
PHYSICAL REVIEW A 105, 042428 (2022)

Enhanced optimal quantum communication by a generalized phase-shift-keying coherent signal
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It is well known that the maximal success probability of the binary quantum communication can be improved
by using a sub-Poissonian nonstandard coherent state as an information carrier. In the present article, we consider
the quantum communication with N-ary phase-shift-keying (N-PSK) signal for an arbitrary positive integer
N > 1. By using nonstandard coherent state, we analytically provide the maximal success probability of the
quantum communication with N-PSK. Unlike the binary case, there is a case that the guessing probability of
N-PSK quantum communication can be improved by some non-sub-Poissonian, nonstandard coherent state.
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I. INTRODUCTION

In optical communication, a sender encodes a message in
an optical signal and sends it to a receiver who detects the
signal to decode the message [1]. Thus, the success probability
of the optical communication is determined by the physical
and statistical properties of the optical signal together with
the structure of the receiver’s measurement device. In clas-
sical optical communication, the receiver can use an on-off
detector to decode a sender’s message encoded in an on-off
keying signal [2,3], and a homodyne detector for the binary
phase-shift-keying signal [4]. However, the maximal success
probability for decoding encoded messages by using conven-
tional measurements such as the on-off and the homodyne
detectors cannot exceed the standard quantum limit.

One of the goals in quantum communication is to design
a novel measurement so that the maximal success probability
to decode messages can surpass the standard quantum limit
[5]. According to the quantum theory, the optical signal is
described as a density operator on a Hilbert space and a mea-
surement is described as a positive-operator-valued measure
(POVM); therefore, the quantum communication is described
as a quantum state discrimination protocol [6,7].

Minimum error discrimination [8,9] is one representative
state discrimination strategy used in various quantum com-
munication protocols. When a one-bit message is encoded by
binary coherent states, minimum error discrimination between
the binary coherent states can be implemented via the Dolinar
receiver [10]. However, when several bits are encoded and
sequentially sent, the photon number detector used for the
discrimination may not efficiently react along the received
states [5]. For this reason, N-ary coherent states such as
the N-amplitude-shift-keying (N-ASK) signal [2] and the N-
phase-shift-keying (N-PSK) signal [4] have been considered
to send log2 N-bit messages.

According to a recent work [11], the maximal success
probability (or guessing probability) of discriminating a
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message encoded in the 2-PSK signal composed of non-
standard coherent states (NS-CS) with a novel quantum
measurement can be improved by the sub-Poissonianity of
the NS-CS. Moreover, the experimental method for imple-
menting the quantum measurement reaching for the guessing
probability has recently been proposed [12]. Since the neg-
ative Mandel parameter to quantify the sub-Poissonianity is
considered as a resource in a nonclassical light [13], this
result implies that the sub-Poissonianity can be a resource for
improving the performance of the quantum communication.

In the present article, we consider the quantum communi-
cation with the N-PSK signal for an arbitrary positive integer
N > 1. By using the nonstandard coherent state, we analyti-
cally provide the maximal success probability of the quantum
communication with N-PSK. Unlike the binary case, there
is a case that the guessing probability of N-PSK quantum
communication can be improved by some non-sub-Poissonian
NS-CS [14].

For N > 2, the N-PSK signal enables us to transmit a
log2 N-bit message per a signal pulse, which is a better in-
formation exchange rate than binary-PSK. Moreover, it is
also known that the N-PSK signal can provide an improved
information exchange rate between the sender and receiver
even though the receiver’s measurement is slow [5]. However,
the maximal success probability of discriminating a message
encoded in the N-PSK signal generally decreases as N is
getting large. Thus our results about the possible enhance-
ment of the maximal success probability in N-PSK quantum
communication by NS-CS is important and even necessary to
design efficient quantum communication schemes.

The present article is organized as follows. In Sec. II, we
briefly review the problem of minimum error discrimination
among N symmetric pure states. In Sec. III, we provide the
analytical guessing probability of the N-PSK signal composed
of NS-CS. In Sec. IV, we investigate the guessing probability
of the N-PSK signal composed of optical spin coherent states
(OS-CS), Perelomov coherent states (P-CS), Barut-Girardello
coherent states (BG-CS), and modified Susskind-Glogower
coherent states (mSG-CS), and discuss the relation be-
tween the sub-Poissonianity of the nonclassical light and the
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performance of the N-PSK quantum communication. Finally,
in Sec. V, we propose the conclusion of the present article.

II. PRELIMINARIES: MINIMUM ERROR
DISCRIMINATION AMONG SYMMETRIC

PURE STATES

In quantum communication, Alice (sender) prepares
her message x ∈ {1, . . . , N} with a prior probability qx ∈
{q1, . . . , qN }, encodes the message in a quantum state ρx ∈
{ρ1, . . . , ρN }, and sends the quantum state to Bob (receiver).
Bob performs a quantum measurement described as a POVM
{M1, . . . , MN } to discriminate the encoded message. In the
POVM, Mx is a POVM element with respect to a result x.

For a given ensemble E = {qx, ρx}N
x=1 of Alice and a

POVM M = {Mx}N
x=1 of Bob, the success probability of the

quantum communication between Alice and Bob is described
by the success probability of the state discrimination,

Ps(E,M) =
N∑

x=1

qxtr{ρxMx}. (1)

One way to optimize the efficiency of quantum communi-
cation is to consider a POVM that maximizes the success
probability in Eq. (1). In this case, the maximization of the
success probability in Eq. (1) is equivalent to the minimization
of the error probability,

Pe(E,M) = 1 − Ps(E,M) =
N∑

x=1

∑
y �=x

qxtr{ρxMy}. (2)

Minimum error discrimination is to minimize the error proba-
bility in Eq. (2) over all possible POVMs M of Bob.

For a given ensemble E , it is known that the following
inequality is a necessary and sufficient condition for POVM
M minimizing the error probability [2,15],

N∑
z=1

qzρzMz − qxρx � 0, ∀x ∈ {1, . . . , N}. (3)

Moreover, it is known that the following equality is a use-
ful necessary condition to characterize the structure of the
POVM,

Mx(qxρx − qyρy)My = 0, ∀x, y ∈ {1, . . . , N}. (4)

If all quantum state ρx are pure (that is, ρx = |ψx〉〈ψx|) and
linearly independent, the optimal POVM is given by a rank-
1 projective measurement [2]. In other words, Mx = |πx〉〈πx|
for every x ∈ {1, . . . , N}.

Now, we focus on the minimum error discrimination
among a specific class of pure states, called symmetric pure
states.

Definition 1. [16] For a positive integer N , the distinct pure
states |ψ1〉, . . . , |ψN 〉 are called symmetric, if there exists a
unitary operator V such that

|ψx〉 = V x−1|ψ1〉, (5)

for x = 1, 2, . . . , N , and

V N = I, (6)

where I is an identity operator on a subspace spanned by
{|ψ1〉, . . . , |ψN 〉}.

The Gram matrix composed of the symmetric pure states
in Definition 1 is

G = (〈ψx|ψy〉)N
x,y=1. (7)

From a straightforward calculation, the eigenvalues of the
Gram matrix in Eq. (7) are in forms of

λp =
N∑

k=1

〈ψ j |ψk〉e− 2π i(p−1)( j−k)
N , p = 1, 2, . . . , N, (8)

for any choice of j ∈ {1, 2, . . . , N}. We note that the set
{λp}N

p=1 is invariant under the choice of j due to the symmetry
of the pure state {|ψ1〉, . . . , |ψN 〉}. The following proposition
provides the maximal success probability of the minimum
error discrimination among the symmetric pure states in Def-
inition 1.

Proposition 1. [17,18] Let Esym be an equiprobable en-
semble of symmetric pure states |ψ1〉, . . . , |ψN 〉. Then, the
maximal success probability is given as

Pguess(Esym ) = 1

N2

(
N∑

p=1

√
λp

)2

, (9)

where λp are the eigenvalues of the Gram matrix composed of
{|ψ1〉, . . . , |ψN 〉} in Eq. (7).

Equation (9) is also called guessing probability, and 1 −
Pguess(Esym ) is called minimum error probability.

III. OPTIMAL COMMUNICATION WITH
PHASE-SHIFT-KEYING (PSK) SIGNAL

In quantum optical communication, the phase-shift-keying
(PSK) signal is expressed as equiprobable symmetric pure
states [1]. In this section, we derive the maximal success prob-
ability of the quantum communication with the PSK signal
composed of generalized coherent states. First, we provide
a definition of the generalized coherent state which encap-
sulates the standard coherent state (S-CS) and nonstandard
coherent state (NS-CS) as special cases.

Definition 2. [11] If a pure state takes the form

|α, �h〉 =
∞∑

n=0

αnhn(|α|2)|n〉, (10)

where R is a positive real number, α is a complex number such
that |α| < R, {|n〉|n ∈ Z+ ∪ {0}} is the Fock basis, and �h is a
tuple of real-valued functions hn : [0, R2] → R satisfying

∞∑
n=0

un{hn(u)}2 = 1, (11)

∞∑
n=0

nun{hn(u)}2 (12)

is a strictly increasing function of u,∫ R2

0
duw(u)un{hn(u)}2 = 1 (13)
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for a real-valued function w: [0, R2] → R+, then the pure
state is called generalized coherent state. If every real-valued
function hn in Eq. (10) takes the form

hn(u) = 1√
n!

e− 1
2 u, ∀n ∈ Z+ ∪ {0}, (14)

then Eq. (10) is called the standard coherent state (S-CS) [19].
Otherwise, Eq. (10) is called the nonstandard coherent state
(NS-CS).

Remark 1. The mean photon number of S-CS is given by

〈n〉 = |α|2. (15)

Several examples of NS-CS have been introduced such as
the optical spin coherent state (OS-CS) [14], the Perelomov
coherent state (P-CS) [14], the Barut-Girardello coherent state
(BG-CS) [20], and the modified Susskind-Glogower coherent
state (mSG-CS) [21].

Example 1. For a given non-negative integer ñ, if hn takes
the form

hn(u) =
√

ñ!

n!(̃n − n)!
(1 + u)−

ñ
2 , (16)

for 0 � n � ñ and hn(u) = 0 for n > ñ, then the generalized
coherent state in Eq. (10) is called the optical spin coherent
state (OS-CS). The mean photon number of OS-CS is given
by [11]

〈n〉 = ñ
|α|2

1 + |α|2 . (17)

Example 2. For all non-negative integer n and a real num-
ber ς with ς � 1/2, if hn takes the form

hn(u) = 1√
N (u)

√
�(2ς )

n!�(2ς + n)
, (18)

then the generalized coherent state in Eq.(10) is called the
Barut-Girardello coherent state (BG-CS). Here, � is the
Gamma function of the first kind and N (u) is a normalization
factor,

N (u) = �(2ς )u1/2−uI2ς−1(2
√

u), (19)

where Iν is the modified Bessel function of the first kind. The
mean photon number of BG-CS is given by [11]

〈n〉 = |α| I2ς (2|α|)
I2ς−1(2|α|) . (20)

Example 3. For all non-negative integer n, if hn takes the
form

hn(u) =
√

n + 1

N̄ (u)

1

u
n+1

2

Jn+1(2
√

u), (21)

then the generalized coherent state in Eq. (10) is called the
modified Susskind-Glogower coherent state (mSG-CS). Here,
Jn is the Bessel function of the first kind and N̄ (u) is a
normalization factor,

N̄ (u) = 1

u
[2u{J0(2

√
u)}2

− √
uJ0(2

√
u)J1(2

√
u) + 2u{J1(2

√
u)}2]. (22)

The mean photon number of mSG-CS is given by [11]

〈n〉 = 1

N̄ (|α|2)
− 1. (23)

Example 4. For all non-negative integer n, ς and an integer
or half-integer with ς � 1/2, if hn takes the form

hn(u) =
√

(2ς − 1 + n)!

n!(2ς − 1)!
(1 − u)ς , (24)

then the generalized coherent state in Eq. (10) is called the
Perelomov coherent state (P-CS). The mean photon number
of P-CS is given by [11]

〈n〉 = 2ς
|α|2

1 − |α|2 . (25)

We mainly focus on which NS-CS provided in the ex-
amples can give the advantage to the N-ary PSK quantum
communication. For this reason, we define the N-ary gener-
alized PSK (N-GPSK) signal as follows.

Definition 3. If an equiprobable ensemble Egcs consists of
generalized coherent states,

{|αx, �h〉|x ∈ {1, 2, · · · , N}}, (26)

where N ∈ Z+ and αx ∈ C such that

αx = αe
2π i
N x, (27)

with a non-negative integer α, then the ensemble Egcs is called
the N-ary generalized PSK (N-GPSK) signal.

Moreover, the N-GPSK signal is called the N-ary standard
PSK (N-SPSK) signal [1] if every coherent state in Eq. (26) is
S-CS, and the N-PSK signal is called the N-ary nonstandard
PSK (N-NSPSK) signal if every coherent state in Eq. (26)
is NS-CS. The following theorem shows that the generalized
coherent states in Definition 3 are symmetric.

Theorem 1. For given distinct generalized coherent states
|α1, �h〉, . . . , |αN , �h〉, there exists a unitary operator U such that

|αx, �h〉 = U x−1|α1, �h〉, ∀x ∈ {1, 2, . . . , N}, (28)

for x = 1, 2, . . . , N , and

U N = I, (29)

where I is an identity operator on a subspace spanned by
{|α1, �h〉, . . . , |αN , �h〉}.

Proof. Consider a unitary operator,

U = e
2π i
N a†a, (30)

where a and a† are the annihilation and creation operators
satisfying

a|n〉 = √
n|n − 1〉, ∀n ∈ Z+, (31)

a†|n〉 = √
n + 1|n + 1〉, ∀n ∈ Z+ ∪ {0}, (32)

respectively. It is straightforward to show that the unitary
operator U in Eq. (30) satisfies Eq. (29).

We also note that

U |n〉 = e
2π i
N n

∣∣n〉
, (33)
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for any non-negative integer n, therefore we have that

U |αx, �h〉 =
∞∑

n=0

αn
x hn(|αx|2)e

2π i
N a†a|n〉

=
∞∑

n=0

αn
x hn(|αx|2)e

2π i
N n|n〉

=
∞∑

n=0

(
αxe

2π i
N

)n
hn(|αx|2)|n〉, (34)

for every x ∈ {1, 2, . . . , N − 1}. Moreover, Eq. (27) leads us
to

αxe
2π i
N = αx+1, (35)

for x ∈ {1, 2, . . . , N − 1} and

|αx| = α, (36)

for x ∈ {1, 2, . . . , N}. From Eqs. (34), (35), and (36), we have

U |αx, �h〉 =
∞∑

n=0

(αx+1)nhn(|αx+1|2)|n〉 = |αx+1, �h〉. (37)

Equation (28) can be shown by an inductive use of Eq. (37),
which completes the proof. �

Theorem 1 means that the guessing probability of quantum
communication with the N-GPSK signal is given by Eq. (9) in
Proposition 1, which is encapsulated in the following theorem.

Theorem 2. The guessing probability of the N-GPSK sig-
nal is given by

Pguess(Egcs) = 1

N2

(
N∑

p=1

√
λ

(G)
p

)2

, (38)

where λ(G)
p takes the form of

λ(G)
p =

N−1∑
k=0

[ ∞∑
n=0

α2n cos

{
2π

N
k(n + p − 1)

}
{hn(α2)}2

]
,

(39)

for every p ∈ {1, 2, . . . , N}.
Proof. For every j, k ∈ {1, 2, . . . , N}, the inner product

〈α j, �h|αk, �h〉 is

〈α j, �h|αk, �h〉 =
∞∑

n=0

{
α2ei 2π

N (k− j)
}n{hn(α2)}2. (40)

From Eq. (40) together with Eq. (8), λ(G)
p is also obtained by

λ(G)
p

=
N∑

k=1

[ ∞∑
n=0

{
α2ei 2π

N (k− j)
}n{hn(α2)}2

]
e− 2π i(p−1)( j−k)

N

=
N∑

k=1

[ ∞∑
n=0

α2nei 2π
N (k− j)(n+p−1){hn(α2)}2

]
. (41)

As mentioned before, the set {λ(G)
p }N

p=1 is invariant under
the choice of j ∈ {1, 2, . . . , N}. By choosing j = 1 and

substituting k to k − 1, λ(G)
p can be rewritten by

λ(G)
p =

N−1∑
k=0

[ ∞∑
n=0

α2nei 2π
N k(n+p−1){hn(α2)}2

]
. (42)

Since the Gram matrix is Hermitian, λ(G)
p is a real number.

Thus, by using the relation,

λ(G)
p = λ(G)

p + λ(G)∗
p

2
, (43)

together with Eq. (42), we have Eq. (39). Due to Theorem 1,
every generalized coherent state in the N-GPSK signal is
symmetric. Thus, Proposition 1 and Eq. (39) lead us to the
guessing probability in Eq. (38). �

IV. SUB-POISSONIANITY OF NS-CS AND THE GUESSING
PROBABILITY

For N = 3, 4, and 8, we provide illustrative results of the
guessing probability of the N-NSPSK signal of Eq. (38) in
the cases of OS-CS, P-CS, BG-CS, and mSG-CS. We also
compare these results with the case of the N-SPSK signal.

A. Optical spin coherent states (OS-CS)

The minimum error probabilities of the N-SPSK signal and
N-NSPSK signal composed of OS-CS are illustrated in Fig. 1,
where Figs. 1(a), 1(b), and 1(c) show the case of N = 3, 4, and
8, respectively. In these figures, thick solid purple, dotted red,
dashed-dotted blue, and dashed green lines show the case of
the N-NSPSK signal with ñ = 3, ñ = 5, ñ = 7, and ñ = 11,
respectively. Solid black lines in the figures show the case of
the N-SPSK signal.

In Fig. 1(a), the minimum error probabilities of the 3-
NSPSK signal composed of OS-CS is smaller than that of
the 3-SPSK signal when the mean photon number is large
(〈n〉 > 0.45, 〈n〉 > 0.42, 〈n〉 > 0.38, and 〈n〉 > 0.37 in the
cases of ñ = 3, ñ = 5, ñ = 7, and ñ = 11, respectively). In
other words, 3-PSK quantum communication can be enhanced
by a nonstandard coherent state using OS-CS. However, in
Fig. 1(b), each minimum error probability of the 4-NSPSK
signal is larger than that of the 4-SPSK signal for the arbi-
trary mean photon number. This aspect repeatedly happens
in Fig. 1(c) where the 8-NSPSK signal is considered. These
results imply that 4-PSK and 8-PSK quantum communication
cannot be enhanced by OS-CS.

B. Barut-Girardello coherent states (BG-CS)

The minimum error probabilities of the N-SPSK signal and
the N-NSPSK signal composed of BG-CS are illustrated in
Fig. 2, where Figs. 2(a), 2(b), and 2(c) show the case of N = 3,
4, and 8, respectively. In these figures, dashed blue and dotted
red lines show the case of the N-NSPSK signal with ς = 0.5
and ς = 1.5, respectively. Solid black lines show the case of
N-SPSK.

In Fig. 2(a), each minimum error probabilty of 3-NSPSK
signal with ς = 1.5 is smaller than that of the 3-SPSK signal
when the mean photon number is larger than 0.48. Meanwhile,
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FIG. 1. The minimum error probabilities of the N-SPSK and N-NSPSK signals composed of OS-CS, where (a), (b), and (c) show the case
of N = 3, 4, and 8, respectively. In these figures, thick solid purple, dotted red, dashed-dotted blue, and dashed green lines show the case of the
N-NSPSK signal with ñ = 3, ñ = 5, ñ = 7, and ñ = 11, respectively. Thin solid black lines in the figures show the case of the N-SPSK signal.

each minimum error probability of the 3-NSPSK signal with
ς = 0.5 is larger than that of the 3-SPSK signal for the arbi-
trary mean photon number. Thus, enhancing 3-PSK quantum
communication by the nonstandard coherent state using BG-
CS depends on the parameter ς . However, in Fig. 2(b), each
minimum error probability of the 4-NSPSK signal is larger
than that of the 4-SPSK signal for the arbitrary mean photon
number. This aspect repeatedly happens in Fig. 2(c) where the
8-NSPSK signal is considered. These results imply that 4-PSK
and 8-PSK quantum communication cannot be enhanced by
BG-CS.

C. Modified Susskind-Glogower coherent states (mSG-CS)

The minimum error probabilities of the N-SPSK signal and
the N-NSPSK signal composed of mSG-CS are illustrated in
Fig. 3, where Figs. 3(a), 3(b), and 3(c) show the case of N = 3,
4, and 8, respectively. In these figures, dotted red lines show
the case of the N-NSPSK signal and solid black lines show
the case of N-SPSK.

In Fig. 3, each minimum error probability of the N-NSPSK
signal is larger than that of the N-SPSK signal for any N = 3,
4, and 8 and any mean photon number. This result implies that
3-PSK, 4-PSK, and 8-PSK quantum communication cannot

FIG. 2. The minimum error probabilities of the N-SPSK and N-NSPSK signals composed of BG-CS, where (a), (b), and (c) shows the
case of N = 3, 4, and 8, respectively. In these figures, dashed blue and dotted red lines show the case of the N-NSPSK signal with ς = 0.5
and ς = 1.5, respectively. Solid black lines show the case of N-SPSK.
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FIG. 3. The minimum error probabilities of the N-SPSK signal and the N-NSPSK signal composed of mSG-CS, where (a), (b), and
(c) show the case of N = 3, 4, and 8, respectively. In these figures, dotted red lines show the case of the N-NSPSK signal and solid black lines
show the case of N-SPSK.

be enhanced by mSG-CS. We also compare this result with
the previous work about the on-off keying signal [11]; it is
known that the minimum error probability of the on-off keying
signal composed of mSG-CS has a singular point where the
logarithm of the minimum error probability diverges to −∞.
This implies that the minimum error probability can achieve to
zero. Unlike the result in the previous work [11], the minimum
error probabilities of the 3-, 4-, and 8-NSPSK signals in Fig. 3
do not have such singular points.

D. Perelomov coherent states (P-CS)

The minimum error probabilities of the N-SPSK signal
and the N-NSPSK signal composed of P-CS are illustrated
in Fig. 4, where Figs. 4(a), 4(b), and 4(c) shows the case of
N = 3, 4, and 8, respectively. In these figures, dashed blue
and dotted red lines show the case of P-CS with ς = 0.5 and
ς = 1.5, respectively. Solid black lines show the case of S-CS.

In Fig. 4(a), each minimum error probability of the 3-
NSPSK signal composed of P-CS with ς = 0.5 and 1.5 is
larger than that of the 3-SPSK signal for the arbitrary mean
photon number. In other words, 3-PSK quantum communica-
tion cannot be enhanced by the nonstandard coherent state
using P-CS. However, in Fig. 4(b), each minimum error prob-
ability of the 4-NSPSK signal composed of P-CS is smaller
than that of the 4-SPSK signal when mean photon number
is small (〈n〉 < 0.585 and 〈n〉 < 0.786 in case of ς = 0.5

and ς = 1.5, respectively). This implies that 4-PSK quantum
communication can be enhanced by P-CS. In Fig. 4(c), each
minimum error probability of the 8-NSPSK signal composed
of P-CS is smaller than that of the 8-SPSK signal for the
arbitrary mean photon number. This means that 4-PSK and
8-PSK quantum communication can be improved by P-CS
which is not sub-Poissonian. We discuss the details in the next
section.

E. Mandel parameter and N-NSPSK quantum communication

It is known that sub-Poissonianity of nonclassical light
is one of the important statistical properties for improving
guessing probability of binary quantum optical communica-
tion [11]. For this reason, we consider the following Mandel
parameter,

Q(NS)
M = (
n)2

〈n〉 − 1, (44)

where 〈n〉 is mean photon number and 
n is standard devi-
ation of the number of photons. It is known that if Q(NS)

M >

0(< 0), then the generalized coherent state is super-
Poissonian (sub-Poissonian) [22,23]. If Q(NS)

M = 0 (for exam-
ple, S-CS), then the generalized coherent state is Poissonian.
Here, we consider the relation between the performance of the
N-PSK quantum communication and the Mandel parameter.

FIG. 4. The minimum error probabilities of the N-SPSK signal and the N-NSPSK signal composed of P-CS, where (a), (b), and (c) show
the case of N = 3, 4, and 8, respectively. In these figures, dashed blue and dotted red lines show the case of P-CS with ς = 0.5 and ς = 1.5,
respectively. Solid black lines show the case of N-SPSK.
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(1) In the case of OS-CS, the Mandel parameter is analyt-
ically driven as [11]

Q(OS)
M = −〈n〉

ñ
, (45)

which means that OS-CS is always sub-Poissonian. Accord-
ing to Fig. 1, we note that sub-Poissonianity of OS-CS does
not always guarantee the enhancement of the N-PSK quantum
communication.

(2) In the case of BG-CS, the Mandel parameter is analyt-
ically driven in terms of the modified Bessel function of the
first kind as [11]

Q(BG)
M = α

[
I2ς+1(2α)

I2ς (2α)
− I2ς (2α)

I2ς−1(2α)

]
. (46)

Since the inequality {Iν+1(x)}2 � Iν (x)Iν+2(x) holds for ev-
ery x � 0, Q(BG)

M is negative semidefinite. Therefore, BG-CS
is always sub-Poissonian or Poissonian. Moreover, Q(BG)

M
is known to be strictly negative for the nonzero mean
photon number [11]. Nevertheless, Fig. 2 shows that sub-
Poissonianity of BG-CS does not always guarantee the
enhancement of the N-PSK quantum communication.

(3) Since the analytic form of the Mandel parameter of the
mSG-CS Mandel parameter is too complex [11], we do not in-
troduce the analytic form here. According to the result of [11],
the Mandel parameter of mSG-CS is negative when the mean
photon number is not too large. Nevertheless, Fig. 3 shows
that the sub-Poissonianity of the mSG-CS cannot provide any
advantage on the N-PSK quantum communication.

(4) In case of P-CS, the Mandel parameter is analytically
driven as [11]

Q(P)
M = 〈n〉

2ς
, (47)

which means that P-CS is super-Poissonian. However, Fig. 4
shows that P-CS can enhance the N-PSK quantum communi-
cation for N = 3, 4, or 8.

V. CONCLUSION

In the present article, we have considered the quantum
communication with the N-ary phase-shift-keying (N-PSK)

signal for an arbitrary positive integer N > 1. By using NS-
CS, we have analytically provided the guessing probability of
the quantum communication with N-PSK. Unlike the binary
case [11,12], we note that the guessing probability of N-PSK
quantum communication can be improved by P-CS, which is
not sub-Poissonian NS-CS: The guessing probability can be
improved by considering the sub-Poissonian NS-CS for N =
3; meanwhile the P-CS can improve the guessing probability
for N = 4 and N = 8.

Using the N-PSK signal with N > 2, we can achieve a
better transmission rate per a signal pulse than that of binary-
BPSK even if the receiver’s measurement is slow [5]. On
the other hand, the maximal success probability of discrim-
inating a message encoded in the N-PSK signal generally
decreases as N is getting large. Thus our results about the
possible enhancement of the maximal success probability in
N-PSK quantum communication by NS-CS is important and
even necessary to design efficient quantum communication
schemes.

In the present article, we have only the considered PSK
signal with equal prior probabilities, which is composed of
symmetric pure states. However, it is interesting and even
important to consider a nonequiprobable or asymmetric en-
semble of NS-CS for several reasons: First, it is practically
difficult to implement the PSK signal having perfect symme-
try or equal prior probabilities. Moreover, in discriminating
three nonequiprobable and asymmetric pure states, there is
the possibility that sub-Poissonianity of nonclassical light can
enhance the guessing probability. We note that it is also in-
teresting to consider unambiguous discrimination [24–29] of
NS-CS since this strategy can provide us with better confi-
dence than the minimum error discrimination.
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