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Degenerate local-dimension-invariant stabilizer codes and an alternative bound for the distance
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One hurdle to performing reliable quantum computations is overcoming noise. One possibility is to reduce
the number of particles needing to be protected from noise and instead use systems with more states, so-called
qudit quantum computers. In this paper we show that codes for these systems can be derived from already known
codes, and, in particular, that degenerate stabilizer codes can have their distance also promised upon sufficiently
large local dimension as well as an alternative bound on the local dimension required to preserve the distance
of local-dimension-invariant codes, which is a result which could prove to be useful for error-corrected qudit
quantum computers.

DOI: 10.1103/PhysRevA.105.042424

I. INTRODUCTION

Having protected quantum information is an essential piece
of being able to perform quantum computations. There are
a variety of methods to help protect quantum information,
such as those discussed in Ref. [1]. In this paper we focus
on stabilizer codes as they are the quantum analog of classical
linear codes. Even with error-correcting codes, having suffi-
cient amounts of protected quantum information to perform
useful tasks is still an unresolved challenge. A way to retain
a similarly sized computational space whereas reducing the
number of particles that need precise controls is to replace the
standard choice of qubits with qudits, quantum particles with
q levels, also known as local-dimension q [2]. Throughout this
paper we require q to be a prime so that each nonzero element
has a unique multiplicative inverse over Zq. This restriction
can likely be removed, but for simplicity and clarity we only
consider this case. Experimental realizations of qudit systems
are currently underway [3–6], so having more error-correcting
codes will aid in protecting such systems.

Prior work on qudit error-correcting codes have at times
had challenging restrictions between the parameters of the
code [7–9], and we have already made progress on reducing
this barrier in a prior paper [10]. Our prior work showed
the ability to make error-correcting codes that preserved their
parameters even upon changing the local dimension of the
system, provided the local dimension is sufficiently large.
Unfortunately the ability to promise the distance of the codes
was only shown for nondegenerate codes and with a large
local-dimension value required. Beyond this, qudits also have
proven connections to foundational aspects of physics [11].
Seeing these potential reasons for using qudits, this paper
builds off of our prior work to expand the local-dimension-
invariant (LDI) framework to the case of degenerate codes as
well as providing a roughly quadratic improvement in the size
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of the local dimension needed to still promise the distance
of the code. With these results the practicality of using this
method is improved as well as now providing the option of
applying the result to the essential class of degenerate codes,
such as quantum versions of low-density parity-check (LDPC)
codes.

II. DEFINITIONS FOR QUDIT STABILIZER CODES

In this section we review some key facts about qudit sta-
bilizer codes. For a more complete guide on qudit stabilizer
codes, we recommend Ref. [7]. The definitions laid out here
will be used throughout this paper. Let q be the local di-
mension of a system, where q is a prime number. We will
denote by Zq the set {0, 1, . . . q − 1}. When q = 2 we refer
to each register as a qubit, whereas for any value of q we call
each register a qudit. In order to speak more generally and
not specify q, we will often times refer to each register as a
particle instead. We now begin to define the operations for
these registers.

Definition 1. Generalized Paulis for a particle over q or-
thogonal levels (local-dimension q) are given by

Xq| j〉 = |( j + 1) mod q〉, Zq| j〉 = ω j | j〉, (1)

with ω = e2π i/q, where j ∈ Zq. These Paulis form a group,
denoted Pq.

When q = 2, these are the standard qubit operators X and
Z with Y = iXZ . This group structure is preserved over tensor
products since each of these Paulis has order q. A generalized
Pauli over n registers is a tensor product of n generalized Pauli
group members over a single register.

A commuting subgroup of generalized Pauli operators with
n − k generators but not including any nontrivial coefficient
for the identity operator is equivalent to a stabilizer code. The
number of orthogonal eigenvectors, which form bases called
codewords for these n − k generators is qk . In effect, we have
constructed k-logical particles from the n-physical particles.
If we are to use these subgroups for error-correction purposes
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then they ought to be able to have some accidental operator
occur and still have the codewords be discernible. We will
work under the assumption that errors on distinct particles
are independent, and we will assume the error model on each
qudit is the depolarizing channel. Given this error model we
will predominantly be interested in the number of nonidentity
terms in any error as the exponent of the error term increases
with this.

Definition 2. The weight of an n-qudit Pauli operator is the
number of nonidentity operators in it.

Definition 3. A stabilizer code, specified by its n − k gen-
erators, is characterized by the following set of parameters:

(1) n: The number of (physical) particles that are used to
protect the information.

(2) k: The number of encoded (logical) particles.
(3) d: The distance of the code, given by the lowest weight

of an undetectable generalized Pauli error. An undetectable
generalized Pauli error is an n-qudit Pauli operator which
commutes with all elements of the stabilizer group but is not
in the group itself.

These values are specified for a particular code as
[n, k, d]q, where q is the local dimension of the qudits.

We pause for a moment here to discuss how degenerate
codes differ from nondegenerate codes. Degenerate codes are
different in the following equivalent ways. First, they may
have multiple errors with the same syndrome value and that
map to different physical states but upon recovery still map
back to the same logical state. Second, degenerate codes
may have generators, aside from the identity operator, which
have lower weight than the distance of the code. These two
differences make degenerate codes markedly different from
their nondegenerate counterpart. Degenerate codes, whereas
having these extra nuances, are a crucial class of stabilizer
codes as any quantum analog of a LDPC code with high
distance will need to be a degenerate code. We will begin our
results by focusing on nondegenerate codes, then move to the
degenerate case in Theorem 15, however, there are more tools
needed before discussing the results.

Working with tensors of operators can be challenging, and
so we make use of the following well-known mapping from
these to vectors, following the notation from Ref. [10]. This
representation is often times called the symplectic representa-
tion for the operators, but we use this notation instead to allow
for greater flexibility, particularly, in specifying the local di-
mension of the mapping. This linear algebraic representation
will be used for our proofs.

Definition 4 (φ representation of a qudit operator). We
define the linear surjective map,

φq:P n
q �→ Z2n

q , (2)

which carries an n-qudit Pauli in P n
q to a 2n vector mod q,

where we define this mapping by:

I⊗i−1X a
q Zb

q I⊗n−i �→ (0i−1 a 0n−i|0i−1 b 0n−i ), (3)

which puts the power of the ith X operator in the ith po-
sition and the power of the ith Z operator in the (n + i)-th
position of the output vector. This mapping is defined as a
homomorphism with φq(s1 ◦ s2) = φq(s1) ⊕ φq(s2), where ⊕
is componentwise addition mod q. We denote the first half of
the vector as φq,x and the second half as φq,z.

We may invert the map to return to the original n-qudit
Pauli operator with the global phase being undetermined. We
make note of a special case of the φ representation:

Definition 5. Let q be the dimension of the initial system.
Then we denote by φ∞ the mapping,

φ∞:P n
q �→ Z2n, (4)

where no longer are any operations taken mod some base,
but instead, carried over the full set of integers.

The ability to define φ∞ as a homomorphism still (and with
the same rule) is a portion of the results of Ref. [10]. φq is the
standard choice for working over q bases, however, our φ∞
allows us to avoid being dependent on the local dimension of
our system when working with our code. Formally we will
write a code in φq, perform some operations, then write it
in φ∞, then select a new local dimension q′ and use φq′ . We
shorten this to write it as φ∞, and can later select to write
it as φq′ for some prime q′ by taking elementwise mod q′.
Whereas the operators in φ∞ all commute, normalization of
the codewords for infinitely many levels becomes a potential
problem.

The commutator of two operators in this picture is given by
the following definition:

Definition 6. Let si, s j be two qudit Pauli operators over q
bases, then these commute if and only if,

φq(si ) � φq(s j ) = 0 mod q, (5)

where � is the symplectic product, defined by

φq(si) � φq(s j ) = ⊕k[φq,z(s j )k · φq,x(si)k

−φq,x (s j )k · φq,z(si )k], (6)

where · is the standard integer multiplication mod q and ⊕ is
addition mod q.

When the commutator of si and s j is not zero, this provides
the difference in the number of X operators in si that must
pass a Z operator in s j and the number of Z operators in si

that must pass an X operator in s j when attempting to switch
the order of these two operators.

Before finishing, we make a brief list of some possible
operations we can perform on our φ representation:

(1) We may perform elementary row operations over
Zq, corresponding to relabeling and composing generators
together.

(2) We may swap registers (qudits) in the following ways:
(1) We may swap columns (i, i + n) and ( j, j + n) for

1 � i, j � n, corresponding to relabeling qudits.
(2) We may swap columns i and (−1) · (i + n), for 1 �

i � n, corresponding to conjugating by a Hadamard gate
on particle i (or discrete Fourier transforms in the qudit
case [12]), thus, swapping X and Z’s roles on that qudit.
All of these operations leave the code parameters n, k, and

d alone but can be used in proofs.

A. Local-dimension-invariant codes

In this section we recall the results relating to LDI stabilizer
codes. These codes answer the question of when we can apply
a code from one local-dimension q on a system with a differ-
ent local-dimension p. Whereas an unusual property, a LDI
code would permit the importing of smaller local-dimension
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codes for larger local-dimension systems. Some codes with
particular parameters may not be known, and so this fills
in some of these gaps. Additionally, this framework could
potentially provide insights into local-dimension-invariant
measurements. Few examples of LDI codes, although not by
this name, were known, notable the five-particle code [13] and
the nine-particle code [14], until the recent work in Ref. [10]
which showed that all codes can satisfy the commutation
requirements, and, at least, for sufficiently large local dimen-
sions the distance can also be, at least, preserved. We will
review next the primary results from that work.

Definition 7. A stabilizer code S is called local-
dimension-invariant (LDI) iff,

φ∞(si ) � φ∞(s j ) = 0, ∀ si, s j ∈ S. (7)

As an example, consider the two-qubit code generated by
〈X ⊗ X, Z ⊗ Z〉. The symplectic product between the two
generators is 2, so it makes it a valid qubit code, however,
2 mod p �= 0 unless p = 2, so it is not a valid qudit code
for p �= 2. If we instead transform the code into one generated
by 〈X ⊗ X −1, Z ⊗ Z〉, then the symplectic product is now 0,
and so it can be used as generators for any choice of local
dimension and so is an LDI code. The next statement explains
that it is always possible to do so [10]:

Theorem 8. All stabilizer codes S can be put into a LDI
form. One such method is to put S into canonical form
[Ik X2|Z1 Z2] then transform the code into [IkX2|Z1 + LZ2]
with Li j = φ∞(si ) � φ∞(s j ) when i > j and 0 otherwise.

Note that this does not say all codes have a unique LDI
form just that there exists one. The proof used is useful as
it gives a prescriptive method for turning a code into a LDI
form, however, if one does not put the code into canonical
form, the code can still be transformed into a LDI form as this
process is equivalent to finding solutions to an integer linear
program with an abundance of variables. As the code is put
into canonical form in this prescriptive method, we know that
the rank of the matrix will be preserved by this operation. All
LDI forms ought to also preserve the rank or, equivalently, the
number of independent generators.

As of this point we have merely generated a set of com-
muting operators that are local-dimension independent. This
does not provide for any claims on the distance of the code
produced through this method aside from promising that the
procedure does not change the distance of the code over the
initial local-dimension q. For this, we have the following
theorem:

Theorem 9. For all primes p > p∗ with p∗ a cutoff value
greater than q, the distance of a LDI form of a nondegenerate
stabilizer code [n, k, d]q applied over p bases [n, k, d ′]p has
d ′ � d .

There are two caveats to this result, one of which we
resolve here, the other of which we provide an improve-
ment on. Let B be the maximal entry in φ∞(S). First, this
result is only for the case of nondegenerate codes. We will
resolve this with Theorem 15. Second, the initially proven
bound was p∗ = B2(d−1)[2(d − 1)](d−1), which grows very
rapidly. Whereas it was true that all primes below p∗ could
have their distances checked computationally, this still left a
large number of primes to check in most cases. In this paper
we manage to prove an alternative bound that has a nearly

quadratic improvement on the dependency on B. In the next
section we show this alternative cutoff bound, whereas in the
section thereafter the ability to provide a distance promise for
degenerate codes is proven and differences between the cases
are discussed.

III. ALTERNATIVE CUTOFF BOUND FOR THE
DISTANCE PROMISE

Whereas the proof of Theorem 8 from Ref. [10] used Li j =
φ∞(si ) � φ∞(s j ) in order to generate a single LDI form, we
may generate other LDI forms by altering the added L matrix.
We note two of these now: L(+) and L(−).

Definition 10. L(+) (L(−)) has L(+)
i j (L(−)

i j ) is φ∞(si) �
φ∞(s j ) if the symplectic product is greater than zero (less than
zero).

These alternative L matrices each provide a different prop-
erty. First, using L(+) allows φ∞(S) to have only nonnegative
entries. There are certain properties that are only generally
true for matrices with non-negative entries, so this can perhaps
be of use. Additionally, this could be of use for systems for-
mally with countably infinite local dimension, such as bosonic
systems where operators with negative powers are not feasi-
ble. Second, L(−) permits a slight reduction in the bound for
the maximal entry in φ∞(S) as the following lemma shows:

Lemma 11. The maximal entry in φ∞(S) B can be at most
[1 + k(q − 1)](q − 1), and generally B � maxi, j |φ∞(si) �
φ∞(s j )|.

Upon putting the code into canonical form this follows
immediately from the definition of L(−) as each entry will
be whatever value was already in that location (values in Zq)
minus the absolute value of the inner product, which will be,
at most, an absolute value of the inner product. Whereas this is
a small improvement on the value of B since it is the base of an
exponential expression this amounts to a larger improvement
in the overall cutoff value.

We will now move to proving an alternative bound on the
local dimension needed in order to promise the distance is, at
least, preserved. The first proof of the cutoff bound for the
distance promise for LDI codes used random permutations
of the entries in φ∞. Here we utilize the structure of the
symplectic product as well as that of the partitions of the code
in terms of its X component and Z component to obtain an
alternative bound for all nondegenerate codes. Whereas this
bound is looser when d increases, for small d and large k
this bound will typically be roughly quadraticly smaller. In
particular we will show:

Theorem 12. For all primes p > p∗ the distance of a LDI
representation of a nondegenerate stabilizer code [n, k, d]q

over p bases [n, k, d ′]p has d ′ � d where we may use as p∗
the value,

{B(q−1)(d−1)[1+(d−1)2(q−1)d−1(d − 2)(d−2)/2]}d−1,

(8)

with q as the initial local dimension, d as the distance of the
initial code, and B as the maximal entry in the φ∞ representa-
tion of the code.

To make claims about the distance of the code we begin
by breaking down the set of undetectable errors into two
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sets. These definitions highlight the subtle possibility of the
distance reducing upon changing the local dimension.

Definition 13. An unavoidable error is an error that com-
mutes with all stabilizers and produces the �0 syndrome over
the integers.

These correspond to undetectable errors that would remain
undetectable regardless of the number of bases for the code
since they always exactly commute under the symplectic inner
product with all stabilizer generators—-and so all members
of the stabilizer group. Since these errors are always un-
detectable we call them unavoidable errors as changing the
number of bases would not allow this code to detect this error.

We also define the other possible kind of undetectable error
for a given number of bases, which corresponds to the case
where some syndromes are multiples of the number of bases:

Definition 14. An artifact error is an error that commutes
with all stabilizers but produces, at least, one syndrome that is
only zero modulo the base.

These are named artifact errors as their undetectability is
an artifact of the number of bases selected and could become
detectable if a different number of bases were used with this
code. Each undetectable error is either an unavoidable error or
an artifact error. We utilize this fact to show our theorem.

Proof. Let us begin with a code with local-dimension q and
apply it to a system with local-dimension p. The errors for the
original code are the vectors in the kernel of φq for the code.
These errors are either unavoidable errors or are artifact errors.
The stabilizers that generate these multiples of q entries in the
syndrome are members of the null space of the minor formed
using the corresponding stabilizers.

Now, consider the extension of the code to p bases. Build-
ing up the qudit Pauli operators by weight j, we consider the
minors of the matrix. These minors of size 2 j × 2 j can have
a nontrivial null space in two possible ways:

(1) If the determinant is 0 over the integers then this is
either an unavoidable error or an error whose existence did
not occur due to the choice of the number of bases.

(2) If the determinant is not 0 over the integers but takes
the value of some multiple of p, then it is 0 mod p and so a
null space exists.

Thus, we can only introduce artifact errors to decrease the
distance. By bounding the determinant by p∗, any choice of
p > p∗ will ensure that the determinant is a unit in Zp, and,
hence, have a trivial null space since the matrix is invertible.

We next utilize the structure of the symplectic product
more heavily in order to reduce the cutoff local dimension.
Note that for a pair of Paulis in the φ representation, we may
write

φ(s1) � φ(s2) = φ(s1)

[
0 −In

In 0

]
φ(s2)T (9)

:= φ(s1)gφ(s2)T , (10)

and so we may consider the commutation for the generators
with some Pauli u as being given by

⊕n−k
i=1 [φ(si )g]φ(u)T ,

where
⊕

is a direct sum symbol here, indicating that a vector
of syndrome values is returned. This removes the distinction
between the two components and allows the symplectic prod-
uct to act, such as the normal matrix-vector product. Now,
note that for any Pauli weight j operator, we will have up to

j nonzero entries in the X component of the φ representation
and up to j nonzero entries in the Z component. This means
that up to j columns in each component will be involved in
any commutator.

Next, note that to ensure that an artifact error is not induced
it suffices to ensure that there is a nontrivial kernel, induced by
the local-dimension choice, which is ensured so long as any
2(d − 1)2(d − 1) minor does not have a determinant which
is congruent to the local dimension. This can be promised
by requiring the local dimension to be larger than the largest
possible determinant for such a matrix. Since there will be,
at most, j nonzero entries in each component it suffices to
consider j columns from each component and subsets of 2 j
rows of this.

From this reduction, we need only ensure that the local
dimension is larger than the largest possible determinant for
this 2 j2 j minor. Let us denote this minor by[

X1 Z1

X2 Z2

]
, (11)

where each block has dimensions j j. The maximal entries are
q − 1 for X1 and X2, whereas for Z1 and Z2 it is bounded by B.
We now use the block matrix identity,

det

[
X1 Z1

X2 Z2

]
= det(X1)det

(
Z2 − X2X −1

1 Z1
)
. (12)

Since all entries in X1 are integers and the determinant is,
by construction, nonzero, the maximal entry in X −1

1 will be,
at most, that of the largest cofactor of X1. The largest cofactor
C̃ will be, at most, (q − 1)d−2(d − 2)(d−2)/2 as provided by
Hadamard’s inequality. The largest entry in Z2 − X2X −1

1 Z1

is then upper bounded by B[1 + (q − 1)C̃(d − 1)2]. From
here, we may apply Hadamard’s inequality for determinants
again using the given entry bounds using that each block
has dimensions up to (d − 1)(d − 1), which provides p∗ =
(q − 1)d−1(d − 1)d−1{B[1 + (q − 1)C̃(d − 1)2]}d−1 or, alter-
natively, expressed in terms of our fundamental variables as

{B(q−1)(d−1)[1+(d−1)2(q − 1)d−1(d − 2)(d−2)/2]}d−1.

(13)

In the case of q = 2 this reduces to [B(d − 1)(1 +
(d − 1)2(d − 2)(d−2)/2)]d−1.

Lastly, when j = d , we can either encounter an unavoid-
able error in which case the distance of the code is d or we
could obtain an artifact error also causing the distance to be
d . It is possible that neither of these occur at j = d in which
case the distance becomes some d ′ with d < d ′ � d∗ with d∗
being the distance of the code over the integers. �

Before concluding this section, we provide a brief compari-
son of this bound to the original one of B2(d−1)[2(d − 1)](d−1).
The new bound only depends on Bd−1 opposed to the original
B2(d−1), which as the bound on B depends on k means that
for codes or code families with larger k values the new bound
can provide a tighter expression. Unfortunately, however, this
alternative bound is doubly exponential in the distance of the
code d , having a dependency of roughly dd2

opposed to the
prior dependency of dd , so if one is attempting to promise
the distance of a code with a larger distance, this new bound
is likely to be far less tight. To summarize, this alternative
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bound is not per se better, however, since one may simply use
whichever of the bounds is tighter this alternative bound may
provide a lower requirement for the local dimension needed
in order to ensure that the distance of the code is, at least,
preserved.

IV. DEGENERATE CODES

Degenerate codes are a uniquely quantum phenomenon,
which suggests that they are a crucial class of quantum error-
correcting codes in order to obtain certain properties. For
a degenerate quantum error-correcting code we must avoid
undetectable errors, but also detectable errors which produce
the same syndrome but do not map to the same physical code-
word. Any LDPC-like quantum error-correcting code will be
degenerate as, equivalently, a quantum error-correcting code
is degenerate if there is some stabilizer group member with
lower weight than the distance of the code and by construction
one would aim to have a long distance for a quantum LDPC
code but still O(1) weight for each generator. We show now
that a similar distance promise may be made in the degenerate
case as was possible in the nondegenerate case and remark on
what differences exist between the two classes in the local-
dimension-invariant framework.

Theorem 15. For all primes p > p∗ the distance of an LDI
representation of a degenerate stabilizer code [n, k, d]q over p
bases, [n, k, d ′]p has d ′ � d , where p∗ is the same function of
n, k, d , and q as before.

Proof. In the case of nondegenerate codes all undetectable
errors up to distance d , were in the normalizer of the gen-
erators N (S) as the weight of all members of the stabilizer
group have weight, at least, d . For degenerate codes we only
need to be concerned about elements in N (S)/S as now there
are some members of the stabilizer group which might have
weight below d . The latter set is a subset of the former
[N (S)/S ⊂ N (S)], and so the same distance promise is ob-
tained as before. �

Note that all Paulis with weight less than d that are in S pro-
duce a syndrome that is all zeros over the integers and so may
appear to be within the category of unavoidable errors when
syndromes are computed. This means that when checking the
distance this must carefully be taken into account, otherwise,
the members in S may be mistaken for these errors leading to
an erroneous distance value.

This means that just like nondegenerate quantum codes, we
may also promise the distance of the code in the degenerate
case and with the same cutoff bound. Whereas this cutoff
value is large, it provides some local-dimension value beyond
which the distance will be kept and bounds the set of local-
dimension values for which the distance must be manually
verified.

This provides information about when the distance of the
code must be preserved, however, if we apply a code over
q levels to a system with p < q levels, is there some range
of values for p whereby we know that the distance must
decrease? In the nondegenerate case, we denoted this by p∗∗,
which was given by√

1 +
(

n

t

)1/[(n−k)−t]

, t =
⌊

d − 1

2

⌋
. (14)

Whenever p < p∗∗, it must be the case that the distance of the
code must decrease. The expression for p∗∗ was derived by
using the generalized quantum Hamming bound, which holds
for all nondegenerate codes, however, for degenerate codes
this bound does not always hold. This means that for a general
degenerate code we have the following lemma:

Lemma 16. There is no corresponding p∗∗ that holds for
arbitrary degenerate codes.

Whereas not all degenerate quantum codes obey the gen-
eralized quantum Hamming bound, there are certain code
families which do [7,15]. For those code families the exact
same expression for p∗∗ holds as it did for nondegenerate
codes.

The nonexistence of a p∗∗ expression for arbitrary degen-
erate codes provides an opportunity. Consider a code whose
initial local-dimension q is far larger than 2. In the nonde-
generate case this p∗∗ provides a local-dimension value below
which the distance of the code must decrease, but for degen-
erate codes the lack of this means that it may be possible
to apply the code over a far smaller local dimension, even
local-dimension 2, and still preserve all of the parameters
and, particularly, the distance. This suggests that it may be
possible to import codes into lower local-dimension values
than previously expected.

To ground some of the discussions, we provide some ex-
amples next.

Example 17. Consider the qubit code with generators
〈s1, s2〉 = 〈X ⊗n, Z⊗n〉 with n � 4 being an even number. This
code has parameters [n, n − 2, 2]2. |φ∞(s1) � φ∞(s2)| = n,
so directly applying Lemma 11, B = n − 1 is obtained. This
provides a bound of 2(n − 1)2 via the prior bound, whereas
with the alternative bound shown here this is (n − 1). The
results then say that the distance is preserved for p > n − 1.

Let us take the LDI form for the code as
〈X 1−nX ⊗(n−1), Z⊗n〉. Observe that all weight one Paulis
do not commute with, at least, one generator for the code,
whereas IZZ−1I⊗(n−3) is an unavoidable error, so the distance
is always d = 2.

Whereas this suggests that the determinant bound we
showed is incredibly loose, we can write the qubit code in
a different LDI form as 〈(XX −1)⊗(n/2), Z⊗n〉. For this form
B = 1, which provides p∗ = 2 using either bound, which
means that the distance is always, at least, preserved. This
illustrates the impact of careful selection of the LDI form used
and suggests that perhaps with a careful choice of LDI form
the bounds provided can be tight for a given code.

Example 18. As another example let us consider the
Shor code with parameters [9, 1, 3]2, and consider a local-
dimension-invariant form for it. The Shor code is a degenerate
code as the inner blocks of the code have some repeated
syndromes. The code has a maximal symplectic product of
2, meaning that there is an LDI form which has B = 1. One
such option is the following set of generators:

〈XX −1II⊗6, IXX −1I⊗6, I⊗3XX −1II⊗3, I⊗3IXX −1I⊗3,

I⊗6XX −1I, I⊗6IXX −1, Z⊗6I⊗3, I⊗3Z⊗6〉. (15)

Using B = 1, the bound from Ref. [10] is tighter, which pro-
vides p∗ = 16, meaning that so long as the local dimension
is 17 or larger the distance will be, at least, 3. From here,
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manual checking for local-dimensions 3, 5, 7, 11, and 13
verifies that the distance is always preserved. There already
was a nine-register code [14], however, this contextualizes
the result within the local-dimension-invariant framework.
For completeness, a set of logical operators for this code is
given by X̄ = XX −1XX −1XX −1XX −1X and Z̄ = Z⊗9. For
the logical operators we only require that they do not commute
with each other but do commute with the generators for the
code—here X̄ � Z̄ �= 0.

Lastly, generally for the logical operators of the local-
dimension-invariant representation of the degenerate code the
same argument holds as was given in Ref. [10]. With all
of these pieces we have an equally complete description of
degenerate LDI codes, and their slight differences as existed
for nondegenerate LDI codes.

V. DISCUSSION

The LDI representation of stabilizer codes allows these
codes to be applied regardless of the local dimension of
the underlying system. When introduced only nondegenerate
codes could be written in local-dimension-invariant form and
have their distance promised to be, at least, preserved, once
the system had sufficiently many levels. In this paper we have
shown an alternative bound for how many levels are needed
for the distance to be promised. Whereas this bound suffers
a severe dependency on the distance of the code, it does
provide a nearly quadratic improvement on the dependency
of the largest entry in the LDI form of the code, given by
B. So whereas this bound is less helpful in some cases than
the original bound it can be a tighter bound in others. Of
particular note is the situation where one does not need to
guarantee the same distance as the original code, but just
some smaller distance δ or larger. In this case the value for B
does not change, however, everywhere that a d appears in the
expressions for p∗ may be replaced by δ. In these cases the
quadratic improvement on the dependency on B shown here
can become particularly advantageous.

Beyond this, this paper has shown that the LDI represen-
tation’s associated distance promise also exists for degenerate
quantum codes using the same argument as before but over-
looked, and so completes the application of this technique to
both families of standard stabilizer codes. Degenerate codes
are of particular appeal since they are not restricted by the
generalized quantum Hamming bound and can at times pro-
tect more logical particles than permitted by nondegenerate
codes for a given distance and number of physical particles.

Unfortunately, the utility of this method is somewhat lim-
ited as both bounds on the required local dimension are quite
large as indicated in Table I, but as seen in the examples
this bound can often be significantly reduced through careful
construction of the LDI form. In order to improve the practi-
cality of this technique the value for p∗ must be significantly

TABLE I. This table compares the bounds on p∗, above which
the distance of the code is known to be preserved for a few example
codes. The bound on B is used for the value of B. Examples taken
from Ref. [16] for the qubit codes and Ref. [7] for qudit cases.

Code parameters Bound from Ref. [10] Bound shown here

[9, 1, 3]2 256 400
[13, 7, 3]2 65536 6400
[21, 13, 3]2 614656 19600
[29, 19, 4]2 13824000000 1481544000
[13, 7, 3]3 12960000 4161600
[27, 22, 3]3 1049760000 37454400
[91, 85, 3]3 218889236736 540841536
[25, 22, 3]5 213813760000 31258240000

decreased. One way to reduce these bounds is to reduce the
expression for B, the maximal entry in the LDI representation.
To do so, other analysis techniques will be needed beyond
simple counting arguments. Since the LDI form for a code
is not unique, one possible method may be to solve systems
of homogeneous linear diophantine equations, which given
the surplus of variables (additions to entries) compared to
variables (requirement of commutations to be zero) is likely to
yield far smaller bounds on B. A starting point for this might
include the following works: Refs. [17,18].

The results shown here extend the utility of local-
dimension-invariant stabilizer codes, and so naturally there
are questions as to what other uses this technique will have.
Is it possible to apply this technique to show some founda-
tional aspect of quantum measurements? Can this technique
in some way be used for other varieties of stabilizerlike codes,
such as entanglement-assisted quantum error-correcting codes
[19,20]? If this method can be applied in this situation it
is possible that it could remove the need for entanglement
use in these codes, so long as the local dimension is altered.
However, even still, the local dimension required would likely
be quite large so the importance of decreasing the bounds for
p∗ would become that much more.

ACKNOWLEDGMENTS

We thank A. Jena and D. Cory for helpful comments as
well as an anonymous referee for comments that simplified
and tightened the degenerate distance promise proof.

This work was supported by Industry Canada, the Canada
First Research Excellence Fund (CFREF), the Canadian
Excellence Research Chairs (CERC 215284) Program, the
Natural Sciences and Engineering Research Council of
Canada (NSERC RGPIN-418579) Discovery program, the
Canadian Institute for Advanced Research (CIFAR), and the
Province of Ontario.

[1] D. A. Lidar and T. A. Brun, Quantum Error Correction (Cam-
bridge University Press, Cambridge, UK, 2013).

[2] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and high-
dimensional quantum computing, Front. Phys. 8, 479 (2020).

[3] P. J. Low, B. M. White, A. A. Cox, M. L. Day, and C.
Senko, Practical trapped-ion protocols for universal qudit-
based quantum computing, Phys. Rev. Res. 2, 033366
(2020).

042424-6

https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1103/PhysRevResearch.2.033366


DEGENERATE LOCAL-DIMENSION-INVARIANT … PHYSICAL REVIEW A 105, 042424 (2022)

[4] P. Imany, J. A. Jaramillo-Villegas, M. S. Alshaykh, J. M.
Lukens, O. D. Odele, A. J. Moore, D. E. Leaird, M. Qi, and
A. M. Weiner, High-dimensional optical quantum logic in large
operational spaces, npj Quantum Inf. 5, 59 (2019).

[5] M. Kononenko, M. A. Yurtalan, S. Ren, J. Shi, S. Ashhab,
and A. Lupascu, Characterization of control in a superconduct-
ing qutrit using randomized benchmarking, Phys. Rev. Res. 3,
L042007 (2021).

[6] M. A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu, and S.
Ashhab, Implementation of a Walsh-Hadamard Gate in a Su-
perconducting Qutrit, Phys. Rev. Lett. 125, 180504 (2020).

[7] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli,
Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf.
Theory 52, 4892 (2006).

[8] Y. Liu, R. Li, G. Guo, and J. Wang, Some nonprimitive bch
codes and related quantum codes, IEEE Trans. Inf. Theory 65,
7829 (2019).

[9] X. Kai, S. Zhu, and P. Li, Constacyclic codes and some new
quantum mds codes, IEEE Trans. Inf. Theory 60, 2080 (2014).

[10] L. G. Gunderman, Local-dimension-invariant qudit stabilizer
codes, Phys. Rev. A 101, 052343 (2020).

[11] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Contex-
tuality supplies the “magic” for quantum computation, Nature
(London) 510, 351 (2014).

[12] D. Gottesman, Fault-tolerant quantum computation with higher-
dimensional systems, in NASA International Conference on
Quantum Computing and Quantum Communications (Springer,
Berlin, 1998), pp. 302–313.

[13] H. F. Chau, Five quantum register error correction
code for higher spin systems, Phys. Rev. A 56, R1(R)
(1997).

[14] H. F. Chau, Correcting quantum errors in higher spin systems,
Phys. Rev. A 55, R839(R) (1997).

[15] P. Sarvepalli and A. Klappenecker, Degenerate quantum codes
and the quantum hamming bound, Phys. Rev. A 81, 032318
(2010).

[16] M. Grassl, Bounds on the minimum distance of linear codes and
quantum codes, Online available at http://www.codetables.de,
2007, accessed on 2022-02-01.

[17] L. W. Griffiths, A note on linear homogeneous diophantine
equations, Bull. Am. Math. Soc. 52, 734 (1946).

[18] W. Givens, Parametric solution of linear homogeneous diophan-
tine equations, Bull. Am. Math. Soc. 53, 780 (1947).

[19] T. Brun, I. Devetak, and M.-H. Hsieh, Correcting quantum
errors with entanglement, Science 314, 436 (2006).

[20] M. M. Wilde and T. A. Brun, Optimal entanglement formulas
for entanglement-assisted quantum coding, Phys. Rev. A 77,
064302 (2008).

042424-7

https://doi.org/10.1038/s41534-019-0173-8
https://doi.org/10.1103/PhysRevResearch.3.L042007
https://doi.org/10.1103/PhysRevLett.125.180504
https://doi.org/10.1109/TIT.2006.883612
https://doi.org/10.1109/TIT.2019.2932670
https://doi.org/10.1109/TIT.2014.2308180
https://doi.org/10.1103/PhysRevA.101.052343
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevA.56.R1
https://doi.org/10.1103/PhysRevA.55.R839
https://doi.org/10.1103/PhysRevA.81.032318
http://www.codetables.de
https://doi.org/10.1090/S0002-9904-1946-08645-0
https://doi.org/10.1090/S0002-9904-1947-08879-0
https://doi.org/10.1126/science.1131563
https://doi.org/10.1103/PhysRevA.77.064302

