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Approximating invertible maps by recovery channels: Optimality and
an application to non-Markovian dynamics
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We investigate the problem of reversing quantum dynamics, specifically via optimal Petz recovery maps. We
focus on typical decoherence channels, such as dephasing, depolarizing, and amplitude damping. We illustrate
how well a physically implementable recovery map simulates an inverse evolution. We extend this idea to explore
the use of recovery maps as an approximation of inverse maps, and apply it in the context of non-Markovian
dynamics. We show how this strategy attenuates non-Markovian effects, such as the backflow of information.
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I. INTRODUCTION

With the advance of quantum computation and quantum
communication, the interest in open quantum systems was
renewed in the last years. In real-world situations no physical
system is completely isolated, and this unavoidable interaction
between a system and its environment is responsible for dam-
aging important quantum resources, such as coherence and
entanglement. In order to minimize these detrimental effects,
one can explore memory effects and backflow of information
that may be present in non-Markovian (NM) dynamics [1,2].
Those effects have been extensively controlled and manipu-
lated by recent experimental techniques [3–6].

Another possibility to minimize decoherence effects is to
attempt the recovery of the original quantum state or even to
revert the noisy process. However, in principle, only unitary
dynamics can be perfectly reverted. For noisy situations, dif-
ferent recovery maps have been proposed [7,8]. Especially in
the context of quantum error correction, Petz recovery maps
[9,10] have been very useful to develop recovery operations
[11–19].

The evolution of a quantum system from an initial time
zero to a later time t is described by a family of completely
positive and trace preserving (CPTP) maps, here denoted by
�t,0 with t � 0. As mentioned before, the inverse map, here
represented by �−1

t,0 in general, is not a valid physical pro-
cess. There are indeed maps where the inverse is not even
mathematically well defined, known as noninvertible maps.
Recently it has been shown that the noninvertibility of a map
can be explored as a witness of non-Markovianity [20–22].
Note that many interesting physical maps are noninvertible,
like a completely depolarizing channel, a completely dephas-
ing channel, and a spontaneous emission.

In this paper, we study optimal recovery strategies explor-
ing the Petz maps. We analyze the behavior of paradigmatic
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one-qubit quantum channels: dephasing, depolarizing, and
amplitude damping. We show how the recovery map can be
easily computed and optimized. To measure how well the Petz
recovery map recovers a random quantum state, we use the
fidelity function as figure of merit. Our numerical analysis
elucidates what is the optimum strategy in these cases, even
without any initial assumption—as the one required for in-
stance in Ref. [15]. Our analysis allows us to identify that
some noninvertible maps can, in principle, be better recovered
than others.

As an application, we show how we can explore recovery
maps in the context of non-Markovian maps. Markovian evo-
lutions can be defined by a family of maps that are divisible
into completely positive (CP) maps, i.e., �t,0 = �t,s�s,0 for
all t � s � 0. If the inverse of the map is well defined, the
intermediate map is given by �t,s = �t,0�

−1
s,0. We explore

what would be the consequences of replacing the inverse of
the map (a nonphysical map) by a recovery map (a physical
map). We show that this evolution still presents backflow of
information (a characteristic of non-Markovian evolutions),
but in an attenuated way. With this approach we elucidate a
subtle characteristic of non-Markovian evolutions: divisibility
of the evolution in CP maps is not enough to transform the
evolution from non-Markovian to Markovian. The intermedi-
ate map �t,s can only depend on times t and s, and cannot
retain any information about previous times.

This paper is structured as follows: we begin by defining
in Sec. II reversible, invertible, and recoverable maps. In
Sec. III, we optimize the Petz recovery maps for paradig-
matic one-qubit decoherence channels. Section IV presents
an application of the formalism developed in the previous sec-
tions in the context of non-Markovian dynamics. We conclude
in Sec. V.

II. REVERSIBLE, INVERTIBLE, AND
RECOVERABLE MAPS

The dynamics of quantum systems is generally described
by a family of linear completely positive and trace preserving
maps. Such CPTP maps model, for instance, noisy dynamics
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(open quantum system scenario) and quantum communication
channels [23].

Let a quantum system be associated with a Hilbert space
H. The set of all possible system states is then D(H) = {� ∈
L(H) | � � 0, tr(�) = 1}, where L(H) represents the linear
operators acting in H. A CPTP map � : L(H) �→ L(H), also
called a quantum channel, can be characterized by a set of
operators {Ki}, with each Ki : H �→ H known as a Kraus
operator, as follows:

�(ω) =
∑

i

KiωK†
i , (1)

for all ω ∈ L(H). Such a characterization guarantees the com-
plete positivity of �. To be a trace preserving map the Kraus
operators must abide by

∑
i K†

i Ki = 1.
When the set of Kraus operators of a given CPTP map is

composed by a single element, the trace preservation condi-
tion ensures the map to be unitary. In this case the mapping is
reversible.. Given a CPTP map � : L(H) �→ L(H), we say it
is reversible if there exists another CPTP map �∗ : L(H) �→
L(H) such that

�∗(�(�)) = �, ∀� ∈ D(H). (2)

If � is a unitary map, with Kraus operator U acting on H,
then �∗ has Kraus operator U †. In fact, it is easy to show that
a CPTP map is reversible if, and only if, it is a unitary map
[24].

One way to relax the above definition is to no longer
demand the map act on the output of � to be CPTP. Given
a CPTP map � : L(H) �→ L(H), we say it is invertible if
there exists another linear map, not necessarily CPTP, �−1 :
L(H) �→ L(H) such that

�−1(�(�)) = �, ∀� ∈ D(H). (3)

Clearly any unitary map is also invertible [25]. However, maps
describing noisy dynamics, as the nonfully depolarizing chan-
nel (see Sec. III), are invertible but not reversible. This kind
of map is most commonly encountered when describing open
quantum system dynamics. Note that the fully depolarizing
map is not invertible, as it sends all the input states to the
maximally mixed state.

Another possible way to relax the definition of reversible
maps is by requiring it to hold only for a subset of D(H).
Given a CPTP map � : L(H) �→ L(H), we say it is recov-
erable if there exists another CPTP map �̃ : L(H) �→ L(H)
and S (H) ⊆ D(H) such that

�̃(�(�)) = �, ∀� ∈ S (H). (4)

The map �̃ is dubbed the recovery map of � for the subset
S (H) [7]. The unitary map is recoverable, but there are recov-
erable maps that are not unitary. Other than that, sufficient
conditions for the existence of recovery maps for a subset
S (H) is a much studied topic [7–9,11,14–17].

The most well-known class of recovery maps is that of
the so-called Petz recovery maps [9]. Given a CPTP map
� : L(H) �→ L(H), the corresponding Petz recovery map is
a CPTP map defined as

�σ
P (�) := σ

1
2 �†(�(σ )−

1
2 � �(σ )−

1
2 )σ

1
2 , (5)

FIG. 1. Schematic representation of a recovery process. An ini-
tial state �i evolves through a noisy channel � to a state �o = �(�i ).
After the evolution a Petz recovery map is applied resulting in �r =
�σ

P (�o) with the aim to be as close as possible to �i.

where �† : L(H) �→ L(H) is the trace dual of �, defined in
terms of the Kraus operators �†(�) = ∑n

i K†
i �Ki, and σ ∈

L(H) is a reference state. If the relative entropy does not
change by the action of the map, i.e.,

S(�||η) = S(�(�)||�(η)) ∀�, η ∈ S (H)

with S(�||η) = tr(� log � − � log η), then there exists σ such
that �σ

P (�(�)) = � for all � ∈ S (H).
The actual construction of the recovery channel, i.e., the

choice of optimal reference state σ for a given channel �

and set of states S (H), is only known for a few “abstract”
cases. For instance, it has been shown in Ref. [15] that for an
ensemble of commuting density matrices, {pi, �i}, the optimal
recovery channel is obtained with the reference state being
� = ∑

i pi�i.
The aim of the present contribution is to investigate the

choice of optimal Petz recovery map in physically motivated
scenarios. More concretely, given a noisy process described
by a non-CP invertible map �, what is the best choice of
reference state σ that makes �σ

P act as close as possible to
a reverse map �∗?

This question is schematically explained in Fig. 1. In the
forward direction, an input state �i undergoes the action of
a noisy channel �, leading to the output state �o = �(�i).
In the backward direction, aiming at reversing the effect of
the noise, we apply the channel �σ

P recovering the state
�r = �σ

P (�o). The question is then how close �r is from �i.
To quantify this closeness we use the fidelity between the
states, F (�i, �r ) = ||√�i

√
�r ||21, with the trace norm defined

as ||A||1 = tr
√

A†A. The optimal reference state, σ ∗, is then
the one that maximizes the average fidelity over all input
states, i.e., σ ∗ = argmaxF�(σ ), where

F�(σ ) :=
∫

dμ� F
(
�,�σ

P (�(�))
)
, (6)

with dμ� a uniform measure over the input states.

III. OPTIMAL PETZ RECOVERY MAPS FOR
PARADIGMATIC ONE-QUBIT CHANNELS

In this section we numerically obtain the best recovery
channel for paradigmatic one-qubit noisy channels, namely,
dephasing, depolarizing, and amplitude damping channels. As
we do not impose any restriction on the input states, we opti-
mize F�, Eq. (6), over a uniform distribution of mixed input
states. In what follows, we generate random one-qubit mixed
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FIG. 2. Average fidelity between an initial state and the recovered state via the Petz map. We took a sample of 104 uniformly distributed
initial mixed states. The error bars indicate the variance of the fidelity distribution. Different noise parameters p were analyzed for different
reference states [σ = (1 − q)|0〉〈0| + q|1〉〈1|] for the dephasing map (left) and the depolarizing map (right). The optimal strategy for each noise
strength is marked with a solid black circle.

states, by first generating Haar random two-qubit pure states,
followed by the partial trace of the second qubit. Given that
we are taking nonunitary processes, and the full state space
as input, perfect recovery is impossible. Nevertheless, we can
find the best Petz recovery strategy using the optimal mean
fidelity as a measure of reversibility for quantum channels.

A. Unital channels: Dephasing and depolarizing

Unital quantum channels are those that map the maximally
mixed state onto itself, �(1/2) = 1/2. In other words, the
maximally mixed state is a fixed point for these maps. Two of
the most important unital channels are the dephasing and the
depolarizing noisy channels.

The dephasing channel, �deph, destroys the relative phase
information between the computational basis states, being one
the most prevalent types of noises in physical realizations.
The depolarizing channel, �depo, can be seen as noise that
probabilistically changes the system state by the maximally
mixed state. Mathematically, these channels are modeled as
follows:

�deph(�) =
(

1 − p

2

)
� + p

2
Z�Z, (7)

�depo(�) =
(

1 − 3p

4

)
� + p

4
(X�X + Y �Y + Z�Z ). (8)

In the equations above, p ∈ [0, 1] is a parameter that charac-
terizes the noise strength (p = 0, no noise; p = 1, maximal
noise), and X , Y , and Z are the usual Pauli matrices.

We want to determine the optimal recovery channel for
such noise models, fixing a noise strength p and taking as in-
put a uniform distribution over all mixed states. Given that we
are taking a uniform measure over mixed states, and that the
channels are unital, it is expected that the best Petz recovery
map is obtained by taking the reference state as the maximally
mixed one. This is numerically confirmed by parametrizing
the reference state as

σ = (1 − q)|0〉〈0| + q|1〉〈1|, (9)

with q ∈ [0, 1], and evaluating the average fidelity as a func-
tion of q for both channels. The above parametrization is
immediately suggested by the azimuthal symmetry of the out-
put distribution of states for both noisy channels. As it is clear
from Fig. 2, taking q = 1/2, i.e., choosing the reference state

as the maximally mixed one, is always an optimal choice for
the dephasing and depolarizing channels. For the dephasing
channel, as all the states of the form of σ are preserved, any
value of q is also an optimal choice (see Appendix A for the
explicit calculation).

Using the maximally mixed state as reference state, and the
unitality of such maps, we obtain that

�
1/2
P (�) = �†(�).

Noticing furthermore that the dephasing and depolarizing
noise models are self-dual (�† = �), we reach the conclusion
that the optimal Petz recovery map for these noise models
is again the noisy map. As such, no recovery is actually
obtained. In fact, it is clear from this discussion that to take
the identity channel as a “recovery map” is more advantageous
than taking the optimal Petz map when considering the set of
all single qubit states as input. This conclusion is illustrated
in Fig. 3, where we compare the optimal Petz map, for a
given p, with two other strategies: first, the strategy of using
an identity map as recovery map, i.e., to simply “return” the
output state �deph/depo(�) as the best approximation for �;
second, we take as a recovery map the fully depolarizing map,
i.e., independently of the output state �deph/depo(�) we return
the maximally mixed state. From Fig. 3, the latter is clearly
the worst strategy, despite the fact that the maximally mixed
state is indeed the average state for the input distribution of
states [15].

B. Nonunital channel: Amplitude damping

For nonunital channels, the choice of the optimal reference
state for the Petz recovery map is not so obvious. As an exam-
ple of a nonunital channel we analyze the amplitude damping
channel. Such a channel models the spontaneous decay of
a two-level atom when interacting with a zero-temperature
environment. Mathematically, the amplitude damping channel
can be written in the Kraus form as

�AD(�) = K0(p)�K†
0 (p) + K1(p)�K†

1 (p),

with Kraus operators

K0(p) =
(

1 0
0

√
1 − p

)
, K1(p) =

(
0

√
p

0 0

)
. (10)
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FIG. 3. Average fidelity—dephasing (left) and depolarizing (right)—between the initial state and the state recovered by different strategies:
the identity channel (dotted line), optimal Petz map (solid line), and always returning the maximally mixed state (dot-dashed line). Plot in terms
of the noise parameter p. We took a sample of 104 uniformly distributed mixed states. The variance of the fidelity distribution is indicated by
the error bars.

Again the parameter p ∈ [0, 1] quantifies the noise strength.
Taking p = 0 there is no decay, while for p = 1 the system is
left in the “ground state” |0〉〈0|.

Despite the fact that the amplitude damping channel is not
unital, it maps a uniform distribution of states onto a distribu-
tion which is invariant under rotations around the z axis of the
Bloch sphere. Given that, it is reasonable to suppose that the
optimal Petz recovery channel is obtained with a reference
state that is located on the z axis, i.e., the optimal reference
state can be written as in the state in Eq. (9). In Fig. 4 we use
this parametrization to numerically obtain the best reference
state for different values of the noise strength p.

From Fig. 4 we see that for weak amplitude damping the
best reference state is the |0〉〈0| state. As the noise strength in-
creases, the best reference state moves towards the maximally
mixed state. To understand that, we compare the optimal Petz
map, for a given p, with the previous strategies: the identity
map as the recovery map [always returning �r = �AD(�)],
and returning �r = 1/2 independently of the initial state. The
comparison among these strategies is shown in Fig. 5.

FIG. 4. Average fidelity between the initial state and the recov-
ered state via the Petz map for the amplitude damping map. We took
a sample of 104 uniformly distributed mixed states. The variance
of the fidelity distribution is indicated by the error bars. Different
noise parameters p were analyzed for different reference states (σ =
(1 − q)|0〉〈0| + q|1〉〈1|). The optimal strategy for each noise strength
is marked with a solid black circle.

As it can be seen from Fig. 5, for very weak amplitude
damping the best Petz recovery map (with reference state
around |0〉〈0|) is equivalent to the identity map. This is ex-
pected, as the state �AD(�) should be very close to � for small
p’s. For strong amplitude damping the state �AD(�) loses al-
most all the information about �. In this case the optimal Petz
recovery map (with reference state around 1/2) is equivalent
to a fully depolarizing map—when no information is avail-
able, the unbiased choice is to return the maximally mixed
state. It is however interesting to notice that for intermediate
noise strengths the optimal Petz recovery map is better than
the other strategies.

Note that, fixing a strategy, by comparing Figs. 3 and 5, the
average fidelity for the dephasing map is always higher. Thus,
in this context, we can conclude that the dephasing channel
can be better recovered. This is related to the image set of each
evolution. Because of the symmetry of the dephasing process,
it can be said that some information is still available after the
decoherence process.

FIG. 5. Average fidelity for the amplitude damping map between
the initial and the state recovered by different strategies: the identity
channel (dotted line), optimal Petz map (solid line), and always re-
turning the maximally mixed state (dot-dashed line). Plot in terms of
the noise parameter p. We took a sample of 104 uniformly distributed
mixed states. The variance of the fidelity distribution is indicated by
the error bars.
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IV. RECOVERY CHANNELS APPLIED TO
NON-MARKOVIAN DYNAMICS

With the results of the previous section in hand, now we
exploit the impact of recovery channels in non-Markovian
dynamics.

Formally, we will consider the definition of Markovianity
as the divisibility of the maps. A family of dynamical maps
�t,0 is divisible if it can be expressed as a composition of
linear maps:

�t,0 = �t,s�s,0 for all t � s � 0. (11)

The dynamics is called Markovian, or CP divisible, if the
intermediate map �t,s is CPTP for all t � s � 0 [1]. Note that
if �s,0 is invertible then one can obtain �t,s as

�t,s = �t,0�
−1
s,0 . (12)

Two points should, however, be noticed. First, as the inverse of
a map is in general not completely positive, then the complete
positivity of �t,s is not guaranteed. Second, for Eq. (12) to be
consistent, �−1

s,0�s,0 = 1, as defined in Eq. (3).
Usually non-Markovian dynamics are associated with a

backflow of information [1,26]. One of the common witnesses
of this backflow of information is the distinguishability be-
tween two states. Thus, a subset of states will become relevant
and the use of a Petz recovery map is then justified in this
scenario.

Here we will then employ Petz recovery maps to obtain
approximations for �t,s, i.e., in Eq. (12) we change �−1

s,0 by
�σ

P0,s:

�t,s,0 = �t,0�
σ
P0,s. (13)

Clearly this map is CP, as it is formed by a composition of CP
maps. As such, if now we designate the total approximated
map by

�
approx
t,0 = �t,s,0�s,0, (14)

then it will be also, by construction, a CP map. However, as
�t,s,0 may depend on the time interval [0, s], the map �

approx
t,0

is not necessarily CP divisible, i.e., it is not necessarily Marko-
vian. Note that �

approx
t,0 = �t,s�s,0�

σ
P0,s�s,0, so the non-CP

map �t,s is still contained in �
approx
t,0 and this is the reason

why the approximated map is not CP divisible. Below, we
analyze how well �

approx
t,0 approximates �t,0, and compare the

non-Markovianity of both channels.

Non-Markovian dephasing models

To analyze the impact of using the Petz recovery map to
obtain an approximated channel, we will exploit two dephas-
ing, Eq. (7), non-Markovian models. The reference state, from
here on, will thus be set to the maximally mixed one.

For the first model, named here “case 1,” we construct a
non-Markovian evolution by setting a time-dependent error
probability as

p1(t ) = α(1 − e−2(1−cos ωt ) ), (15)

where α = e4/(e4 − 1), and ω is a system natural frequency
(see Fig. 6). This is a periodic function with period 2π ,
fully characterized in terms of the Lindblad local generator

FIG. 6. Probabilities p1 (case 1, orange line) and p2 (case 2, blue
thick line) vs ωt .

with negative rates [27] (an explicit derivation is given in
Appendix B). A state � undergoing this evolution reaches the
maximally dephased state when ωt = (2n + 1)π , with n ∈ N.

For the second model, named “case 2,” the error probability
will be defined as

p2(t ) = 1 − e−0.3ωt cos2 ωt . (16)

In this case, a system undergoing this evolution reaches the
maximally dephased state, goes back to an intermediate state
between the maximally dephased and the initial one, and
repeats the process, with the intermediate state even being
closer to the maximally dephased than before. When ωt goes
to infinity, the system reaches its maximally dephased state.
Both probabilities p1 and p2 are displayed in Fig. 6.

We start our analysis by observing the so-called informa-
tion backflow that can appear in NM dynamics [1,26]. Con-
cretely, take the trace distance D(�1, �2) = 1/2||�1 − �2||1
between two states as a quantifier of their distinguishability.
For a NM dynamics it can be that D(�t,0(�1),�t,0(�2)) �
D(�t ′,0(�1),�t ′,0(�2)), for t ′ � t . This should be contrasted
with the Markovian case, where D(�t,0(�1),�t,0(�2)) �
D(�t ′,0(�1),�t ′,0(�2)) for all t ′ � t .

In Fig. 7 we compare, for both dephasing models, the infor-
mation backflow of the original map with the corresponding
approximated versions. In all the cases, as initial states we
took �1 = |+〉〈+| and �2 = |−〉〈−|, as these states are orthog-
onal and consequently optimal states to detect information
backflow. For simplicity, we have fixed the final time as twice
the intermediate time in Eq. (14), i.e., s �→ t and t �→ 2t .
From Fig. 7, it is clear that the approximated dynamics are
also non-Markovian, as both present information backflow.
It is also evident that the non-Markovianity strength in both
approximated cases is decreased when compared with the
original maps. In case 1 the recovery of distinguishability is
almost completely destroyed. On the other hand, in case 2,
the complete backflow is still present in the approximated
case. It is only a matter of waiting a longer time, but a similar
backflow is present in the approximate and original dynamics.

In order to have a state-independent characterization, now
we directly compare the original, �2t,0, and approximated
channels, �

approx
2t,0 , for both models.
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FIG. 7. Distinguishability between two states D(�1(t ), �2(t )) vs
time, with initial states �1 = |+〉〈+| and �2 = |−〉〈−|, for case 1
(top) and case 2 (bottom), where �i(t ) = �2t,0(�i ) (dashed line) and
�i(t ) = �

approx
2t,0 (�i ) (solid line) with i = 1, 2.

To quantify the distance between the maps we evaluated
the trace distance between their Choi matrices:

∥∥J
(
�

approx
2t,0

) − J (�2t,0)
∥∥

1, (17)

where J (�) = (1 ⊗ �)(|
〉〈
|) is the Choi matrix of �

with |
〉 = 1√
2

∑1
i=0 |i〉 ⊗ |i〉 a maximally entangled state.

The norm of the Choi matrix, also known as the dynamical
matrix, is widely used to quantify the degree of noncomplete
positiveness of a map [28,29]. The results are shown in Fig. 8.

Combining the results shown in Figs. 7 and 8, one interest-
ing observation emerges. For a fixed value for the distances
between the original and approximated maps, the recovery of
the information backflow can be very different. For example,
in Fig. 8, the distances between the dynamics at ωt = 5.9 rad
(case 1) and ωt = 3.1 rad (case 2) are almost the same; how-
ever, the information backflow displayed by the approximated
channel in case 1 is closer to the original backflow than what
is recovered in case 2, as can be seen in Fig. 7. In experimental
implementations such a result implies that approximations
within a fixed distance from the theoretical dynamics may
lead to very different behavior of non-Markovian features. In
other words, the information backflow is not a robust non-
Markovian feature.

FIG. 8. Normalized Choi distance ||J (�approx
2t,0 ) − J (�2t,0)||1 be-

tween the original �2t,0 and approximated channels �
approx
2t,0 vs time

for case 1 (orange line) and case 2 (blue thick line).

V. CONCLUSION

In this paper we have explored the use of the Petz recovery
map in a general context. We established the best Petz map for
paradigmatic one-qubit channels (unital and nonunital) opti-
mizing the reference states. When using as input the full set of
single qubit states, we showed that the optimal Petz recovery
map is worse than simply returning the output state, i.e., to use
the identity channel as “recovery channel.” We also showed
that among the strategies analyzed the dephasing channel is
the decoherence channel that can be better recovered in terms
of the average fidelity between the initial and the recovered
state.

The Petz recovery map has been also explored in the
context of non-Markovian evolution. We approximated the
inverse of the map �s,0 by its optimal Petz recovery map,
and showed that the approximated evolution still presents
backflow of information, but in an attenuated way. We also
analyzed how the distance between the actual dynamics and
the approximated one impacts on the backflow of information.
We observed that equally good approximations might lead
to drastically different behaviors for the backflow of infor-
mation. This can be especially interesting for experimental
implementations of non-Markovian evolutions, and for the use
of non-Markovianity in the context of hiding and retrieving
information, as in a quantum vault [30].

ACKNOWLEDGMENTS

We gladly acknowledge fruitful discussions with Gabriel
Landi, and thank Mark M. Wilde and Carlos Pineda for a
careful reading of an earlier version of this paper. This work
is supported by the Brazilian funding agencies CNPq and
CAPES, and it is part of the Brazilian National Institute for
Quantum Information.

APPENDIX A: OPTIMAL PETZ RECOVERY MAP:
DEPHASING CHANNEL

In this Appendix we analytically show that the optimal
Petz recovery map for the dephasing noise is obtained with
an arbitrary value of the parameter q in the reference state (9).
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The first thing to notice is that σ is diagonal in the compu-
tational basis. As such, it does not suffer the influence of the
dephasing channel:

�deph(σ ) = σ, ∀0 � q � 1. (A1)

Also due to this diagonal property, it is simple to obtain the
reference state’s square roots:

σ± 1
2 = (1 − p)±

1
2 |0〉〈0| + p± 1

2 |1〉〈1|. (A2)

Now, let � = [�i j], with i, j ∈ {0, 1}, be a generic single
qubit state. Using the results above, and remembering that the
dual channel of the dephasing map is the dephasing map itself,
it is now simple to show that the Petz recovery map (5) for the
present case is such that

�σ
P (�) = �deph(�). (A3)

From the equation above, we then conclude that the Petz
recovery map for the dephasing channel, with reference state
σ as in (9), is independent of the parameter q. In this way, any
choice of q will lead to the same recovered state.

APPENDIX B: TIME-LOCAL GENERATOR

A random unitary dynamical map

�t (�) =
3∑

k=0

pk (t )σk�σk (B1)

can be fully characterized in terms of a local generator given
by

L(�) =
3∑

k=1

γk (t )(σk�σk − �), (B2)

where γ (t ) are the decoherence rates and σ1, σ2, and σ3

are the Pauli matrices. Using the framework developed in
Ref. [27], a random unitary dynamics is Markovian if and only
if

γ1(t ) � 0, γ2(t ) � 0, γ3(t ) � 0, for all t � 0. (B3)

In order to obtain a non-Markovian evolution, we choose
decay rates that can assume negative values, γ (ti) < 0 for
some ti. If the dynamics has only one decoherence channel,
i.e., only one decoherence rate is nonvanishing, γk , the time
dependent probabilities can be obtained by

pk (t ) = 1
2 [1 − e−2�k (t )], (B4)

where p0(t ) = 1 − pk (t ) and

�k (t ) =
∫ t

0
γk (τ )dτ. (B5)

For the first dephasing model defined in Sec. IV, we chose
γ (t ) = sin(t ). From the equations above we easily obtain

pt = α(1 − e−2[1−cos(t )] ), (B6)

where α = e4/(e4 − 1).
For the second model, we take an oscillatory function

γ (t ) = cos(t )[−0.3 cos(t )−2 sin(t )]
e0.3t −2 cos(t )2 , which gives us

pt = 1 − [e−0.3t cos(t )2]. (B7)
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