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Power-law decay of entanglement quantifiers in a single agent coupled to a many-body system
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Manipulating many-body quantum systems is a challenge. A useful way to achieve it would be to entangle the
system to a diluted system, with a small particle number. Preparation of such entangled states can be facilitated
as the ground state of a many-body Hamiltonian or the steady state of a many-body open quantum system. Here
we study two-site lattice models with a conserved boson number, biased to display a large occupancy in one of
the sites. The von Neumann entanglement entropy as well as the logarithmic negativity show a typical power-law
decay in R, the occupancy ratio between the two sites. These results imply that it is feasible to entangle a large
many-body system to a single atom, as recently reported experimentally.
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I. INTRODUCTION

Entanglement is a key resource in quantum information
[1–3], quantum computing [4,5], and quantum metrology [6].
Recently, there has been significant advancement in gen-
erating, manipulating, and measuring entangled many-body
states, both experimentally and theoretically [7–10]. Both the
preparation of the entangled state and its validation using,
e.g., entanglement witnesses [11] are challenging aspects in
many-body systems and are the focus of ongoing research
[12–15].

Preparation of a desired entangled state can be realized as
the ground state of a carefully designed Hamiltonian. There-
fore, understanding the entanglement properties of ground
states is of practical importance. Significant effort has been
directed for extended systems, especially in one dimension
(1D). The ground state of a Hamiltonian with local inter-
actions typically exhibits an area law in the bipartite von
Neumann entanglement entropy [16], contrary to the generic
volume law of typical quantum states. However, the area
law does not characterize a system composed of a few sites,
where each site can occupy a large number of particles (see
Fig. 1). For two sites, the average von Neumann entanglement
entropy is known [17,18], but the characteristic properties of
the ground-state entanglement remain largely unexplored.

A particularly appealing case is for a single agent in system
B to be entangled to a large number of particles in system A.
Such entanglement allows one to manipulate the many-body
system via the single agent. This setup was experimentally
demonstrated in [19], where a single photon was entangled
with roughly 3000 atoms. At this point, it is unknown whether
there is a limit to the number of particles that could realisti-
cally be entangled with a single agent. It is further unknown
whether our setup leads to typical ground-state entanglement
properties.
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To answer the above questions, the entanglement needs
to be quantified [20,21]. Choosing an appropriate entangle-
ment quantifier depends on the intended application, e.g.,
entanglement distillation to produce Bell states. However, the
entanglement quantifier can alternatively be chosen to accom-
modate fast calculations of known density matrices, e.g., the
logarithmic negativity Eln. For pure states, the von Neumann
entanglement entropy Evn serves both purposes.

Keeping in mind the motivation of entangling a single
agent to a many-body system, we turn to a simpler theoret-
ical setup. In this work, we consider N bosons, occupying
a two-site system. We study the ground-state entanglement
properties when the system is tuned to display an over-
whelming majority of bosons occupying site A (see Fig. 1).
To make this statement precise, let n̂A,B be the correspond-
ing number operators. Then, R = 〈n̂A〉/〈n̂B〉 is the ratio of
the particle occupancies. We study the large-R behavior of
both the ground-state von Neumann entanglement entropy
and logarithmic negativity of the Bose-Hubbard Hamiltonian.
For open quantum systems, the same setup can be consid-
ered, where the steady state takes the role of the ground
state. We study the steady-state logarithmic negativity of a
Lindblad superoperator model—the quantum asymmetric in-
clusion process at large-R values [22,23].

Both models are studied at different scaling regimes. Nev-
ertheless, they all consistently lead to a power-law decay in the
entanglement quantifiers. Quantitatively, the von Neumann
entanglement entropy Evn ∼ ln R

Rα and the logarithmic negativ-
ity Eln ∼ 1

Rα for R � 1. See Tables I and II for a summary of
the results.

We argue that the power-law decay is typical, as we have
considered two disparate models and different scaling regimes
for each model. The slow power-law decay, contrasting with
an exponential decay, answers in a quantifiable way how re-
alistic it is to entangle a single or a few atoms to a highly
occupied many-body state. The exponent α is nonuniversal.
Therefore, interacting systems that result in small-α values
are favorable to facilitate entanglement between the diluted
system to the large occupancy system.
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System A System B

FIG. 1. The systems A and B are made to interact such that we
find a large occupancy of particles at system A and a low occupancy
at system B.

The structure of this paper is as follows. In Sec. II, we
present the Hamiltonian and Lindblad models and summarize
the main results. Section III presents in full the analytical
and numerical treatment of the systems under study. Finally,
Sec. IV recaps the main findings and their physical relevance
and suggests future directions.

II. MODELS AND RESULTS

The aim of this work is to quantify the bipartite entangle-
ment of a composite AB system at large-R values. Therefore,
it is natural to study lattice models, where the distinction
between the two subsystems is clear-cut. In particular, we
study lattice models with two sites, A and B.

To demonstrate that the power-law behavior is typical, two
disparate lattice models are considered. First, the ground-state
entanglement of the two-site Bose-Hubbard model is exten-
sively studied. Second, we consider a generalization of the
asymmetric inclusion process [24] to the quantum realm via
a Lindblad equation, dubbed here the quantum asymmetric
inclusion process (QASIP). We then study the entanglement
properties of the steady state at large R.

A. The two-site Bose-Hubbard model

The Bose-Hubbard model is a simple yet rich many-body
lattice model of spinless bosons. It allows the study of the
superfluid-insulator transition [25] and can be experimentally
implemented using optical lattices [26,27]. The particular case
of the two-site Bose-Hubbard model was extensively used
in the literature to study tunneling effects between potential
wells [28] as well as fragmentation [29]. Importantly, for our
purposes, the two-site Bose-Hubbard model is expected to
be both analytically tractable and to present typical physical
behavior in terms of the ground-state entanglement. Hence, it
serves as the starting point of our analysis.

TABLE I. The power-law behavior of the ground-state entangle-
ment of the Bose-Hubbard model at large-R values. For the large-N
limit, the exponents are evaluated numerically.

R Evn = � ln R
Rα Eln = �

Rα

μ � 1 μ2/J2 � = N, α = 1 � = 2
√

N
ln 2 , α = 1

2
N � 1 ∝ Nβ, β ≈ 2.15 α ≈ 0.518 α ≈ 0.220

TABLE II. The power-law behavior of the logarithmic negativity
in the steady-state QASIP. For the large-N limit, the exponents are
evaluated numerically.

R Eln(R) = �R−α

γ � 1 γ 2N2

4ε2 � = 2
√

N
ln 2 , α = 1/2

η � 1 η
Nγ

2ε2 � = 2N3/2γ

ε ln 2 , α = 1

N � 1 ∝ Nβ, β ≈ 1.988 α ≈ 0.236

The two-site Bose-Hubbard Hamiltonian is given by

HBH = −J (b̂†
Ab̂B + b̂†

Bb̂A) − μn̂A + U

2

∑
i=A,B

n̂i − n̂2
i , (1)

where J is the hopping matrix element between neighboring
sites and U determines the strength of the on-site interaction.
The operators b̂i, b̂†

i are the site-dependent bosonic creation
and annihilation operators and n̂i = b̂†

i b̂i is the number op-
erator for i = A, B. In an optical lattice, the potential wells
are represented by the two sites [26]. The potential offset
between the two asymmetric potential wells is given by μ.
It furthermore allows one to imbalance the system towards
large-R values.

It is useful to note that the total particle number, N̂ = n̂A +
n̂B, is conserved. Therefore, we analyze the ground state with
N bosons. In what follows, we consider two scaling schemes
leading to large-R values.

First, taking large-μ values and keeping N, J , and U
fixed, a perturbative treatment leads to R = μ2/J2 + O(μ);
see Sec. III. In this limit, and as long as J

√
N

μ
, UN2

μ
	 1, we

analytically find the power-law behavior described in Table I.
These results are also numerically corroborated in Fig. 2. Note
that the logarithmic correction in the von Neumann entangle-
ment hardly changes the behavior from a clean power law.

Second, we consider the large-N limit, with fixed μ, J , and
U . A perturbative approach is harder in this case as the Hilbert
space of the effective Hamiltonian depends on the particle

FIG. 2. Corroborating the perturbation theory analytical predic-
tions presented in Table I. The entanglement quantifiers are evaluated
numerically for the two-site Bose-Hubbard model and compared
with perturbation theory. Different U, J, N values are considered
(see legend), in the range μ ∈ [10, 103] to facilitate large-R values.
No fitting parameters are required to observe the collapse onto the
expected power-law behavior.
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FIG. 3. Numerical fitting of the entanglement quantifiers at the
large-N limit of the two-site Bose-Hubbard model. Both Evn

ln R and
Eln exhibit power-law behavior at large-R values, albeit with dif-
ferent exponents. Numerical convergence of arbitrary parameters to
the same exponent is obtained when sufficiently large R values are
reached. (a) The von Neumann entanglement entropy is shown to
scale as Evn ∝ ln R

Rα , where α ≈ 0.518. The range N ∈ [10, 400] was
tested. (b) The logarithmic negativity is shown to scale as Eln ∝ R−α ,
where α ≈ 0.22 is numerically fitted in the range N ∈ [10, 40]. See
Appendix C for a detailed discussion on the reduced range of N for
the logarithmic negativity.

number N (see Sec. III). See Fig. 3, Table I, and Appendix C
for the numerical analysis of the large-N limit.

In conclusion, the ground state of the two-site Bose-
Hubbard model leads to a power-law behavior of both the von
Neumann entanglement entropy and the logarithmic negativ-
ity at large-R values in two different scaling schemes.

Next, we explore the large-R steady-state entanglement
in an open quantum system setup: the quantum asymmetric
inclusion process.

B. Open quantum system

Realistically, physical systems are never truly isolated.
Interestingly, the coupling of a quantum system to an environ-
ment does not always lead to complete loss of entanglement
in the system. Indeed, there are examples where the environ-
ment can be engineered to produce a desirable entangled state
[15,30].

Here, we aim to study whether the large-R power-law
behavior persists for steady states of open quantum systems
as well. To that end, we focus on a quantum analog of the
asymmetric inclusion process given in terms of the Lindblad
equation.

In this setup, one usually assumes that a quantum system
is coupled to an environment with fast relaxation times. This,
in turn, allows one to discard non-Markovian contributions to
the evolution of the density matrix and results in the Lindblad

equation [31–33]

∂tρ = H(ρ) +
∑

k

DL̂k
(ρ),

H(ρ) = −i[H, ρ],

DL̂(ρ) = L̂ρL̂† − 1

2
{L̂†L̂, ρ}. (2)

In Eq. (2), H is a Hermitian operator and [•, •], {•, •} are
the commutation and anticommutation relations, correspond-
ingly. Despite the restriction to Markovian dynamics, enough
quantumness remains in the Lindblad equation [34–36]. At
this point, we turn to study a particular Lindblad model, which
facilitates the large-R limit analytically.

The QASIP describes the dynamics of bosons on a two-site
lattice, where the boson interactions are environment assisted
[22,23]. The evolution of the density matrix is given by

∂t ρ̂ = LQASIP(ρ̂),

LQASIP(ρ̂) = Htb(ρ̂) + LD(ρ̂) + LE (ρ̂),

Htb(ρ̂) = ε
(
b̂†

Ab̂B + b̂†
Bb̂A

)
,

LD(ρ̂) = η
∑

k=A,B

Dn̂k (ρ̂ ),

LE (ρ̂) = γDb̂†
Ab̂B

(ρ̂). (3)

See Eq. (2) for the definition of H,DL̂ for any operator L̂.
Here, the Hermitian Htb is a tight-binding Hamiltonian induc-
ing particle jumps between the two sites. LD is responsible for
dephasing at each site and LE explicitly breaks the symmetry
between the two sites and induces the occupation imbalance.
Later on, it will be shown that controlling γ allows one to
induce large-R values.

The relation of Eq. (3) to the classical asymmetric inclu-
sion process (ASIP) [24] is as follows. The dephasing and
bias terms alone acting on the diagonal terms of the density
matrix in the number basis lead to the ASIP master equation.
Namely, the quantum master equation is split into the diagonal
terms and the coherent terms, each having a closed set of
equations (in the number operator basis). The tight-binding
Hamiltonian mixes between the coherent terms and the diag-
onal terms, and hence a quantum ASIP.

Three comments are in order before we present the results.
First, note that here one cannot assume a priori that the
quantum system is coupled to a series of thermalized baths,
as we have not performed a microscopic derivation of the
Lindblad equation. Since we are not interested in studying
thermalization, the lack of a microscopic derivation is of no
importance. Second, the steady-state density matrix is not
pure. Hence, we will only use the logarithmic negativity as
an entanglement quantifier. Third, in Eq. (3), we have set h̄ to
unity. Furthermore, we will assume ε, η, γ and the time t to
be dimensionless, for convenience. When presenting the dif-
ferent scaling schemes, the inverse time dimensions of ε, η, γ

could be restored.
The QASIP, like the Bose-Hubbard model, can be shown to

conserve the particle number N̂ = n̂A + n̂B (see Appendix B).
However, a related but more general property exists for the
QASIP. In the number operator basis, we can write the density
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FIG. 4. Corroborating the perturbation theory analytical predic-
tions presented in Table II. The logarithmic negativity is evaluated
numerically for the QASIP model and compared with perturbation
theory at the large-γ limit in the range γ ∈ [1, 200]. Different ε, η, N
values are considered, all showing the expected collapse onto the
1/

√
R plot at large-R values, with no fitting parameters.

matrix as

ρ̂ =
∑

S

aSρ̂S, where

ρ̂S =
S∑

x,y=0


S (x, y)|x, S − x〉〈y, S − y|. (4)

Here, S takes non-negative integer values and aS are non-
negative prefactors that sum to 1. Note that the Hermitianity
of the density matrix ρ̂S implies 
∗

S (x, y) = 
S (y, x) and unity
trace implies

∑S
x=0 
S (x, x) = 1.

The dynamics of Eq. (3) is restricted to the subspace of ρ̂S:

∂t
S (x, y) = −η(x − y)2
S (x, y)

+ γ x−y−
S (x − 1, y − 1)

− 1

2
γ
(
x2
+ + y2

+
)

S (x, y)

− iε
∑
z=±1

xz
S (x + z, y) − yz
S (x, y + z),

X+ =
√

(X + 1)(S − X ),

X− =
√

X (S − X + 1), where X = x, y. (5)

Namely, we have replaced the treatment of the infinite-
dimensional density matrix ρ̂ with a treatment of finite-
dimensional (S + 1)2 density matrices ρ̂S at fixed S.

The conserved number S of ρ̂S equals the number of parti-
cles in the system as

Tr ρ̂SN̂ =
√

Tr ρ̂SN̂2 = S. (6)

Equation (5) implies, therefore, that the process conserves the
particle number. From here on, we may replace S by N .

In Eq. (3), there are different scaling schemes leading to
the large-R limit at the steady state. Table II summarizes
the power-law behavior of the logarithmic negativity in three
different scaling regimes. The results in Table II were verified
both analytically and numerically. See Fig. 4 for the large-γ
limit and Fig. 5 for the large-η limit. For the large-N only,
numerical evidence is currently present; see Figs. 6 and 8.

FIG. 5. Corroborating the perturbation theory analytical predic-
tions presented in Table II. The logarithmic negativity is evaluated
numerically for the QASIP model and compared with perturbation
theory at the large-η limit in the range η ∈ [1, 500]. Different ε, γ , N
values are considered, all showing the expected collapse onto the 1/R
plot at large-R values, with no fitting parameters.

In conclusion, the steady-state QASIP in Eq. (3) exhibits a
power-law decay in the logarithmic negativity, similarly to the
Bose-Hubbard dynamics.

In the next section, we provide a detailed derivation of the
results for the Bose-Hubbard model and for the QASIP.

III. ANALYTICAL AND NUMERICAL ANALYSIS

In Sec. II, we have introduced two lattice models: the
Bose-Hubbard model and the quantum asymmetric inclusion
process. The power-law behavior of the von Neumann en-
tanglement and the logarithmic negativity are summarized in
Tables I and II. In this section, we describe the analysis of
these results in detail.

A. Bose-Hubbard model

To analyze the entanglement properties of the two-site
Bose-Hubbard model in Eq. (1), we need to find the N-
particle ground state of the Hamiltonian. Given a description
of the ground state, finding the ratio R and the entanglement
quantifiers Evn, Eln becomes straightforward, but sometimes
technically cumbersome. See Appendix A.

The Hilbert space of N particles for the Bose-Hubbard
Hamiltonian (1) is spanned by the N + 1 Fock states

FIG. 6. Numerical fitting of the logarithmic negativity at the
large-N limit of the QASIP model. Different η, γ values were tested,
leading to the large-R limit at ε = 1, N ∈ [1, 25]. Numerically, it is
shown that Eln ∝ R−α , where α ≈ 0.236.
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|nA, nB〉 = 1
nA!nB! (b̂†

A)nA (b̂†
B)nB |0, 0〉. Namely,

|ψN 〉 =
N∑

k=0

ak|k, N − k〉, where
N∑

k=0

|ak|2 = 1. (7)

Then, the N-particle Bose-Hubbard Hamiltonian can be writ-
ten as a N + 1 × N + 1 matrix. Finding the ground state can
be done analytically and for all μ,U, J values when we set
N = 1. This simple case will reveal the intuitive scaling limits
leading to the large-R behavior, both for the Bose-Hubbard
model as well as for the quantum asymmetric inclusion pro-
cess in the next section.

Indeed, for N = 1, the Bose-Hubbard Hamiltonian can be
represented by the 2 × 2 matrix

H (N=1)
BH =

(−μ −J
−J 0

)
, (8)

where the wave function is in its most general form,

|ψN=1〉 = cos ζ |10〉 + eiφ1 sin ζ |01〉 =
(

cos ζ

eiφ1 sin ζ

)
, (9)

for real ζ , φ1 values and the right-hand side of Eq. (9) is
in a vector notation corresponding to the matrix in Eq. (8).
Clearly, the ratio is R = cot2 ζ . The lowest eigenvalue of
Eq. (8) is ε = − 1

2 (μ +
√

μ2 + 4J2) with the ground state
|ψN=1〉 = 1

N (−ε|10〉 + J|01〉) and N 2 = ε2 + J2 is a nor-
malization constant. This implies that R = ε2/J2. Therefore,
in this particular case, R � 1 only if μ/J � 1 and leads to
R = (μ/J )2 + O(μ) asymptotically.

The von Neumann entanglement for the ground state in
Eq. (9) is

Evn = −2 cos2 ζ ln(cos ζ ) − 2 sin2 ζ ln(sin ζ ). (10)

Using trigonometric identities, we recover cos2 ζ = R
1+R and

sin2 ζ = 1
1+R . Asymptotically for large-R, Evn = ln R

R to lead-
ing order, as reported in Table I.

To find the logarithmic negativity, we need to write the
partially transposed density matrix,

ρPT = cos2 ζ |10〉〈10| + sin2 ζ |01〉〈01|
+ cos ζ sin ζ

(
eiφ1 |00〉〈11| + e−iφ1 |11〉〈00|). (11)

The eigenvalues of the partially transposed density matrix
are cos2 ζ , sin2 ζ , and ±

√
1−cos 4ζ

2
√

2
. Therefore, the logarithmic

negativity is Eln = log2(1 +
√

1−cos 4ζ√
2

). For large R and to

leading order, we find Eln = 2
ln 2 R−1/2 + O(R−1), as reported

in Table I.
For N > 1, the ground-state solution becomes cumber-

some, but still requires dealing with a (N + 1) × (N + 1)
Bose-Hubbard matrix. The numerical code that produced
Figs. 2, 3, and 7 finds the ground state of the Bose-Hubbard
matrix at some finite N . Then, it calculates the von Neumann
entanglement and the logarithmic negativity.

From the N = 1 example, we have seen that the large-μ
limit leads to a large bias R � 1. This happens when the
μ term dominates the energy of the ground state, i.e., for
μ � √

NJ,UN2. Another large-R limit is recovered for finite
μ,U, J > 0 and large N . In this limit, the particles condense

due to the strong attractive energy, ∼ UN2. The symmetry is
broken by the potential offset μ, leading to condensation of
the particles in site A and to large-R values.

A perturbative approach for the large-N limit is nontrivial,
as the dimension of the effective Hilbert space changes with
N . However, a direct numerical analysis clearly reveals the
power-law behavior in this limit. See Table I, Sec. II, and
Appendix C for more details. In what follows, we consider
the large-μ limit and evaluate the ground state and the entan-
glement quantifiers using a perturbative approach.

Let us develop a standard perturbation theory for the
Hamiltonian H = H0 + 1

μ
H1 = 1

μ
HBH ,

H0 = −n̂A, H1 = HBH − μH0, (12)

at large μ.
The eigenstates of H0 are |φ(0)

n 〉 = |n, N − n〉 with energies
ε (0)

n = −n. The first-order correction to the ground state is

|φN 〉 = |N, 0〉 + λ|N − 1, 1〉 + O(λ2), (13)

where λ = J
√

N
μ

is assumed to be small as well as UN2/μ 	
1. At this limit, we find R = 〈n̂A〉/〈n̂B〉 = N/λ2. So, we
can approximate, at small λ, R = μ2/J2 + O(μ). The von
Neumann entanglement can be calculated for the ground
state |φN 〉,

Evn = − 1

1 + λ2
ln

1

1 + λ2
− λ2

1 + λ2
ln

λ2

1 + λ2

= − λ2 ln λ2 + O(λ3). (14)

At this limit, we find the reported scaling,

Evn = N

R
ln

N

R
, (15)

to leading order. This is corroborated numerically in Fig. 2
and summarized in Table I. Recall that in this scaling, N may
be large, but R � N .

To find the logarithmic negativity, we need to calculate the
eigenvalues of the partially transposed density matrix of |φN 〉.
For N > 1, the only nonzero eigenvalues are 1

1+λ2 ,
λ2

1+λ2 ,
±λ

1+λ2 .
This leads to

Eln = log2

(
1 + 2λ

1 + λ2

)
= 2

ln 2

√
N

R
+ O(1/R). (16)

For large-R values, where the perturbation theory applies, the
logarithmic negativity dominates the von Neumann entangle-
ment, as it should [21,37]. Again, we refer to Fig. 2 to see the
excellent agreement with the numerical evaluation.

Other scaling schemes leading to large-R values can exist.
Nevertheless, the power-law behavior of the entanglement
quantifiers is believed to persist, based on the N = 1 exactly
solvable cases.

We turn to study the large-R entanglement properties of a
completely different setup—the quantum asymmetric inclu-
sion process.

B. The QASIP

To analyze the steady-state entanglement properties of the
QASIP at large R, we need to find the steady-state density
matrix with a fixed S, i.e., LQASIP(ρ̂S ) = 0. Namely, we wish

042420-5



OHAD SHPIELBERG PHYSICAL REVIEW A 105, 042420 (2022)

to find 
S (x, y) such that the right-hand side of Eq. (5) van-
ishes.

As in the Bose-Hubbard model, it is useful to first study
the simple case of S = 1. Here, x, y = {0, 1}, and demanding
a steady state in Eq. (5) leads to⎛
⎜⎜⎝

−γ iε −iε 0
iε − 1

2γ − η 0 −iε
−iε 0 − 1

2γ − η iε
γ −iε iε 0

⎞
⎟⎟⎠

⎛
⎜⎝


1(0, 0)

1(0, 1)

1(1, 0)

1(1, 1)

⎞
⎟⎠=

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠.

(17)

Solving Eq. (17), we find the steady-state solution for S = 1,

N1ρ̂1 = 4ε2|0, 1〉〈0, 1|
+ 2iγ ε(|1, 0〉〈0, 1| − |0, 1〉〈1, 0|)
+ (4ε2 + γ 2 + 2γ η)|1, 0〉〈1, 0|, (18)

where N1 = γ 2 + 2γ η + 8ε2 ensures unity trace of ρ̂1. From
the steady-state solution, we recover R = 1 + γ (γ+2η)

4ε2 and
Eln = log2(1 + 4γ ε

γ 2+8ε2+2γ η
). A few observations can already

be made. At η → ∞, the entanglement vanishes, as can be
expected in the large dephasing limit [23,38]. Moreover, the
logarithmic negativity becomes positive due to a combination
of biasing and coherent hopping, i.e., γ ε > 0. We identify
two limits where R becomes large. For γ → ∞ and finite
η, ε, we recover R ∝ γ 2 and Eln ∝ 1/

√
R. Similarly, for finite

γ , ε and large η, we recover R ∝ η and Eln ∝ 1/R. Already
for the S = 1 case, we find that the entanglement power-law
behavior persists for large-R values. However, the exponent is
nonuniversal and depends on the scaling scheme.

Exact solution of the steady state for S > 1 is, at best,
tedious. Instead, we will find the steady-state solution at the
two limits noted above using a perturbative approach. The
limits at finite S will be shown to agree with the S = 1 exact
analysis carried out in the above.

1. Large asymmetry between the sites

For γ � 1, and at finite S, η, ε, we develop the steady-state
density matrix as a perturbative sum,

ρ̂S = 1

Nγ

(
ρ̂

(0)
S + 1

γ
ρ̂

(1)
S + 1

γ 2
ρ̂

(2)
S

)
+ O(1/γ 3), (19)

where Nγ is a normalization constant to assure trace one of the
truncated density matrix. This perturbative approach implies
the order-by-order steady-state solutions,

0 = LE
(
ρ̂

(0)
S

)
, (20)

0 = 1

γ
LE

(
ρ̂

(1)
S

) + (LD + Htb)ρ̂ (0)
S , (21)

0 = 1

γ
LE

(
ρ̂

(2)
S

) + (LD + Htb)ρ̂ (1)
S . (22)

Equation (20) admits a unique solution ρ̂
(0)
S = |S, 0〉〈S, 0|,

namely, to leading order, site A is maximally occupied and site
B is depleted. Using the leading-order solution, we find ρ̂

(1)
S =

2iε√
S

(|S, 0〉〈S − 1, 1| + |S − 1, 1〉〈S, 0|). Note that to first order,
there are as yet no corrections to the occupancies. Hence, we

solve to second order in 1/γ , obtaining

ρ̂
(2)
S = 4ε2

γ 2S
|S − 1, 1〉〈S − 1, 1|

+ 4iεη

S3/2
|S − 1, 1〉〈S, 0|

− 2
√

2ε2

√
S(S − 1)

|S, 0〉〈S − 2, 2| + H.c. (23)

To second order, we find Nγ = 4ε2

γ 2S + 1. From the perturbative
solution of Eq. (19), we find that

R = S − 1 + S2γ 2

4ε2
+ O(γ ) ≈ S2γ 2

4ε2
. (24)

This approximation also implies the assumption ε2 	 Sγ 2.
Also, the logarithmic negativity can be calculated as there are,
at most, four nonzero eigenvalues for the partially transposed
density matrix for any S value. We find, to leading order,

Eln = 4ε

γ
√

S ln 2
+ O

(
1

γ 2

)
≈ 2

√
S

ln 2

1√
R

+ O

(
1

R

)
. (25)

As noted in Sec. II, the Eln(R) power-law behavior was veri-
fied numerically in Fig. 4.

2. Large dephasing limit

Here we consider the large-η limit with fixed S, γ , ε. We
write the density matrix as a perturbative series in 1/η,

ρ̂S = 1

Nη

(
ρ̂

(0)
S + 1

η
ρ̂

(1)
S + 1

η2
ρ̂

(2)
S

)
+ O(1/η3), (26)

where here Nη is a normalization constant ensuring the trun-
cated density matrix has trace 1. Again, the perturbative series
implies the order-by-order steady-state solutions,

0 = LD
(
ρ̂

(0)
S

)
, (27)

0 = 1

η
LD

(
ρ̂

(1)
S

) + (LE + Htb)ρ̂ (0)
S , (28)

0 = 1

η
LD

(
ρ̂

(2)
S

) + (LE + Htb)ρ̂ (1)
S . (29)

Equation (27) admits a degenerate solution,

ρ̂
(0)
S =

S∑
k=0

ak|k, S − k〉〈k, S − k|, (30)

with ak non-negative coefficients. This degeneracy is broken
in the next order, i.e., Eq. (28). We find ρ̂

(0)
S = |S, 0〉〈S, 0|;

however, the degeneracy moves to the next order,

ρ̂
(1)
S =

S∑
k=0

bk|k, S − k〉〈k, S − k|

+ iε
√

S(|S, 0〉〈S − 1, 1| − |S − 1, 1〉〈S, 0|), (31)

where bk are again non-negative coefficients. To evaluate R
to leading order, we have to break the degeneracy in bk . This
breaking is obtained at the next order, i.e., Eq. (29), where we
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find bk = δk,S−1
2ε2

γ
and

ρ̂
(2)
S = − ε2

√
S − 1

√
S

2
√

2
|S − 2, 2〉〈S, 0|

+ i
γ 2εS3/2 + 4ε3

√
S

2γ
|S − 1, 1〉〈S, 0|

− i
2
√

2ε3
√

S − 1

γ
|S − 2, 2〉〈S − 1, 1|

+
S∑

k=0

ck|k, S − k〉〈k, S − k|

+ H.c. (32)

The degeneracy in the non-negative terms ck is broken at the
third order of the expansion. To leading order in η, we find
Nη = 1 + 2ε2

γ η
. Therefore, to leading order,

R = γ ηS

2ε2
+ S − 1 ≈ γ ηS

2ε2
. (33)

Again, the spectrum of the partially transposed density matrix
is composed of only four nonzero eigenvalues for any S > 1:

(− γ ε
√

S
γ η+2ε2 ,

γ ε
√

S
γ η+2ε2 ,

2ε2

γ η+2ε2 ,
γ η

γ η+2ε2 ). The logarithmic negativity
is thus given by

Eln = log2

(
1 + 2γ ε

√
S

γ η + 2ε2

)
≈ 2ε

√
S

η ln 2
= γ S3/2

ε ln 2

1

R
. (34)

As noted in Sec. II, the Eln(R) power-law behavior was
verified numerically in Fig. 5.

C. Large number of particles

We also studied the scaling limit S � 1 and finite η, γ , ε.
Analytically, a perturbative solution in this case becomes hard
due to the change in the state space, similarly to the Bose-
Hubbard case. Nevertheless, it is possible to numerically find
the steady state and calculate the logarithmic negativity even
for large-S values. This was carried out numerically (Fig. 6)
and reported in Sec. II.

IV. DISCUSSION

State-of-the-art experimental techniques allow one to en-
tangle a single agent to thousands of atoms [19]. However,
it was unclear whether one could push the experimental tech-
niques to significantly increase the number of atoms entangled
to the agent.

Here, we have explored the theoretical bounds on entan-
gling one or a few agents to a many-body system. The ground
state of a two-site Bose-Hubbard model, with an occupancy
bias R � 1, leads to a power-law decay in the logarithmic
negativity and the von Neumann entanglement entropy in
different scaling limits. Furthermore, the steady state of the
QASIP biased to large-R values also exhibits a power-law
decay in the logarithmic negativity. We stress that while the
power-law behavior is typical, the exponent depends on the
scaling limits; see Tables I and II.

From the slow decay of the entanglement, it is now clear
that it is typically possible to entangle thousands of atoms to a

single agent. Furthermore, designing systems with slow entan-
glement decay (small α) allows one to entangle more particles
in the many-body system to the one agent (or a few). It would
be particularly appealing to develop a perturbative approach to
the large-N limit in both models. Such an approach would al-
low one to extract the exponents analytically, and explore their
range and dependence on the model parameters. Furthermore,
it would suggest how best to tune the parameters to entangle
the diluted system B to the highly occupied system A.

The average von Neumann entanglement entropy over the
random pure state of Hilbert space N × N is Evn ∼ ln N
[17,18]. Therefore, the von Neumann entanglement entropy
of the ground state is fundamentally different from that of
the average. This is not too surprising when one relates to
the area law of ground states in extended systems compared
to the typical volume law. In turn, the low von Neumann
entanglement entropy of the ground state suggests that ground
states in the large-R limit could be susceptible to analytical
and numerical techniques, even for large many-body systems.

From the analysis so far, it may seem that the two-site
lattice model is paramount to achieve the power-law behavior.
We have carried out preliminary tests in a three-site Hubbard
model, taking sites A, B to occupy most of the particles in
the system, namely, R = 〈n̂A + n̂B〉/〈n̂C〉. The von Neumann
entanglement entropy between site C and the subsystem AB
still exhibits a power law in large R. The analysis is beyond
the scope of this work and will be presented elsewhere.

Another question that comes to mind is whether the power-
law behavior also persists in continuum models, not only in
lattice models. We believe this is not the case. After coarse
graining a lattice model into a continuum model, an increase
is expected in the von Neumann entanglement entropy due
to loss of information. This increase does not depend on the
occupancies and hence adds a constant to the von Neumann
entanglement entropy. Therefore, in the large-R limit, we ex-
pect to observe a saturation to a constant with a power-law
correction. Naively, that should be the same power law of the
lattice model. It would be interesting to test this conjecture in
future works.
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APPENDIX A: ENTANGLEMENT QUANTIFIERS

In this Appendix, we provide a brief introduction to the
entanglement quantifiers used in this text: the von Neumann
entanglement entropy and the logarithmic negativity. The pur-
pose of quantifiers is to distinguish between entangled and
nonentangled states (separable) and furthermore to suggest a
hierarchy of values for entangled states. Here we do not aim
to give an exhaustive account of quantum quantifiers, but to
motivate the usage of the von Neumann entanglement entropy
and the logarithmic negativity in the case at hand.

For pure states, all entanglement measures are defined to
correspond to the von Neumann entanglement entropy [21].
In bipartite system AB,

Evn(ρAB) = −Tr ρA ln ρA = −Tr ρB ln ρB, (A1)
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where ρA = Tr BρAB is the reduced density matrix. Evn > 0
only for nonseparable pure states.

In terms of wave functions (which are pure states),
the Schmidt decomposition using orthonormal states im-
plies |ψ〉 = ∑

i αi|ui〉A ⊗ |vi〉B. Then, we find Evn(|ψ〉) =
−∑

i |αi|2 ln |αi|2.
Entanglement is harder to quantify for mixed states. Many

different measures for the entanglement exist. Typically,
entanglement measures are given in the form of some mini-
mization problem, making them hard to calculate. Instead, we
will use the logarithmic negativity, which is an entanglement
monotone and not a measure. Namely, for a pure state, the log-
arithmic negativity does not correspond to the von Neumann
entanglement entropy (except for specific cases). However,
it is straightforward to calculate the logarithmic negativity,
making it a favorable entanglement quantifier.

The logarithmic negativity is given by

Eln(ρ) = log2 ‖ρPT ‖1, (A2)

where ρPT is the partially transposed density matrix, and
‖A‖1 ≡ Tr

√
AA†. Intuitively speaking, the logarithmic neg-

ativity counts the amount of negative eigenvalues in the
partially transposed density matrix, relating it to the Peres-
Horodecki criterion [39,40]. We note that positive logarithmic
negativity values ensure nonseparability, but a vanishing value
does not guarantees separability.

The logarithmic negativity is an entanglement monotone
[20,21,41], which implies that on average, under locally quan-
tum operations and classical communication (LOCC), the
logarithmic negativity does not increase. Furthermore, the
logarithmic negativity was shown to be an upper bound for
the distillation entanglement, connecting it to useful quantum
operations using maximally entangled states [42]. Since the
distillation entanglement is an entanglement measure, it is
evident that for pure states, the von Neumann entanglement
entropy is bounded by the logarithmic negativity. This fact
provides a consistency check in our numerical assessment.

APPENDIX B: THE LINDBLAD ADJOINT DYNAMICS

The purpose of this section is to introduce the Heisenberg
operator evolution picture for the Lindblad dynamics.

For an observable Ô (explicitly time independent), we have
the expectation value 〈Ô〉 = Tr Ôρ. Therefore,

∂t 〈Ô〉 = Tr Ô∂tρ = Tr ÔL(ρ), (B1)

where L(ρ) is a Lindblad superoperator of Eq. (2). Then, the
formal adjoint L† is defined such that

∂t 〈Ô〉 = Tr L†(Ô)ρ. (B2)

For the Lindblad superoperator in Eq. (2), it implies the
Heisenberg picture,

∂t Ô = L†(Ô) = −H(Ô) +
∑

k

L̂†
k ÔL̂k − 1

2
{L̂†

k L̂k, Ô}. (B3)

It is rather straightforward to see that ∂t N̂ = 0 for the
QASIP.

FIG. 7. In the large-N limit of the two-site Bose-Hubbard model,
numerical evaluation shows that R ∝ Nβ with β ≈ 2.15. The three
parameters in the range N ∈ [1, 400] are picked to allow for suffi-
ciently large-R values.

APPENDIX C: ADDITIONAL NUMERICAL DATA
FOR THE BOSE-HUBBARD MODEL

Here we present further technical details on the numerical
analysis of the Bose-Hubbard model.

For large-N values, the von Neumann entanglement en-
tropy is easier to obtain than the logarithmic negativity. In
Appendix A, it was shown that the pure state von Neu-
mann entanglement entropy can be obtained from the ket
state. However, the logarithmic negativity requires finding
the spectrum of the partially transposed density matrix. The
complexity of handling density matrices is certainly higher
than that of handling ket states, and hence the lower values
that were reached for the logarithmic negativity.

In Fig. 7, the scaling R ∝ Nβ is presented in the large-N
limit for three values of the parameters (J,U, μ). The values
are picked to produce large-R values and to span over a few
length scales in R, providing a reliable prediction for the
exponents.

APPENDIX D: ADDITIONAL NUMERICAL DATA
FOR THE QASIP MODEL

Here we present further technical details of the numerical
analysis of the QASIP model.

In Fig. 8, the large-N scaling of R ∝ Nβ is plotted for
different γ values. Since testing the logarithmic negativity
in large-N values is numerically challenging, the parameters
were chosen to facilitate as large R as possible, which im-
proves the exponent fitting.

FIG. 8. In the large-N limit of the QASIP model, it is numerically
corroborated that R ∝ Nβ where β ≈ 1.988. Different η, γ values
were tested, leading to the large-R limit at ε = 1, N ∈ [1, 25].
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