the form o,. Given, e.g., the well-known long
lifetime of the excited Rydberg states [17], other effects of
decoherence can be safely neglected.

A. Single-photon excitation
1. Rotation angle error

For the Rabi 7 pulse applied over the time 77, we introduce
a relative error € given by

QT =n(1+e¢), )

associated with the Bloch vector rotation angle [1]. At the time
t =T = 2T + 275, after the first sequence with two m pulses
and an acquired phase from the excited-state evolution, the
ground-state fidelity (¢ = T ) for the two-state setup is

Fit =T)=1-Lsin*2re)[l + cos(VT)]
~ 1 —2(we)*[1 4 cos(VT)], (10)

in the second line at small € values. The above expressions re-
veal an important feature associated with all the compensation
schemes examined here. The VT, = (2m + 1) value, with m
an integer, is magic because it produces a strong recovery of
the fidelity for the driving error. The excited-state phase shift
leads to a positive interference in the wave-function evolution
at all the times t = nT. At the magic values, the interaction
steps preceding and following the second laser pulse produce
the exact reverse of the first pulse rotation angle, as shown
in Appendix B. The complete qubit sequence reduces to the
identity and the initial state is exactly restored for any value
of €. While a full recovery is obtained for all n values at
the magic value, Eq. (10) reports a fidelity very close to the
one for interaction strengths near the magic value. This phase
compensation mechanism has a strong analogy to the spin
echo and dynamical decoupling techniques [46,47], where an

arbitrary phase shift is compensated by a double laser exci-
tation. An example of compensation using spin echoes with
interacting Rydberg atoms can be found in [27]. The mecha-
nism is also analogous to the antiresonances of the quantum
kicked-rotor model where each pulse exactly counteracts the
preceding one due to a proper choice of free phase evolution
in between the two pulses [48,49].

With the laser acting on the computational qubit only,
namely, in our model (i), the plots in the (¢, V T,) plane report
the resulting infidelity Z, (+ = T') in Fig. 3(a) and Z, (t = 50T)
in Fig. 3(b). These plots, like most of the following ones,
are limited on the horizontal to the value |e| < 0.015, easily
reached in experiments, and to |V 13| < 5, owing to the ver-
tical periodicity (phase) of the compensation. The infidelity
range reported in our plots is comparable to the values ob-
tained in state-of-the-art quantum-computation experiments.
The plots highlight that the compensation scheme works very
well. However, increasing the qubit cycling number, the com-
pensation range around the magic value becomes narrow and
requires a more precise choice of the interaction parameter.
The compensation efficiency appears clearly from the data of
Fig. 4, where the compensated fidelity F; vs n is compared
to the fidelity reached in multiple operations in the absence
of the compensation. To highlight the robustness of the com-
pensation, note that the chosen parameter V is only close
to the magic value. Therefore, a small imperfection in the
dimensionless product V7, does not affect the efficiency of
the compensation.

In the three-level ¢ model (ii), the simultaneous driving of
both the computation and compensation qubit leads to slightly
different features in the time evolution, but the compensation
is still produced by the combination of the in-phase laser
excitation and the phase acquired here by the state |ej, ;)
with the laser excitation off. For V off while the laser is on,
an analytical solution of the Dicke state time evolution, fol-
lowed by a projection on the single-qubit space, produces the
fidelity at time r = T reported in Appendix A with a complex
dependence on sine and cosine functions. At small € values
the fidelity, from Eqgs. (A2) and (A3), becomes

Faolt =T)~ 1 — L(we)[1 + cos(VT)]. (11)

Only for one rotation at time ¢ = T, the phase shift 7 remains
magic. However, as the number n of interrogations increases,
the behavior of setup (ii) is different from the case (i). The fi-
delity of the three-level model remains overall higher than the
one of the two-level one, as can be appreciated from a com-
parison between Figs. 3(b) and 3(c). It should be mentioned
here that from the time r = 27 onward the contribution of the
Dicke or Bell symmetric state remains below the 1073 level;
therefore with an operating compensation, the computational
qubit is in perfect shape to continue its job.

For the case when the interaction V is applied also within
the laser excitation period 77, the full analytical solution is not
available. Therefore, we rely on numerical simulations, such
as shown in Fig. 3(d), for the three-level model driving as in
all the following figures. The response to the compensation is
greatly modified with an optimal compensation that is almost
independent of the error € (for the explored range) at new
magic dimensionless values VT, = +2.8 and VT, = £3.9.
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FIG. 3. Infidelity Z in the (e, VT;) plane for a rotation error on
the logarithmic scale as indicated by the color bars. The color scale
below (c) applies to the plots in (a)—(c). The black (white) regions
indicate infidelity values larger (smaller) than the color scale lim-
its. The infidelities plotted are (a) Z,(t = T), (b) Z,(t = 50T'), and
(c)and (d) Z,(t = 50T). In (a, b) the error compensation corresponds
to the configuration (i) of Sec. III A 1, and in (c, d) to the model (ii)
of Sec. III A 2. In (d) the interaction is continuously active.

These values converge to the previous magic ones at larger
values of the ratio 75 /T;.

2. Compensation search tool and stability analysis

Although the study of the fidelity allows us to identify
parameter values giving the desired compensation at fixed
interrogation times ¢t = nT, these values may not guaran-
tee the same fidelity for different n. Therefore, we present
now a simple approach for determining the compensation

1.00 A

—~

5 0.75-

!
= 0.50-

0.251

FIG. 4. Fidelity F,(t = nT) vs the sequence number » at a given
error € = 0.007, in the absence of compensation (blue solid line) and
for the dimensionless value V7T, = 2.5 (red dashed line) close to the
optimal compensation for a laser driving of setup (i).

parameters guaranteeing high fidelity for all periods nT . It is
based on the Fourier components of the population difference
P(t) = P,(t) — P.(t). At € = 0 and at perfect compensation,
P =P, — P, is a periodic function whose Fourier spectrum
contains a single component at vy = 1/7'. At the rotation error
€ # 0, a splitting into two sidebands arises in the population
difference of the Fourier spectrum P(v) at the frequencies
vo(1 & €Ty), as from the two-level Rabi evolution for m
pulses. The interaction V modifies the sideband positions
appearing in Fig. 5(a), with a sinusoidal dependence on V7.
It also introduces additional weaker sidebands at even larger

1.0 (a)

10°

1072

0.0 0.1
€

FIG. 5. (a) Fourier spectrum |P(v)| of the population difference
for the two-level setup (i) at € = 0.1 and for VT, = 1. The sidebands
and the splitting are clearly distinguishable only at these large e
values. They coalesce into vy for the magic compensation value,
represented schematically by the red curve. (b) Plot of 1 — P(1,) on
a logarithmic scale, as indicated by the color bar, vs the parameter
plane (e, VT,) for the rotation error. The white regions indicate
infidelity values smaller than the minimum of the color scale.
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FIG. 6. Robustness, in terms of infidelity Z,(t = 507), against
time-dependent fluctuations of the interaction V for a cut of
Fig. 3(c) at € = 0.005. We show a comparison of two ranges of
fluctuations: (a) £5% [orange (gray) line] and (b) +£10% [orange
(gray) line]. In both figures, the blue (black) curve represents the
infidelity without the error. Even with fluctuations of 10% on V, the
system still reaches very high fidelity around the magic value.

€ values. At the interaction values of best compensation, the
main sideband ideally coalesces into the vy value. The 1 —
P(vg) amplitude of the Fourier spectrum peak vs the (e, VT»)
parameters allows a simple determination of the compensation
range, as in Fig. 5(b). The analogy between this plot and that
of Fig. 3(c) highlights the utility of this search tool in the full
parameter space for the compensation.

The stability of our proposed compensation scheme in
Fig. 3(c) is also studied in Fig. 6, where the interaction
parameter V is affected by time-dependent fluctuations. We
exemplify this for the case shown in Fig. 3(c). In particular,
starting from a cut of Fig. 3(c) at € = 0.005, we compare
the curve of the infidelity without fluctuations [see the blue
(black) curves in Figs. 6(a) and 6(b)] with the infidelity in the
presence of fluctuations of +5% in Fig. 6(a) and +10% in
Fig. 6(b). It can be noticed that, even in the case of relatively
large fluctuations in the experimental control of the interac-
tion, the infidelity around the magic value VT, = & is still
around 104, so very close to the optimal value.

Additionally, we tested our protocol for the case of two
different values of the error €, one for each qubit. This breaks
the symmetry of our four-level system, and eventually the
antisymmetric Dicke state will be populated. However, for ¢
values similar to the ones used in Fig. 6 and at the magic value
VT, = &, this additional state becomes populated less than
1077; as a consequence, the fidelity is essentially unaffected
with respect to such small admixtures of the antisymmetric
state.

3. Rotation axis error

We examine here the compensation of an error associated
with the Bloch vector rotation axis [1]. We suppose that the
laser detuning § error from resonance is given by

8T = me, (12)

where 671 = 6 x T;. In a w pulse the Bloch vector rotates by
the angle

QeTh = [ 4+ 8T1)*1'* ~ 7w (1 + 1€?), (13)

10°
1072
104

1076

FIG. 7. Two-level ¢ system (i). The infidelity Z,(t = 50T) is
plotted on a logarithmic scale, as given by the color bars, vs
the dimensionless parameters (§7;, V1) for a laser detuning error.
(a) Obtained for the case of V off in the periods when the laser is
on. (b) The interaction is on at all times. Here the tilted black line
corresponds to the Rydberg enhancement condition V = 2§ (see the
text for details).

to be compared to Eq. (9) of the previous case. For small €
values, the fidelity at the time 7" for the model (i) configuration
is

Fit =T)~1—=2e[1 —cos(VD)]
— 732N + Dsin(VDh). (14)

Both cosine and sine dependences on VT, appear in the
present fidelity. These features lead to the compensation
shown in Fig. 7(a). This figure may be compared to Fig. 3(c),
also for the horizontal scale owing to the detuning error defi-
nition of Eq. (12). Within the central region of low € error, the
magic value VT, = m does not appear clearly. The sine term
of Eq. (14) leads to an asymmetric response of the (677, V13)
plot, breaking the analogy with the Rabi error where a §
symmetry is valid for all the € values. The results for an
interaction V acting at all times are shown in Fig. 7(b). For a
given value of V, the compensation is effective within a more
limited range of the detuning error. In order to obtain a wider
range of error compensation, the role of V' within the laser
interaction period is reduced by decreasing the ratio 77 /75.
The diagonal response in Fig. 7(a) for very small values of
6Ty (=0.05) and in Fig. 7(b) globally is evidence of the Ry-
dberg antiblockade or enhancement. The doubly excited state
for the two atoms is reached for § = V/2,i.e., v = wy + V/2,
taking into account our definition of the interaction energy V
provided to the two atoms. This condition corresponds to the
black line shown in Fig. 7(b). The excitation of both qubits
associated with the enhancement allows for the computational
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FIG. 8. Populations P,; (thick blue solid line) and P; (thin or-
ange dashed line) vs time ¢ up to 5T for a double STIRAP operation
with AT} = 1.4 and the parameters as in Fig. 2 (a) without com-
pensation and (b) with an applied compensation V7, = 2. Note the
large increase in fidelity produced by the compensation, from F,(t =
5T,V =0)>~0.43t0o F(t =5T,VT, =2) = 0.96

qubit to acquire the phase shift required for the compensation.
Notice that, owing to our choice of the laser driving parame-
ters 2 > V, the Rydberg enhancement and also the blockade
are supposed to be negligible [17]. However, even a weak
enhancement may contribute essentially to the more sensitive
phase compensation.

B. Double STIRAP compensation

We now turn to the two interacting STIRAP configurations
introduced in Sec. III B. In the case of the two-photon res-
onant excitation A, = 0, we examine the compensation for
the nonadiabatic regime in which the fidelity is very sensitive
to the intermediate-level detuning A. As a consequence of
the phase accumulation, such a poorly controlled response
is enhanced in a long sequence of double STIRAP pulses.
The rapid decrease of the fidelity with the n number is shown
in Fig. 8(a), where the P,; population of the initial state is
plotted vs time up to r = 5T. The driving parameters are as
in Fig. 2. An important new feature is the large P;; population
occupation of the intermediate state, contributing to less effi-
cient transfer processes with increasing sequence number #.
The complex dependence of the infidelity on A is presented
in Fig. 9(a), evidencing its drastic increase around the value
AT, = 1.4.

We analyze the Fourier spectrum to determine the compen-
sation values when the interaction V is applied at all times. As
an example, Fig. 8(b) shows the good and stable fidelity of
the computational qubit up n = 5 when an interaction com-
pensation VT, = 2 is applied for the laser parameters of the

1.0 1 (a)

1.0
0.8
0.6
0.4
0.2
0.0

ATy

FIG. 9. (a) Infidelities at n = 5 vs the intermediate level detuning
A. The blue dashed line shows the case without compensation, which
is symmetric with respect to the sign of A. The orange solid line
shows data for a compensation V7, = 2 (this case is not symmetric
with respect to the sign of A). The black vertical line marks the value
AT, = 1.4 of Figs. 2 and 8. The other STIRAP parameters are those
given in Fig. 2. (b) Value of the Fourier spectrum component P(vy),
as denoted by the color bar, vs (AT}, VT,) for the compensation
search. The compensation is efficient in different regions of the pa-
rameter plane. The black vertical line identifies the value AT} = 1.4,
as in (a).

figure. Very similar results are obtained if the interaction is
switched on only for the 7, periods. The two-dimensional plot
in Fig. 9(b) for the central Fourier component vs the dimen-
sionless parameters (AT, VT,) shows the presence of regions
where the compensation is very efficient. The compensation
remains efficient for a reasonably large range of interaction
amplitudes. However, for maximal compensation, a tuning of
the interaction amplitude with the detuning value is required.
It should be pointed out that the best compensation is obtained
for a sign conformity between A and V, as for the data of
Fig. 7. This response suggests a hidden role of the Rydberg en-
hancement, in appearance not connected to the (8, V') relation
discussed above for the one-photon case. In Fig. 9(b) the tilted
parallel lines corresponding to constant compensation reflect
the sinusoidal dependence on the parameter V 7, appearing in
the expressions for the fidelity reported above.

V. CONCLUSION

We have introduced a model for robust quantum control,
in which driving errors affecting a computational qubit are
corrected or compensated via the interaction with an addi-
tional correction qubit. The correction scheme is applied to
a sequence of single-qubit operations. In the simplest case,
those may represent sequences, for instance, of quantum-NOT
gates and phase gates. More complex gate schemes may be
investigated along similar lines. For the qubit Bloch vector,
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standard errors on the rotation angle and axis have been
considered. Compensation schemes allowing a very efficient
recovery of the fidelity are determined. The fidelity remains
very high for up to our choice of 50 qubit operations for the
parameters investigated here, but longer sequences could be
explored on equal footing. An optimal control approach may
be used to determine the compensation in the simultaneous
presence of both rotation angle and axis errors. For ultracold
atomic qubits, the interaction is naturally provided by the
Rydberg interactions that represent a very efficient tool for
quantum simulations or quantum computation [17,50]. Using
the Forster resonances, the interaction amplitude is easily
controlled also with a fast temporal response. For most of the
explored schemes we have demonstrated that the compensa-
tion is not very sensitive to the precise value of the interaction
strength or, equivalently, the interaction time 7;. In addition,
the required corrections are within a range typically accessible
in experimental realizations and might help to improve sub-
stantially the fidelities reached in novel setups such as those
based on optomechanics [51].

The quantum control of a long sequence of qubit operations
is determined by numerical calculations. However, the exam-
ination of the r = T single sequence by analytical calculation
leads to compensation requirements with a precision good
enough for exploring longer temporal sequences. Because in
general the compensation efficiency becomes worse as the
sequence number increases, it should be tuned by performing
numerical tests in order to find the optimal compensation
requirements for each specific case.

Our scheme is somewhat analogous to the fidelity increase
obtained in quantum gates via Rydberg interactions by driving
simultaneously the control and target qubits, as examined in
[27,31,52]. It will be interesting to explore the application of
our compensation to quantum gates [12,20,53], complemen-
tary to the spin-echo phase compensation protocol applied in
[27]. Our scheme could also be extended to more elaborated
STIRAP protocols, such as that recently introduced in [54] for
artificial atoms. An additional feature to be investigated is the
role of qubit dissipation within the times of our compensa-
tion, in particular in view of solid-state, e.g., superconducting
qubit, implementations [55].
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APPENDIX A: THREE-LEVEL ¢-SYSTEM HAMILTONIAN
AND FIDELITY

The aim of this Appendix is to derive the Hamiltonian for
the three-level g system, once again for the case where the
interaction acts only within the 7, periods. The solution in the
Dicke basis leads to the fidelity of the computational qubit.

Within the single-qubit basis the Hamiltonian is given by
the sum of Hy ® I + I ® Hy, [with I the identity matrix and

Hp; from Eq. (2)] and the interaction term of Eq. (1). As in
Sec. II, the convenient basis to study the present evolution of
two qubits is composed of the three symmetric Dicke states of
Eq. (3). Within that basis the Hamiltonian is described by the
matrices

0 NG 0 0 0 0
H=|45 g sl H = 8 8 3 (A1)
0 2 %

for the laser-on periods and interaction-only periods, re-
spectively. Notice the cooperative +/2 increase of the Rabi
frequency for laser excitation to the symmetric state |s) with
respect to Egs. (2) and (4). For § = 0, the evolution equa-
tions are equivalent to the Bloch equations for a spin-1 system
in resonance with the driving field. The interaction produces a
VT, phase shift of the doubly excited state |e;, e;).

For the calculation of fidelity from Eq. (8), the following
Dicke state occupations are required:

lege(TI? = §{[1 — cos2QT1)] — 3[1 — cos(QT))I’
x [1 = cos(VT)]}?
1

+ 15 [1 = cos(QTY)]* sin*(V 1), (A2)

les(T)|* = § sin®(QT;){cos*(QT))[5 + 3cos(V )]

+ [2cos(R2T) + 1][1 — cos(VT7)]}. (A3)

Using Eq. (8), the fidelity at time (¢t = T') is obtained as

Faolt =T) = leg(T)I* + e (T (A4)

Iterating such a procedure, one can obtain analytical expres-
sions of the fidelity at periods n > 1. However, due to its
growing complexity, software such as Mathematica is helpful
for obtaining the rather lengthy algebraic expressions with
increasing n. In [56] we report the Mathematica notebook
for the study of the reduced three-level g system shown in
Sec. IIT A 2.

APPENDIX B: TWO-LEVEL q SYSTEM WITHVT, =&

The present target is to derive the magic compensation
value from the temporal evolution of the two-level g system,
with time-separated actions of the laser and interaction. For
the case of a rotation angle error with an arbitrary Rabi fre-
quency 2 including the € error as from Eq. (9), the evolution
operator at time T = 2T + 275 is

U(T) = e~ Vhlentel p=i(Q/Ti2)on p=iVDlelen] ;=11 /2)on

(B1)
with o, the Pauli matrix for the computational qubit. We
demonstrate that for VT, = & the operator U (T") corresponds
to the identity matrix, for all 2 values.

Let us consider the first three factors on the right-hand side
of Eq. (B1). Written in matrix form

<_1 0)( cos[ (1 + ¢€)]
0 1/\—isin[Z(1 +e)]

(o)

—isin[F(1 + e)])
cos[5 (1 + €)]

(B2)
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and using the anticommutation relation {0, o,,} = 0, we im-
mediately obtain /%712 This operator performs a rotation
of the Bloch vectors equal and opposite to that induced by
the first pulse of the sequence in Eq. (B1). Inserting the latter
result in that equation, we obtain

U(T) = £/(@T1/2)0x ,—i(Q2T1/2)0r I, (B3)

demonstrating the magic value compensation, independent of
the € rotation angle error.

The application of the evolution operator to the case of the
rotation axis error unfortunately does not produce a similar
simple interpretation since both errors cannot be exactly cor-
rected by the same procedure from above. One may apply,
however, an optimal control approach to find the optimal value
for the best simultaneous compensation of both errors.
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