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Scaling of the finite-size effect of the α-Rényi entropy in disjointed intervals under dilation
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The α-Rényi entropy in the gapless models has been obtained by the conformal field theory, which is exact
in the thermodynamic limit. However, the calculation of its finite-size effect (FSE) is challenging. So far only
the FSE in a single interval in the XX model has been understood and the FSE in the other models and in the
other conditions is totally unknown. Here we report the FSE of this entropy in disjointed intervals A = ∪iAi

under a uniform dilation λA in the XY model, showing a universal scaling law as �α
λA = �α

Aλ−ηB(A, λ), where
|B(A, λ)| � 1 is a bounded function and η = min(2, 2/α) when α < 10. We verify this relation in the phase
boundaries of the XY model, in which the different central charges correspond to the physics of free fermion
and free boson models. We find that in the disjointed intervals two FSEs, termed as extrinsic FSE and intrinsic
FSE, are required to fully account for the FSE of the entropy. Physically, we find that only the edge modes of the
correlation matrix localized at the open ends ∂A have contribution to the total entropy and its FSE. Our results
provide some incisive insight into the entanglement entropy in the many-body systems.
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I. INTRODUCTION

Entanglement has played a more and more important role
in quantum information and many-body physics. A large num-
ber of investigations have shown that the ground state of the
gapped and gapless phases will have totally different entangle-
ment entropies. For a regime A [see Fig. 1(a)], we can denote
the reduced density matrix as ρA, then the Shannon entropy
can be calculated using SA = −Tr(ρA ln ρA). In the gapped
phase, its entropy satisfies the area law [1–5]:

SA = α̃∂A − γ̃ ∼ Ld−1. (1)

However, in the gapless phase, it satisfies a different area law
with logarithmic correlation as [6,7]

SA ∼ Ld−1 ln2 L. (2)

In the above two equations, L is the system size and d is its
system dimension. When d = 1, it yields the logarithm diver-
gence of the entropy with the increasing of system size (see
below). Similar features may also be found for their low-lying
excited states [8–11]. By generalizing this concept in terms of
α-Rényi entropy, one finds that in the one-dimensional gapless
phase [12,13]

Sα
A = 1

1 − α
log2 Trρα

A = c + c̄

12(1 + α)
log2 L + sα

0 + �α
A, (3)

where c and c̄ are the holomorphic and antiholomorphic
central charges, respectively [14,15]; s0 is a nonuniversal
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constant; and �α
A is its finite-size effect (FSE), satisfying

lim
L→∞

�α
A = 0, (4)

by its definition. The expression of α-Rényi entropy has been
examined numerically in some of the solvable models [13,16–
22], which can be more rigorously obtained by the conformal
field theory (CFT) [14,23–25]. Since the gapped and gapless
phases have totally different entanglement properties, these
features are used to diagnose the phase transitions in some
of the many-body models [26–32].

The scaling laws of the FSE in Eq. (4), which in the
gapped and gapless phases should exhibit totally different
behaviors, are the major concern of this paper. To date, they
have been rarely investigated. In the XX model with free
fermions [13,19,20,33], they have been calculated using the
Jin-Korepin (JK) approach [13,34], yielding an extremely
complicated polynomial of length L with exponents η = 2
and 2n/α for n ∈ Z+ [34–38] (see discussion in Sec. III).
However, the FSEs in the other models and in disjointed
intervals are unknown [see Fig. 1(b)], and are also challenging
to calculate by the JK approach [39–43]. In Ref. [56], Facchi
et al. have considered the entanglement of two blocks of the
same size L, separated by d , in the critical Ising model, finding
that the Shannon entropy (α = 1) is given by

SA = 1
6 [2 ln2(L − a) − 2 ln2(L + d ) + ln2(2L + d − a)

+ ln2(d + a) − 2 ln2(a)], (5)
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FIG. 1. (a) Entanglement entropy in a single interval A and
(b) entanglement entropy in two disjointed intervals A1 and A2 sep-
arated by an interval B1. The configuration in (b) can be generalized
to disjointed intervals; see results in Figs. 5 and 6. The correlation
between different intervals will be calculated by the correlation func-
tions G(x).

where a = 0.056 622 6. This formula yields the following
finite-size effect in the limit of d � L � 1:

SA = 2SL + �1
A, �1

A ∝ 1

d2
. (6)

Thus η = 2, consistent with the theoretical results by the JK
approach. This is the only available result for the finite-size
effect of entanglement entropy in multiple intervals. A great
endeavor has been made trying to explore this FSE in dis-
jointed intervals [44–46], and failed to find some universal
scaling behaviors in them.

This paper aims to explore the scaling law of the above
FSE in multiple intervals [see Fig. 1(b)] in free fermion
(c = c̄ = 1) and boson (c = c̄ = 1/2) models, in which the
correlators exhibit some kind of scaling laws under uniform
dilation, such as 〈φ(λx)φ(λy)〉 = λ−ν〈φ(x)φ(y)〉. This feature
can give rise to a scaling law in �α

A if it is a function of these
correlators, which has not yet been unveiled in the previous
literature. Let us denote A = ∪iAi to be the jointed structure
of some disjointed intervals Ai and let λA (with λ ∈ Z+)
denote its uniform dilation. The set of open ends is denoted
as ∂A = ∪i∂Ai. The key result of this paper in the large size
limit can be formulated as

�α
λA = �α

Aλ−ηB(A, λ), (7)

where |B(A, λ)| � 1 is a bounded function and
η = min(2, 2/α) when α < 10. We find that only the edge
modes of the correlation matrix with wave functions localized
near the open ends contribute to the Rényi entropy and its
FSE. We confirm Eq. (7) in both free fermion and free boson
models. Our results may provide insight into the FSE of Rényi
entropy in multiple intervals in other many-body systems.

This paper is organized as following. In Sec. II, we present
the XY model, in which the properties of the correlation
function are discussed in detail. These correlation functions
are essential for the scaling laws of the entanglement entropy.
We will show that the correlation functions in the gapped
and gapless phases are totally different. In Sec. III, we will
discuss the major results by JK. In Sec. IV, two different
FSEs are defined in disjointed intervals, and their features
in two and three intervals are discussed. At the end of this
section, the results in the gapped phases, which are trivial, will
also be briefly discussed. In Sec. V, we conclude our results.
In Sec. A, we show that the entropy defined in this way is
well defined.

FIG. 2. (a) Phase diagram of the transverse XY model. The
thick lines correspond to the gapless phase with c = c̄ = 1 for free
fermions and c = c̄ = 1/2 for free bosons. (b) Insulator phases with
γ = 0 and |h| > 1 and gapless phase with Fermi points cos(kF ) = h
when |h| < 1. (c) The special points with γ = ±1 and h = 0. In the
Majorana fermion representation, this model is decoupled into paired
Majorana fermions (represented by the hemicycles), with α1 and α2L

unpaired, giving rise to degenerate zero modes. This special case has
been studied by Kitaev [47]. The insulator phases for |h| > 1 and
γ = 0 in (b) and the Kitaev points in (c) have zero range correlation
with G(x) = 0.

II. XY SPIN CHAIN

We illustrated the above conclusion using the following
exact solvable one-dimensional XY spin chain:

H =
∑

i

(
1 + γ

2

)
sx

i sx
i+1 +

(
1 − γ

2

)
sy

i sy
i+1 + hsz

i , (8)

where sα
i (α = x, y, z) are Pauli matrices and h is the trans-

verse Zeeman field. After a Jordan-Wigner transformation by
assigning fermion operators ci and c†

i to each site, it is mapped
to a free fermion model as

H = −
∑

i

c†
i ci+1 + γ c†

i c†
i+1 + H.c. + h(1 − 2c†

i ci ), (9)

with excitation gap

εk =
√

[cos(k) − h]2 + γ 2 sin(k)2. (10)

The phase boundary is determined by εk = 0, which yields
three phase boundaries in Fig. 2. When γ �= 0, we have
|h| = 1; when γ = 0, we have |h| � 1. The phase transition
in this model is characterized by Z2 symmetry breaking [48].
We choose this model because the two gapless boundaries
correspond to free fermions and free bosons, respectively [see
Fig. 2(a)], thus this model automatically yields the physics in
these two distinct free particles.
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The density matrix of A = ∪iAi can be calculated exactly
using the same approach as that used in a single interval,
for the reason that the density matrix of several disjointed
intervals can be expressed as [19,45]

ρA ∝ exp(HA), HA = iαT W α

4
, tanh

W

2
= �, (11)

based on the Majorana operators α2l−1 = (
∏

m<l σ z
m)σ x

l and
α2l = (

∏
m<l σ z

m)σ y
l . Here, � is a skew matrix with entries

given by

�i,i+x = −i(〈αiαi+x〉 − δx0) =
(

0 G(x)
−G(−x) 0

)
, (12)

where [13,19,20]

G(x) =
∫ π

−π

γ sin(k) sin(kx) − ek cos(kx)

2πεk
dk, (13)

with ek = h − cos(k). This integral determines all the proper-
ties of the Rényi entropy. It has a number of salient features
[20]. In the gapless phases, it decays algebraically as

G(x) = K (x)

x
, (14)

where K (x) is a bounded oscillating function. Specifically, we
find the following.

(I) For free fermions with γ = 0 and |h| � 1, we have

K (x) = {2 sin[x arccos(|h|)] − sin(πx)}
π

. (15)

When h = ±1, the spectrum is gapless with quadratic dis-
persion as Ek ∝ k2 and G(x) = 0, which violate conformal
symmetry. In the fully gapped phase with |h| > 1, we always
have G(x) = 0 due to the presence of a vacuum state or a fully
filled state [see Fig. 2(b)], hence � is always equal to zero [see
Eq. (12)].

(II) For free bosons with |h| = 1 and γ �= 0, we have

K (x) � −2sign(γ )[1 − cos(πx)], (16)

which is long-range correlated. The above two K (x) are
bounded functions, that is, |K (x)| � C for some positive con-
stant C; G(x) decays according to 1/x and their oscillating
behaviors. This long-range correlator is essential for the log-
arithm relation of the entanglement entropy, as shown in
Eqs. (2) and (3).

(III) In the gapped phases, G(x) is short-range correlated
with an exponential decaying behavior. Based on Eq. (13), we
can even show at the Kitaev points with h = 0 and γ = ±1
[see Fig. 2(c)] that G(x) is zero range correlated since

K (x) = sin(πx) = 0, x ∈ Z, (17)

which can be understood as due to the fact that in these two
points α2i and α2i+1 are paired, leaving only α1 and α2L to
be the dangling operators left out from the Hamiltonian. In
the gapped phases with finite energy gap, by expanding εk =
a + bk2, where a = |h ± 1| and b = (|h ± 1| + γ 2)/2|h ± 1|
for the energy gap at k = 0 (−) or π (+), we obtain

G(x) ∼ e−|x|/ξ , (18)

where the decay length ξ = |γ |/(
√

2|h ± 1|). This implies the
area law [49], as shown in Eq. (1). In Fig. 3, we plot the results
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FIG. 3. K (x) in the gapped phase and gapless phase. In the
gapped phase, we have chosen γ = 0.4 and h = 0.5, while in the
gapless phase we used γ = 0.0 and h = 0.5. Only values at x ∈ Z
are plotted.

of K (x) in the gapped and gapless phases, showing excellent
agreement with the above analysis. In the gapped phase, K (x)
will always vanish at large x ∈ Z.

Equation (11) is essential to calculate the density matrix of
ρA and its eigenvalues numerically. Notice that W and � are
real skew matrices, and can be solved by an orthogonal ma-
trix, then we have ρA = ∏

l ⊗ρl , with ρl = diag( 1−νl
2 , 1+νl

2 ),
with eigenvalues as λ = ∏

sl =1,−1( 1+sl νl
2 ). By definition we

have [50]

Sα
A = 1

1 − α

∑
l

log2

[(
1 + νl

2

)α

+
(

1 − νl

2

)α]
, (19)

which is reduced to the Shannon entropy when α → 1,
with SA = −∑L

l=1( 1±νl
2 ) log2( 1±νl

2 ). Furthermore, with the
increasing of α, the total entropy decreases monotonically,
which finally saturates to S∞

A = −∑
νl <1 log2( 1+νl

2 ). The
eigenvalues and eigenvectors of the Hermite operator i� in
Fig. 4 show that only the modes localized at the edges have
contribution to the Rényi entropy, while the extended modes
with νl → ±1 will not. This is expected, since for the ex-
tended modes the wave functions are extended in the whole
interval and their amplitudes at the open ends ∂A are vanish-
ingly small with the increasing of system size [see the wave
functions in Figs. 4(b) and 4(d)]. In this way, the coupling
between regime A with its complement Ā is negligible in the
large L limit. However, for the localized edge modes, the
coupling between the sites near the boundary ∂A is strong,
and νl < 1. This is also the essential origin of the area law
quoted above.

III. FSE BY JIN-KOREPIN

The FSE of this entropy is defined as the difference be-
tween the exact (numerical) Rényi entropy and the prediction
from CFT [35,51–53]. In a single interval with γ = 0 for free
fermions, �α

A was obtained by the JK approach [13]. To the
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FIG. 4. Wave functions of the correlation matrix i� in a single
interval with L = 100. (a, b) Wave function in the gapless phase
(γ = 1.36 and h = 1.0) for ν101, ν106, and ν112 (using ν100+l =
−ν100−l from the particle-hole symmetry of i�). (c, d) Results for
γ = 1.36 and h = 1.5 in the gapped phase for ν101, ν106, and ν112.
Here i� is a 2L × 2L matrix, thus we have in total 2L = 200
eigenvalues.

leading term [34,35]

�α
A = A1

[2L| sin(kF )|]2
+ A2

[2L| sin(kF )|] 2
α

+ O(L− 2n
α ), (20)

where

A1 = [12(3α2 − 7) + (49 − α2) sin2(kF )](1 + α)

(285α3)
(21)

and

A2 = 2Q cos(2kF L)

(1 − α)
, (22)

with Q = �(1/2 + 1/(2α))2/�[1/2 − 1/(2α)]2, and
kF = arccos(|h|) is the Fermi momentum. The next
leading terms correspond to n > 1. Note that the second
term oscillates periodically with spatial period d = π/kF ,
reflecting the coupling between the scatterings near the
two Fermi momenta ±kF . This result shows that the first
term is irrelevant when α > 1 with B = cos(2kF L), and the
second term is irrelevant when α < 1 with B = 1, while both
terms are important near the Shannon entropy with α ∼ 1.
Thus η = min(2, 2/α). Our data in Figs. 5(a) and 5(b) show
excellent agreement with this prediction. One should notice
that A1 and A2 may have similar amplitudes but opposite
signs near α ∼ 1 with a proper choice of kF , which may yield
strong cancellation between them, thus it cannot be fitted well
using Eq. (7) at the regime with α ∼ 1 in Fig. 5(b).

The following section will generalize the results in Eq. (20)
to disjointed intervals, showing great similarity between them.
In the disjointed intervals, the FSE is much more complicated,
and two FSEs—the extrinsic and intrinsic FSEs—should be
defined, all of which have similar scaling laws under uni-

form dilation, including the basic feature of the bounded
function B(L).

IV. TWO FSEs IN DISJOINTED INTERVALS

To characterize the FSE in multiple intervals, we need to
define two more different FSEs, in addition to �α

A in a single
interval. To this end, we first consider the FSE in two intervals
A1 and A2 separated by B1 [see configuration in Fig. 1(b)],
which reads as

Sα
A1A2

= Sα
A1B1A2

− Sα
A1B1

− Sα
B1A2

+ Sα
A1

+ Sα
B1

+ Sα
A2

+ �α
2 (A1, B1, A2). (23)

Obviously, for two intervals, the nonuniversal constant is
twice sα

0 . This definition is well defined (see the Appendix).
The right-hand side contains the entropies in all possible sin-
gle intervals, while the left-hand side is the entropy of two
disjointed intervals [45,54–56]. Here we have introduced �α

2
to account for the difference between the left- and right-hand
sides, making it an exact identity. When the sizes of A1, B1,
and A2 approach infinity, we expect that

lim
LA1 ,A2 ,B1 →∞

�α
2 (A1, B1, A2) = 0. (24)

Since it is an extrinsic effect to force the above identity, it
is termed as the extrinsic FSE of the disjointed intervals.
Meanwhile, we can write

Sα
A1A2

= Sα,CFT
A1A2

+ �α
A1A2

(25)

using the definition in Eq. (3), where Sα,CFT
A1A2

is the entropy
from CFT that can be found in Refs. [52,57]. This FSE is an
intrinsic effect, not related to the identity above; it is termed
as the intrinsic FSE of the disjointed intervals. By definition,
we also expect this FSE vanishes when the intervals and their
separation approach infinity.

The expression of Sα,CFT
A1A2

may also be inferred from
Eq. (23), assuming negligible FSE and Sα

A in a single interval
given by Eq. (3). Thus we have an identity between all FSEs
as

�α
A1A2

= �α
A1B1A2

− �α
A1B1

− �α
B1A2

+ �α
A1

+ �α
B1

+ �α
A2

+ �α
2 (A1, B1, A2). (26)

From the facts that CFT is analytically exact when the system
size is large enough and that the correlation between the
two intervals decreases with the increasing of separation, we
expect all �α in Eq. (26) to approach zero at large separation
according to �α ∝ 1/Lη. This limit can be used to extract the
nonuniversal constant of s0 in Eq. (3). In the gapless phase,
all these FSEs are in the same order of magnitude, thus all of
them are important; they reflect the FSE of A from different
aspects.

This definition can be easily generalized to three (or many)
disjointed intervals using the finding from the CFT that

Sα
A1A2A3

= Sα
A1B1A2B2A3

− Sα
A1B1A2B2

− Sα
B1A2B2A3

+ · · · + Sα
B1

+ Sα
A2

+ Sα
B2

+ Sα
A3

+ �α
3 , (27)

where �α
3 = �α

3 (A1, B1, A2, B2, A3) is the extrinsic FSE. This
expression can also be obtained from Eq. (23), assuming A2

to be a union of two disjointed intervals (see Sec. A). This
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FIG. 5. FSE of �α
A for the free fermion model at γ = 0 and |h| = 0.6. (a) The FSE in a single interval. (c–f) FSE of the entropy

for the two different definitions (see text) based on two and three disjointed intervals (c, d) λA = (A1, B1, A2) = (λ, 3λ, 2λ) and (e, f)
λA = (A1, B1, A2, B2, A3) = (λ, 2λ, λ, 2λ, 4λ). The plus and minus signs next to each line indicate the sign of this FSE, thus ± corresponds
to the oscillation behavior with period d = π/kF [with kF = arccos(|h|)] arising from B(A, λ). (b) The fitted values of η for these five cases,
which for the sake of convenience are offset by 0.5; otherwise, they will collapse to the same curve given by η = min(2, 2/α) when α is not
large enough. The regime for α ∼ 1 cannot be fitted well using Eq. (7) from the cancellation effect in Eq. (20).

identity has the same structure as Eq. (23). Similarly, we
define

Sα
A1A2A3

= Sα,CFT
A1A2A3

+ �α
A1A2A3

, (28)

where �α
A1A2A3

is the intrinsic FSE of the three intervals.
We can find an identity between all FSEs exactly the
same as Eq. (26). Thus we see that the FSE can be fully

characterized by these two FSEs in many intervals. In our
numerical simulation, we can extract these two FSEs, and
discuss their effect under uniform dilation.

We present the data for these �α in Figs. 5(c)–5(f) un-
der uniform dilation for free fermions with c = c̄ = 1 [see
Fig. 2(a)]. We find a strong oscillation of �α

A for α > 1 in
Figs. 5(c)–5(f), which is consistent with Eq. (20) with a some-
what modified A1 and A2; unfortunately, these values cannot
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FIG. 6. FSE of �α
A for the free boson model at γ = 1.36 and h = 1. The meaning of each curve is the same as that in Fig. 5; however,

since kF = π as shown from the correlator G(x), oscillation of the FSE is absent, and the scaling law of Eq. (7) can be well reproduced. For
comparison, we also show the condition of nonuniform dilation using (A1, B1, A2) = (28, λ, 24) and (A1, B1, A2, B2, A3) = (18, λ, 12, λ, 23)
with open circles, which violate Eq. (20) obviously.

be determined analytically. We find that when α < 1 the A1

term is always relevant with B = 1, while when α > 1 the
A2 term is relevant with |B(A, λ)| being a complicated yet
nonanalytical bounded function. These observations yield the
major conclusion of Eq. (7). In Fig. 5(b), we present the fitted
exponent η as a function of α for all these �α

A, all of which fall
to the same expression η = min(2, 2/α) when α < 10. When
α ∼ 1, it may not be well fitted using Eq. (7) for the same
reason of cancellation in Eq. (20). Moreover, in Fig. 5(b),

saturation of entropy happens when α > 10, at which the
exponent η will deviate from 2/α from the unspecified high-
order terms L−2n/α (n > 1) in Eq. (20); see Refs. [13,34,35].

These results can also be found for free bosons with
c = c̄ = 1/2 in Fig. 6. However, the correlator G(x) oscillates
with period kF = π , thus the oscillation of the FSE from
A2 disappears and B(A, λ) = 1 for all disjointed intervals
A. As a result, for all the FSEs in the one, two, and three
disjointed intervals, all the FSEs decay monotonically with the
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increasing of dilation ratio λ, following the claim of Eq. (7).
We also show that when the dilation is nonuniform this gen-
eral relation fails. In Fig. 6(b), the summarized η is also the
same as that in Fig. 5(b), showing a similar cancellation effect
prescribed by Eq. (20) even in multiple intervals, though their
analytical expressions are impossible.

Finally, we briefly discuss the FSE in the gapped phases.
We find that all the �α

A decay exponentially under dilation in
the multiple intervals, with Sα

A satisfies the area law [49]. In
these phases, the correlator G(x) also decays exponentially as
a function of x. From Figs. 4(c) and 4(d), we show that only
the edge modes of i� contribute to Sα

A . Due to the short-range
correlation from G(x), the FSEs will quickly disappear follow-
ing �α

A ∼ e−x/ξ , where x is the minimal separation between
the open ends in ∂A. This result is trivial, thus it is not pre-
sented in this paper. For this reason, �α

A in multiple intervals
also exhibit different kinds of scaling laws in the gapped and
gapless phases, which can be used for the diagnostication of
phase transitions [26–32].

V. CONCLUSION

To conclude, we examine the FSE of α-Rényi entropy in
the free fermion and free boson models in the XY model,
which exhibit the same scaling law during uniform dilation
that �α

λA = λ−η�α
AB(A, λ). We find that the regimes α < 1

and α > 1 are described by different relevant terms, and
thus exhibit different scaling behaviors. When α is not large
enough, we find η = min(2, 2/α). For the Shannon entropy,
we thus have η = 2 exactly. From the correlation matrix i�,
we find that only the edge modes localized at the open ends
∂A contribute to the α-Rényi entropy as well as its FSE. Our
results in multiple intervals provide some incisive insight into
the entanglement entropy in the many-body system, in which
the analytical calculation is scarcely possible. Since this FSE
is different in the gapped and gapless phases, the FSE of
the disjointed intervals can also be used to characterize this
difference and their phase transitions.
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APPENDIX: WELL-DEFINED ENTROPY SA

The formula of entropy in disjointed intervals [see for
example Eq. (23) for two intervals] depends only on the
separation between A1 and A2, which is independent of the
other part of the infinity system. The same conclusion holds
for more complicated structures. To understand this, let us
assume a ring geometry in Fig. 7, in which A1 and A2 are sep-
arated by either B1 or B1. We assume that their sizes are large
enough, then the FSEs are negligible. We have two different
methods—using A1-B1-A2 and A1-B2-A2—to account for the
entropy of A1 and A2, that is,

Sα
A1A2

= Sα
A1BiA2

− Sα
A1Bi

− Sα
BiA2

+ Sα
A1

+ Sα
A2

+ Sα
Bi

, (A1)

FIG. 7. Entanglement entropy in a ring geometry, in which the
total entropy of A = A1 ∪ A2 calculated using A1-B1-A2 and A1-B2-A2

will yield the same result.

for i = 1 and 2. Using the fact that SA = SĀ by definition, we
have Sα

A1B1A2
= Sα

B2
, Sα

A1B2A2
= Sα

B1
, Sα

A1B2
= Sα

B1A2
, and Sα

A1B1
=

Sα
B2A2

, and we can show directly that the above two cal-
culations will yield the same result. This method can be
generalized to much more complicated disjointed structures.
For this reason, we also expect well-defined FSEs of these
entropies.

The above result can also be understood intuitively in
the following way. Let us assume that Sα

A1A2
= x1Sα

A1BiA2
+

x2Sα
A1Bi

+ x3Sα
BiA2

+ x4Sα
A1

+ x5Sα
A2

+ x6Sα
Bi

, where xi are un-
determined coefficients. This definition should satisfy some
basic features.

(1) The above two calculations should yield the same
result.

(2) When the separations B1 and B2 are much larger
than the sizes of A1 and A2, we will recover the limit that
Sα

A1A2
= Sα

A1
+ Sα

A2
.

(3) This expression has well-defined symmetry, that is,
Sα

A1A2
= Sα

A2A1
.

These three constraints will yield uniquely the above en-
tropy in two disjointed intervals.

Finally, we assume that the entropy of two intervals is cor-
rect even when A2 is a union of two disjointed intervals. Then
we assume A2 → A2 ∪ A3, where A2 and A3 are separated by
B2. In this way, we will find that the right-hand side of Eq. (23)
is made by disjointed intervals. For instance, SA1B1(A2A3 ) is the
total entropy of A1 ∪ B1 ∪ A2 and A3, which can be calculated,
again, using Eq. (23). Collecting all these results will yield
Eq. (27). In this way, we can derive the expression of entropy
in many disjointed intervals. In the large size limit, the same
expression can be found by CFT. This result suggests that

Sα
λA = Sα

A + c + c̄

12(1 + α)
k ln λ + �α

λA, (A2)

for k disjointed intervals. Obviously, in this case, the nonuni-
versal constant is given by ksα

0 , where sα
0 is the constant in a

single interval [see Eq. (3)].
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