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Estimation of the Wigner distribution of single-mode Gaussian states: A comparative study
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In this work, we consider the estimation of single-mode Gaussian states using four different measure-
ment schemes, namely, (1) homodyne measurement, (2) heterodyne measurement, (3) sequential measurement
scheme, and (4) the Arthurs-Kelly measurement scheme, with a view to compare their relative performance. To
this end, we work in the phase space formalism, specifically at the covariance matrix level, which provides an
elegant and intuitive way to explicitly carry out the involved calculations. We show that the optimal performance
of the Arthurs-Kelly and sequential measurement schemes is equal to the heterodyne measurement. While the
heterodyne measurement outperforms the homodyne measurement in the mean estimation of squeezed state
ensembles, the homodyne measurement outperforms the heterodyne measurement for variance estimation of
squeezed state ensembles up to a certain range of the squeezing parameter. We then modify the Hamiltonian
in the Arthurs-Kelly measurement scheme, such that the two meters can have correlations and show that the
optimal performance is achieved when the meters are uncorrelated. We expect that these results will be useful in
various quantum information and quantum communication protocols.
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I. INTRODUCTION

Reconstruction of quantum states by performing measure-
ments on an ensemble of systems prepared in identical but
unknown states is known as quantum state estimation (QSE)
or quantum state tomography (QST) [1–3]. QSE is important
in quantum mechanics and quantum information processing,
and finding schemes for its efficient execution is an active
area of research [4–6]. Ideal QSE requires infinite copies of
a quantum system, which is impractical in the real world.
Usually an experimentalist is provided with a fixed number
of identically prepared systems, and thus one would like to
know the advantages and limitations of various measurement
schemes and select the best scheme as per the requirements.
We consider several different measurement schemes that
can be employed for the QSE of continuous variable (CV)
systems.

Homodyne measurement is one of the most widely em-
ployed measurement schemes in CV systems, which measures
either the q̂ quadrature or the p̂ quadrature or any other
phase-rotated quadrature operator [7–10]. It has been shown
that various quasiprobability distributions such as Glauber-
Sudarshan distribution, Wigner distribution, and Husimi
distribution [11] can be estimated using measurements of
the rotated quadrature operators and has also been demon-
strated experimentally [12]. One can also think of sequential
measurement (SM) of a pair of conjugate observables in
CV systems, where the observables are measured one after
another [13–15]. The sequential measurement of two non-
commuting observables has been employed to reconstruct the
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Moyal M function, which is the Fourier transform of the
Wigner function [14]. Arthurs and Kelly, in a unique effort,
extended the von Neumann measurement scheme to the joint
measurement of two noncommuting observables [16]. In this
joint measurement the consequence of noncommutativity is
the introduction of additional minimum noise in the outcomes
of both observables. Similarly, a heterodyne measurement,
which is equivalent to an eight-port measurement (double-
homodyne), can be employed for the joint measurement of
two noncommuting observables [17–28]. For the hetrodyne
measurement, the vacuum noise is added in both noncommut-
ing observables, and unlike in the Arthurs-Kelly measurement
scheme this cannot be distributed among the observables at
will. It has been shown that the heterodyne measurement
can do a better estimation of the first- and the second-order
moments of the quadrature operators of Gaussian and non-
Gaussian states compared to the homodyne measurement
[29–31]. The superiority of localized phase space sampling
with unbalanced homodyne measurement [32] compared to
delocalized heterodyne measurement has also been shown
[33].

In this article, we provide a comparative study of the state
estimation efficiency of different measurement schemes in-
cluding homodyne measurement, heterodyne measurement,
sequential measurement scheme, and the Arthurs-Kelly mea-
surement scheme. To this end, we consider an ensemble of
N identically prepared single-mode Gaussian states. Gaussian
states are defined as states with a Gaussian Wigner distribution
function, and we need to estimate the mean and the covari-
ance matrix to completely reconstruct such states. We further
assume that the Gaussian states are squeezed in either the q̂ or
the p̂ quadrature. Such states have been employed in squeezed
state CV quantum key distribution (QKD) protocols [34–36]
and are easier to estimate.
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We provide analytical expressions of the estimation ef-
ficiency of the mean and the variance of an ensemble of
N identically prepared Gaussian states. We show that the
optimal performance of the Arthurs-Kelly and sequential mea-
surement schemes is equal to the heterodyne measurement.
For mean estimation, the heterodyne measurement outper-
forms the homodyne measurement for a squeezed coherent
state ensemble, but for variance estimation, the homodyne
measurement outperforms the heterodyne measurement for a
certain squeezing parameter range. We also explore the effect
of environmental interactions and imperfect detectors on the
performance of heterodyne and homodyne measurements. It
turns out that the homodyne and heterodyne measurements
become less precise as the interaction time increases. The
results also show that the heterodyne measurement is more
robust for the distance measure d1 at all interaction time, while
for the distance measure d2, the heterodyne measurement
is more robust beyond a certain interaction time. Then we
proceed to a modified Hamiltonian [37,38] in the Arthurs-
Kelly measurement scheme that can entangle the two meters.
Here the results show that the optimal performance of the
scheme can be obtained only when the meters are uncor-
related. Since the Hamiltonians involved in the sequential
and the Arthurs-Kelly measurement schemes are quadratic
expressions in quadrature operators, the corresponding sym-
plectic transformations acting on the quadrature operators or
the phase space variables belong to the real symplectic group
Sp(4,R) and Sp(6,R) [39], respectively. We exploit this fact
and explicitly work in phase space for calculational simplicity.

We expect that these techniques along with the results
obtained in this work will be useful in undertaking vari-
ous studies in different quantum information and quantum
communication protocols [40,41]. For instance, the sequen-
tial measurement scheme considered in the current work
can be exploited to investigate the interplay between the
quality of estimation of the quadratures via homodyne (phase-
sensitive) measurement and the disturbance in the reduced
state of the system. This analysis will complement earlier
works, where the quality of estimation of a coherent state
via phase-insensitive measurements and the disturbance in
the postmeasurement state has been examined [42,43]. This
study will also be useful in the reconsideration of an exper-
imental study where measurements of the leakage modes are
performed to retrieve the information encoded in the Gaussian
state [44].

This article is organized as follows. In Sec. II A we present
the basic formalism of the CV system, while in Sec. II B we
introduce various measurement schemes and obtain the vari-
ance of probability distributions corresponding to different
quadrature measurements. In Sec. III we analyze the perfor-
mance of various measurement schemes in the mean and the
variance estimation. In Sec. IV we consider the Arthurs-Kelly
measurement scheme with a modified interaction Hamilto-
nian. Finally, in Sec. V we provide concluding remarks and
discuss future prospects.

II. BACKGROUND

In this section, we introduce the formalism of an n-mode
CV system and describe various measurement schemes.

A. Description of an n-mode CV system

An n-mode continuous variable quantum system can arise
in different contexts, ranging from n-physical harmonic os-
cillators to n-modes of the electromagnetic field or of the
lattice vibrations. Although the description here is general,
the physical system that we have in mind is n-modes of the
electromagnetic field.

An n-mode quantum CV system is described by n pairs of
Hermitian quadrature operators, which can be collected in a
vector form as follows [40,41,45,46]:

ξ̂ = (ξ̂i ) = (q̂1, p̂1, . . . , q̂n, p̂n)T , i = 1, 2, . . . , 2n. (1)

The canonical commutation relations can be written com-
pactly as (with h̄ = 1)

[ξ̂i, ξ̂ j] = i�i j, (i, j = 1, 2, . . . , 2n), (2)

where � is the symplectic form given by

� =
n⊕

k=1

ω =
⎛
⎝ω

. . .

ω

⎞
⎠, ω =

(
0 1

−1 0

)
. (3)

The Hilbert space of the n-mode system is spanned
by the product basis vector |n1 . . . ni . . . nn〉 with
{n1, . . . , ni, . . . , nn = 0, 1, . . . ,∞}, where the number
ni corresponds to the photon number in the ith mode. The
quantum states of this system are represented via density
operators in this Hilbert space. The density operator ρ̂ is a
Hermitian, nonnegative and trace-one class operator.

We can alternatively describe an n-mode system in a
2n-dimensional phase space. The Wigner distribution for a
quantum system with density operator ρ̂ can be written as [47]

W (ξ ) = (2π )−n
∫

dnq′
〈
q − 1

2
q′|ρ̂|q + 1

2
q′
〉

exp(iq′ · p),

(4)
where q = (q1, q2, . . . , qn)T , p = (p1, p2, . . . , pn)T , and ξ =
(q1, p1, . . . , qn, pn)T . Thus, W (ξ ) is a function of 2n real
phase space variables for an n-mode quantum system. The
first-order moments (sometimes called displacement or mean)
vector is given as

ξ̂ = Tr[ρ̂ξ̂ ]. (5)

Similarly, the second-order moments, which are best repre-
sented in the form of a 2n × 2n, real symmetric matrix, called
the covariance matrix is given as

V = (Vi j ) = 1
2 〈{�ξ̂i,�ξ̂ j}〉, (6)

where �ξ̂i = ξ̂i − 〈ξ̂i〉, and {, } denotes an anticommutator.
The uncertainty principle obeyed by all quantum states can be
expressed easily in terms of covariance matrix as

V + i

2
� � 0. (7)

The class of Gaussian states, which is the focus of our
work, is defined as a set of states with a Gaussian Wigner
distribution given as [41]

W (ξ ) = exp[−(1/2)(ξ − ξ̂ )T V −1(ξ − ξ̂ )]

(2π )n
√

detV
, (8)
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where V is the covariance matrix and ξ̂ denotes the displace-
ment of the Gaussian state.

As an example, the covariance matrix of single-mode vac-
uum state ρ̂ = |0〉〈0| is written as

V|0〉 = 1

2

(〈{�q,�q}〉 〈{�q,�p}〉
〈{�p,�q}〉 〈{�p,�p}〉

)
= 1

2

(
1 0
0 1

)
. (9)

Similarly, for a single-mode thermal state,

ρ̂ =
∞∑

n=0

〈n〉n

(1 + 〈n〉)n+1
|n〉〈n|, (10)

where 〈n〉 = 1/[exp(ω/kBT ) − 1] is the average number
of photons in the thermal state, the covariance matrix is
given by

Vth = 1

2

(
2〈n〉 + 1 0

0 2〈n〉 + 1

)
. (11)

We note that the vacuum state and the thermal state are promi-
nent examples of Gaussian states.

Symplectic transformation

The linear homogeneous transformations described by real
2n × 2n matrices S act on the quadrature operators as ξ̂i →
ξ̂ ′

i = Si j ξ̂ j . These matrices S form a noncompact group called
the symplectic group Sp(2n, R) in 2n dimensions if they sat-
isfy the following condition in order to preserve the canonical
commutation relation Eq. (2):

Sp(2n, R) = {S | S�ST = �}. (12)

The symplectic transformation S acts on the Hilbert space
of the system via its infinite dimensional unitary representa-
tion U (S), also known as a metaplectic representation. The
elements of this metaplectic representation are generated by
quadratic Hamiltonians. Under a symplectic transformation
S, the density operator, mean, and covariance matrix for any
quantum state transform as

ρ → U (S)ρ U (S)† ⇒ ξ̂ → Sξ̂ , V → SV ST . (13)

In this paper we will be focusing on single-mode Gaussian
states with a diagonal covariance matrix with displacement

vector ξ̂ and covariance matrix V given by

ξ̂ =
(

q0

p0

)
, V =

(
(�q)2 0

0 (�p)2

)
, (14)

where q0 = 〈q̂〉, p0 = 〈p̂〉, (�q)2 = 〈q̂2〉 − (〈q̂〉)2, and
(�p)2 = 〈p̂2〉 − (〈p̂〉)2. The corresponding Gaussian Wigner
distribution as per Eq. (8) is given as

W (q, p) = 1

2π�q�p
exp

[
− (q − q0)2

2(�q)2
− (p − p0)2

2(�p)2

]
.

(15)

For analysis purposes in the later sections, we shall use
the explicit form of the covariance matrix for a squeezed
coherent thermal state corresponding to temperature T of a
single-mode system with frequency ω, which is

given by

V = S(r)VthS(r)T = 1

2

(
(2〈n〉 + 1)e−2r 0

0 (2〈n〉 + 1)e2r

)
,

(16)

where S(r) is the single-mode squeezing transformation given
by

S(r) =
(

e−r 0
0 er

)
. (17)

This is the family of states that we will estimate using different
techniques in this paper.

B. Measurement schemes

In this section, various measurement schemes for state esti-
mation which we intend to compare are described. A Gaussian
model for measurements is assumed where any measured
quantity when repeatedly measured is fitted to a Gaussian
in the sense that we infer the mean and variance from the
distribution. The variance of the probability distribution signi-
fies the accuracy of the corresponding measurement scheme.
While the analysis in the following sections neglects interac-
tions with the environment and considers perfect detectors,
interactions with the environment and imperfect detectors
have been considered in Sec. III D.

1. Homodyne measurement

In homodyne measurement, we perform the measurement
of either the quadrature q̂ or the quadrature p̂ on the system
[7–10]. The probability distribution function P(q) of obtain-
ing the outcome q corresponding to the measurement of the q̂
quadrature on the state given in Eq. (14) can be evaluated as

P(q) =
∫

W (q, p) d p = 1√
2π (�q)2

exp

[
− (q − q0)2

2(�q)2

]
.

(18)
Therefore, the corresponding variance for the q̂ quadrature
measurement is

V Hom(q̂) = (�q)2. (19)

This variance is for an infinite ensemble limit. If we have to
estimate the p̂ quadrature, we need to use a distinct ensemble
that is prepared in the same way and that has not undergone
the q̂ quadrature measurement. The probability distribution
function P(p) of obtaining the outcome p corresponding to
the measurement of the p̂ quadrature on the state (14) can be
evaluated as

P(p) =
∫

W (q, p) dq = 1√
2π (�p)2

exp

[
− (p − p0)2

2(�p)2

]
.

(20)
Therefore, the corresponding variance for the p̂ quadrature
measurement is

V Hom( p̂) = (�p)2. (21)

2. Heterodyne measurement

In heterodyne measurement, we jointly measure the q̂
quadrature and the p̂ quadrature on the system [17–28]. Since
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the heterodyne measurement corresponds to the projection
onto coherent state basis Eα = (2π )−1|α〉〈α|, the probability
of obtaining the outcomes q and p on the joint measurement
of the q and p quadratures on a system with density operator
ρ can be written as

P(q, p) = 1

2π
Tr[ρ̂|α〉〈α|]. (22)

For simplicity, we move to the phase space and evaluate the
trace in the Wigner function description as follows:

P(q, p) =
∫
R2

dq d pWρ̂ (q, p)W|α〉(q, p). (23)

The probability distribution function can then be calculated
and is given by

P(q, p) =
exp

[ − (q−q0 )2

1+2(�q)2 − (p−p0 )2

1+2(�p)2

]
π
√

[1 + 2(�q)2][1 + 2(�p)2]
. (24)

Therefore, the corresponding variance of the marginals P(q)
and P(p) of the probability distribution P(q, p) is

V Het(q̂) = 1
2 + (�q)2 and V Het( p̂) = 1

2 + (�p)2. (25)

We note that the vacuum noise (equal to 1/2) is added to the
variance of both marginals P(q) and P(p) of the probability
distribution P(q, p).

3. Sequential measurement scheme

In the sequential measurement scheme, the measurement
of one quadrature is followed by the measurement of its con-
jugate quadrature [13–15]. To carry out the first measurement,
we use the von Neumann measurement model, where we
couple the system with a meter. The state of the system is
inferred through the readings of the meter. The second mea-
surement, i.e., the measurement of the conjugate observable,
is a homodyne measurement. To remove the biasedness in the
order of the measurements, we divide the ensemble in two
halves [15]. On the first half, we measure the Q̂ quadrature
of the meter weakly, which renders information about the q̂
quadrature of the system. This weak measurement disturbs the
state a little and does not lead to the complete collapse of the
wave function, and therefore, the state can be reused for mea-
surement. This is followed by a homodyne measurement of
the p̂ quadrature on the system, as shown in Fig. 1. Similarly,
on the second half, the weak measurement of Q̂ quadrature
of the meter renders information about the p̂ quadrature of the
system, which is followed by a homodyne measurement of the
q̂ quadrature of the system. We now describe the scheme in
detail. While the system is represented by the quadrature oper-
ators q̂ and p̂, we consider the apparatus also to be a one-mode
CV system representing a meter with quadrature operators Q̂1

and P̂1. The corresponding phase space is four-dimensional
and can be represented by four variables, which can be ar-
ranged in a column vector form as ξ = (q, p, Q1, P1)T . We
assume that the system is in a squeezed coherent thermal state
and the meter is in a squeezed vacuum state, and thus they
satisfy the following uncertainty relations:

�q�p � 1/2, �Q1�P1 = 1/2. (26)

FIG. 1. Schematic representation of the sequential measurement
scheme. The whole ensemble is divided in two halves. On the first
half, the sequential measurement of the Q̂ quadrature of the meter,
which renders information about the q̂ quadrature of the system, is
followed by a homodyne measurement of the p̂ quadrature of the
system. Similarly, on the second half, the sequential measurement of
the Q̂ quadrature of the meter, which renders information about the
p̂ quadrature of the system, is followed by a homodyne measurement
of the q̂ quadrature of the system.

Since the system and the meter are in Gaussian states,
the system-meter state can be specified by the following
displacement vector and covariance matrix:

ξ̂ =

⎛
⎜⎜⎝

〈q̂〉 = q0

〈p̂〉 = p0

〈Q̂1〉 = 0
〈P̂1〉 = 0

⎞
⎟⎟⎠,

V =

⎛
⎜⎜⎝

(�q)2 0 0 0
0 (�p)2 0 0
0 0 (�Q1)2 0
0 0 0 (�P1)2

⎞
⎟⎟⎠. (27)

Now we consider the interaction Hamiltonian of the form

Ĥ (t ) = δ(t − t1)q̂P̂1, (28)

which entangles the system and the meter. The unitary opera-
tor acting on the joint system-meter Hilbert space for t > t1 is
given by

U (Ĥ (t )) = e−i
∫

Ĥ (t ) dt = e−iq̂P̂1 . (29)

The corresponding symplectic transformation acting on the
quadrature operators ξ̂ = (q̂, p̂, Q̂1, P̂1)T is given by (see
Appendix A)

S =

⎛
⎜⎝

1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1

⎞
⎟⎠. (30)

The above symplectic transformation is an element of the
real symplectic group Sp(4, R) and satisfies the symplectic
condition (12). As a result of the above transformation, the
final displacement vector and covariance matrix V (27) can be
written as follows according to Eq. (13):

ξ̂ ′ =

⎛
⎜⎜⎝

〈q̂〉 = q0

〈p̂〉 = p0

〈Q̂1〉 = q0

〈P̂1〉 = 0

⎞
⎟⎟⎠ (31)
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and

V ′ =

⎛
⎜⎝

(�q)2 0 (�q)2 0
0 (�p)2 + (�P1)2 0 −(�P1)2

(�q)2 0 (�q)2 + (�Q1)2 0
0 −(�P1)2 0 (�P1)2

⎞
⎟⎠.

(32)

One can easily find the transformed Wigner distribution of
the system meter using Eq. (8), which is specified by the
displacement vector (31) and the covariance matrix (32). The
Wigner distribution of the reduced state of the meter can be
evaluated by integrating the system-meter Wigner distribution
over the system variables q and p. The displacement vector
and the covariance matrix of the reduced state can be readily
evaluated using the Wigner function of the reduced state. An
alternative to this approach is to work at the covariance matrix
level. The displacement vector and the covariance matrix of
the reduced state of the meter can be obtained by ignor-
ing the matrix elements corresponding to the system mode.
This can be easily seen through the Wigner characteristic
function of a Gaussian state [46,48]. Thus, the displacement
vector and the covariance matrix of the reduced state of the
meter are

ξ̂ ′
M =

(〈Q̂1〉 = q0

〈P̂1〉 = 0

)
, V ′

M =
(

(�q)2 + (�Q1)2 0
0 (�P1)2

)
.

(33)
The corresponding Wigner function for the reduced state of
the meter can be written using Eq. (8) as

W (Q1, P1) = 1

2π�P1

√
(�q)2 + (�Q1)2

× exp

[
− (Q1 − q0)2

2((�q)2 + (�Q1)2)
− P2

1

2(�P1)2

]
.

(34)

The probability density to obtain the outcome Q1 after a
measurement of the Q̂1 quadrature on the meter is

P(Q1) = 1√
2π [(�q)2 + (�Q1)2]

× exp

{
− (Q1 − q0)2

2[(�q)2 + (�Q1)2]

}
. (35)

Clearly the variance of the probability distribution is

V SM
1 (q̂) = (�q)2 + (�Q1)2, (36)

which we could have directly written from Eq. (32) as the
element corresponding to the variance of Q1. Similarly, the
displacement vector and the covariance matrix of the reduced
state of the system are given by

ξ ′
S =

(〈Q̂1〉 = q0

〈P̂1〉 = p0

)
, V ′

S =
(

(�q)2 0
0 (�p)2 + (�P1)2

)
.

(37)
According to Eq. (36), more precise information about the
q̂ quadrature of the system can be obtained by decreasing
the value of �Q1, which leads to an increment in �P1.
Consequently, the reduced state of the system (37) gets more
disturbed. Hence the sequential measurement scheme enables
us to study the interplay between the quality of estimation of
the quadratures via homodyne (phase-sensitive) measurement

and the disturbance in the reduced state of the system. The
trade-off between the quality of estimation of coherent state
via phase-insensitive measurements and the disturbance
in the postmeasurement state has been studied in
Refs. [42,43].

The variance of the probability distribution corresponding
to the homodyne measurement of the p̂ quadrature on the
reduced state of the system (37) is given by

V SM
1 ( p̂) = (�p)2 + (�P1)2. (38)

We now discuss the weak measurement of the p̂ quadrature
followed by a homodyne measurement of the q̂ quadrature.
We again consider the initial state of the joint system-meter
state being represented by the displacement vector and the
covariance matrix as given in Eq. (27). We consider the in-
teraction Hamiltonian of the form

Ĥ (t ) = δ(t − t1) p̂Q̂1, (39)

which is the generator of the following symplectic
transformation:

S =

⎛
⎜⎝

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎠. (40)

The above symplectic transformation is also an element of
the real symplectic group Sp(4, R) and satisfies the sym-
plectic condition (12). The final system-meter state after
the action of the above symplectic transformation can be
specified by the following displacement vector and covariance
matrix:

ξ̂ ′ =

⎛
⎜⎜⎝

〈q̂〉 = q0

〈p̂〉 = p0

〈Q̂1〉 = p0

〈P̂1〉 = 0

⎞
⎟⎟⎠ (41)

and

V ′ =

⎛
⎜⎝

(�q)2 + (�P1)2 0 0 (�P1)2

0 (�p)2 (�p)2 0
0 (�p)2 (�p)2 + (�Q1)2 0

(�P1)2 0 0 (�P1)2

⎞
⎟⎠.

(42)

The displacement vector (41) shows that the mean of the
Q̂1 quadrature for the meter is p0. Thus, the measurement of
the Q̂1 quadrature of the meter yields information about the p̂
quadrature of the system. We can directly write the variance
of the probability distributions corresponding to the sequential
measurement of the Q̂1 quadrature of the meter followed by a
homodyne measurement of the q̂ quadrature from Eq. (41) as

V SM
2 ( p̂) = (�q)2 + (�P1)2 and

V SM
2 (q̂) = (�p)2 + (�Q1)2. (43)

4. The Arthurs-Kelly measurement scheme

Arthurs-Kelly proposed a scheme by extending the von
Neumann model, which enables us to simultaneously mea-
sure conjugate quadratures q̂ and p̂ [16]. To this end, two
meters, one for each quadrature measurement, are introduced,
as shown in Fig. 2. We represent the system and two meters
using three pairs of Hermitian quadrature operators arranged

042419-5



CHANDAN KUMAR AND ARVIND PHYSICAL REVIEW A 105, 042419 (2022)

FIG. 2. Schematic representation of the Arthurs-Kelly measure-
ment scheme. The system is labeled by S, and the two meters are
labeled by M1 and M2. H represents the interaction Hamiltonian.
Measurement of the Q̂1 quadrature on meter M1 and measurement
of the P̂2 quadrature on meter M2 yield information about the q̂
quadrature and the p̂ quadrature of the system, respectively.

in a column vector as ξ̂ = (q̂, p̂, Q̂1, P̂1, Q̂2, P̂2)T , where
(q̂, p̂) corresponds to the system, and (Q̂1, P̂1) and (Q̂2, P̂2)
correspond to the two meters. We assume the system to be
in a squeezed coherent thermal state and the meters to be in
a squeezed vacuum state, and thus they satisfy the following
uncertainty relations:

�q�p � 1/2, �Q1�P1 = 1/2, �Q2�P2 = 1/2. (44)

We analyze our joint system in a six-dimensional phase space
represented by six variables, which can be arranged in a col-
umn vector form as ξ = (q, p, Q1, P1, Q2, P2)T . We represent

the system-meters state by the displacement vector ξ̂ and
covariance matrix V as

(45)

The interaction Hamiltonian through which we intend to mea-
sure both system quadratures by coupling them to different
meters is considered to be of the form

H = δ(t − t1)(q̂P̂1 − p̂Q̂2), (46)

which entangles the system with both meters. The corre-
sponding symplectic transformation acting on the quadrature
operators ξ̂ is given by

(47)

The above symplectic transformation is an element of the
real symplectic group Sp(6, R) and satisfies the symplectic
condition (12). The displacement vector and the covariance
matrix of the transformed joint system-meters state is ex-
plicitly written in Eqs. (B1) and (B2) of Appendix B. The
displacement vector and the covariance matrix of the reduced
state of the system can be readily written using Eqs. (B1) and
(B2) as

ξ ′
S =

(〈Q̂1〉 = q0

〈P̂1〉 = p0

)
,

V ′
S =

(
(�q)2 + (�Q2)2 0

0 (�p)2 + (�P1)2

)
. (48)

Similarly, the displacement vector and the covariance matrix
of meter 1 can be written as

ξ ′
M1

=
(〈Q̂1〉 = q0

〈P̂1〉 = 0

)
,

V ′
M1

=
(

(�q)2 + (�Q1)2 + (�Q2 )2

4 0
0 (�P1)2

)
. (49)

Finally, meter 2 is represented by the following displacement
vector and covariance matrix:

ξ ′
M2

=
( 〈Q̂1〉 = 0

〈P̂1〉 = p0

)
,

V ′
M2

=
(

(�Q2)2 0
0 (�p)2 + (�P1 )2

4 + (�P2)2

)
. (50)

The variance of the probability distribution for the measure-
ment of the Q̂1 quadrature on meter 1 and P̂2 quadrature on
meter 2 can be directly written from Eq. (B2) as

V AK(q̂) = (�q)2 + (�Q1)2 + (�Q2)2

4
,

V AK( p̂) = (�p)2 + (�P1)2

4
+ (�P2)2. (51)

III. RESULTS

In this section we turn to the examination of the perfor-
mance of measurement schemes described in Sec. II in the
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estimation of the Wigner distribution of an ensemble with a
fixed number N of identically prepared Gaussian states. To
this end, we define a distance measure d1 for the accuracy
estimation of the mean of the Gaussian state as

d1 = 〈(qA − qM )2〉 + 〈(pA − pM )2〉, (52)

where qA and pA are the actual values of the mean of the q̂
and p̂ quadratures of the Gaussian state and are thus fixed,
whereas qM and pM are the measured values of the q̂ and
p̂ quadratures of the Gaussian state. While qA and pA are
the same for each copy of the ensemble, the values qM and
pM obtained by measuring different copies of the ensemble
can be different. The magnitude of the distance measure d1

signifies how well the mean (q0, p0) of the Gaussian state has
been estimated. We define another distance measure d2 for the
accuracy estimation of the variance of the Gaussian state as

d2 = 〈(
V A

q − V M
q

)2〉 + 〈(V A
p − V M

p

)2〉
, (53)

where V A
q and V A

p are the actual values of the variance of q̂
and p̂ quadratures, while V M

q and V M
p are the measured values

of the variance of q̂ and p̂ quadratures. Here d2 signifies how
well the variance (�q)2 and (�p)2 has been estimated. In the
case of perfect estimation, both distance measures d1 and d2

should approach zero.

A. Analytical expressions of distance measure d1

Now we evaluate the distance measure d1 for various mea-
surement schemes, which are employed for the estimation of
Gaussian states.

1. Homodyne measurement

To estimate the state using the homodyne measurement,
we divide the ensemble in two halves. On the first half of
the ensemble, the q̂ quadrature is measured, while on the
other half of the ensemble, the p̂ quadrature is measured.
Thus, we can write the distance measure d1 for the homodyne
measurement using Eqs. (19) and (21) as

dHom
1 = (�q)2

N/2
+ (�p)2

N/2
. (54)

Here we have used the fact that the probability distribution
involved in the homodyne measurement is Gaussian, and the
sample variance for a Gaussian (normal) distribution N (μ, σ )
with mean μ and variance σ 2 for a sample of size N is given
by σ 2/N .

2. Heterodyne measurement

The distance measure d1 for the heterodyne measurement
can be calculated using Eq. (25) and is given as

dHet
1 = (�q)2 + 1/2

N
+ (�p)2 + 1/2

N
. (55)

We can show analytically from Eqs. (54) and (55) that dHom
1 �

dHet
1 , where the equality sign holds only for a coherent state

ensemble. Therefore, the homodyne measurement and the het-
erodyne measurement perform the same for a coherent state
ensemble, whereas the heterodyne measurement outperforms

the homodyne measurement for a squeezed state ensemble as
far as the mean estimation is concerned.

3. Sequential measurement scheme

For the sequential measurement scheme, we again divide
the ensemble in two halves and perform the measurement
according to the procedure described in Sec. II B 3. In this case
the expression of the distance measure d1 turns out to be

dSM
1 =

〈(
qA − qM

1 + qM
2

2

)2
〉

+
〈(

pA − pM
1 + pM

2

2

)2
〉
,

(56)
which can be rewritten as follows using Eqs. (36), (38), and
(43):

dSM
1 = (�q)2 + (�p)2 + (�Q1)2 + (�P1)2

N
. (57)

It can be seen from the above equation that the optimal perfor-
mance in the mean estimation for the sequential measurement
scheme corresponds to �Q1 = �P1 = 1/

√
2. Further, at the

optimal conditions, dSM
1 = dHet

1 .

4. Arthurs-Kelly measurement scheme

For the Arthurs-Kelly measurement scheme, we write the
expression of distance measure d1 using Eq. (51) as

dAK
1 = (�q)2 + (�Q1)2 + (�Q2 )2

4

N

+ (�p)2 + (�P1 )2

4 + (�P2)2

N
. (58)

For the Arthurs-Kelly measurement scheme, the optimal per-
formance in the mean estimation corresponds to

�Q1 = 1/2, �P2 = 1/2, (59)

and at the optimal conditions, dAK
1 = dHet

1 . This means that the
optimal performance in the mean estimation of the sequential
measurement requires only classical resources, i.e., the meter
should be prepared in a coherent state, while the Arthurs-Kelly
measurement scheme requires nonclassical resources, i.e., the
meters should be prepared in a squeezed state.

Now we illustrate the dependence of the distance measure
d1 on the initial width of the meter �Q1, the squeezing pa-
rameter r, and the average number of photons 〈n〉 graphically.
We have considered an ensemble of size N = 20 in the var-
ious figures in this article. We show the plot of the distance
measure d1 as a function of the initial width of the meter �Q1

for a coherent state ensemble in Fig. 3(a). The results show
that the homodyne measurement and the heterodyne measure-
ment perform the same, and the optimal performance of the
Arthurs-Kelly and sequential measurement schemes are equal
to that of the homodyne measurement and the heterodyne
measurement. Similarly, Fig. 3(b) shows the plot of distance
measure d1 as a function of the initial width of the meter
�Q1 for a squeezed coherent state ensemble with squeezing
parameter r = 1. In this case, the heterodyne measurement
outperforms the homodyne measurement. Further, an increase
or a decrease in the size of the ensemble changes only the
magnitude of the distance measure, while the performance
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FIG. 3. Both panels show the distance measure d1 as a func-
tion of the initial width of the meter �Q1 for an ensemble of size
N = 20. Additionally, we have taken �P2 = 1/2 in all the graphs for
the Arthurs-Kelly measurement scheme, which is the condition for
the optimal performance (59). (a) The ensemble consists of iden-
tically prepared coherent states. The homodyne measurement and
the heterodyne measurement perform equally in this case. (b) The
ensemble consists of identically prepared squeezed coherent states
with squeezing parameter r = 1.

trend of the various measurement schemes remains the same.
It should be noted that these conclusions about the relative
performances of the various measurement schemes are based
on the mean estimation efficacy. We plot the distance measure
d1 as a function of the squeezing parameter r in Fig. 4(a). The
results show that both the homodyne measurement and the
heterodyne measurement estimate the mean of the Gaussian
state with the same distance measure for a coherent state
ensemble (r = 0), while for a squeezed coherent state en-
semble (r > 0), the heterodyne measurement outperforms the
homodyne measurement. The plot of the distance measure d1

as a function of the average number of photons 〈n〉 is shown
in Fig. 4(b). The results show that the distance measure of
the mean estimation increases, i.e., the estimation efficiency
decreases, for a thermal state (〈n〉 > 0) ensemble as compared
to a pure state (〈n〉 = 0) ensemble.

B. Analytical expressions of distance measure d2

We now proceed to derive expressions of distance measure
d2 (53) for all the measurement schemes.

FIG. 4. (a) The distance measure d1 as a function of the squeez-
ing parameter r. The average number of photons is 〈n〉 = 0. (b) The
distance measure d1 as a function of the average number of photons
〈n〉. The squeezing parameter has been taken as r = 1. An ensemble
of size N = 20 has been considered for both panels.

1. Homodyne measurement

For the homodyne measurement, the expression of the dis-
tance measure d2 evaluates to

dHom
2 = 2(�q)4

N/2
+ 2(�p)4

N/2
. (60)

Here we have used the fact that the variance of the sample
variance for a Gaussian (normal) distribution N (μ, σ ) with
mean μ and variance σ 2 for a sample of size N is given by
2σ 4/N .

2. Heterodyne measurement

The expression of the distance measure d2 for the hetero-
dyne measurement evaluates to

dHet
2 = 2[(�q)2 + 1/2]2

N
+ 2[(�p)2 + 1/2]2

N
. (61)

The expansion of dHet
2 provides additional terms besides

(�q)4 and (�p)4, which renders dHet
2 larger than dHom

2 .
The distance measures d2 for these two measurements cross
over each other at a certain threshold squeezing, below
which homodyne measurement performs better than hetero-
dyne measurement. The explicit expression for the threshold
squeezing is provided in Eq. (64), and the crossover is illus-
trated in Fig. 6 below.
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FIG. 5. Both panels show the distance measure d2 as a function
of the initial width of the meter �Q1 for an ensemble of size N =
20. (a) The ensemble consists of identically prepared coherent states.
(b) The ensemble consists of identically prepared squeezed coherent
states with squeezing parameter r = 1.

This behavior is in stark contrast with the behavior of
distance measure d1 for homodyne and heterodyne measure-
ments, which can be explained as follows. As we can see from
Eq. (25), heterodyne measurement results in the addition of
vacuum noise to the variances of q̂ and p̂ quadratures. We note
that d1 and d2 are proportional to the variance and variance
squared of the corresponding measurement probability dis-
tribution. This dependence on variance and variance squared
coupled with the fact that the heterodyne measurement results
in the addition of noise to the variance leads to the contrasting
behavior.

3. Sequential measurement scheme

For the sequential measurement scheme, the expression of
the distance measure d2 can be written in an analogous way as
Eq. (56). The final expression of the distance measure in this
case evaluates to

dSM
2 = 2

N
{(�p)4 + (�q)2[(�Q1)2 + (�q)2]2

+ (�P1)2[(�q)2 + (�p)2 + (�P1)2]2

+ (�Q1)2[(�Q1)2 + (�p)2]2}. (62)

FIG. 6. (a) The distance measure d2 as a function of the squeez-
ing parameter r. The average number of photons has been set as
〈n〉 = 0. (b) The distance measure d2 as a function of the average
number of photons 〈n〉. The squeezing parameter has been taken as
r = 1. An ensemble of size N = 20 has been considered for both
panels.

4. Arthurs-Kelly measurement scheme

Similarly, the distance measure d2 for the Arthurs-Kelly
measurement scheme can be calculated and turns out to be

dAK
2 = 2

[
(�q)2 + (�Q1)2 + (�Q2 )2

4

]2

N

+ 2
[
(�p)2 + (�P1 )2

4 + (�P2)2
]2

N
. (63)

We note here that the distance measures d1 and d2 for different
measurement schemes are independent of the actual values of
the mean q0 and p0 of the Gaussian states and depend only on
the actual variances (�q)2 and (�p)2 of the quadratures. Now
we turn to study the dependence of distance measure d2 on the
initial width of the meter �Q1, the squeezing parameter r, and
the average number of photons 〈n〉 as we did for d1.

We show the plot of the distance measure d2 as a function
of the initial width of the meter �Q1 for a coherent state
ensemble in Fig. 5(a). The results show that the homodyne
measurement outperforms the heterodyne measurement in
estimating the variance for a coherent state ensemble. We
also notice that the optimal performance of the Arthurs-Kelly
and sequential measurement schemes equals the heterodyne
measurement. We note that the optimal performance of the
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Arthurs-Kelly measurement scheme occurs at �Q1 = �P2 =
1/2, while the optimal performance of the sequential measure-
ment scheme occurs at �Q1 = 1/

√
2.

Similarly, Fig. 5(b) shows the plot of the distance measure
d2 as a function of the initial width of the meter �Q1 for a
squeezed coherent state ensemble with squeezing parameter
r = 1. The results show that the heterodyne measurement
outperforms the homodyne measurement in estimating the
variance of a squeezed state ensemble with squeezing pa-
rameter r = 1. Here, too, the optimal performance of the
Arthurs-Kelly measurement scheme and the sequential mea-
surement equal the heterodyne measurement. We plot the
distance measure d2 as a function of the squeezing parameter
r in Fig. 6(a) for 〈n〉 = 0. The results show that the homodyne
measurement outperforms the heterodyne measurement up to
a certain value of the squeezing parameter rc = 0.53. This
result is in contrast with the distance measure d1 result, where
the heterodyne measurement outperforms the homodyne mea-
surement for all nonzero squeezing parameters. The critical
value of the squeezing parameter rc at a given 〈n〉, where the
relative performance of the homodyne measurement is equal
to the heterodyne measurement can be written as

e2rc =
1 +

√
3 + 2n2

1 +
√

2
(
2 − n2

1 +
√

3 + 2n2
1

)
2n1

, (64)

where n1 = 2〈n〉 + 1. Further, the plot of the distance measure
d2 as a function of the average number of photons 〈n〉 is shown
in Fig. 6(b). The results reveal that the variance estimation for
a thermal state ensemble is less precise as compared to a pure
state ensemble.

C. Average estimation efficiency

It is important to know how different schemes perform
on the average. To achieve this we compare the relative per-
formances of the measurement schemes under consideration
on a large number of randomly generated squeezed coherent
thermal states with squeezing parameter r varying uniformly
between −1 and +1. Such an ensemble can be produced by
a parametric down converter operating at a fixed temperature,
which generates states with squeezing parameter r uniformly
distributed between −1 and +1. We note that the squeezing
parameter range −1 to +1 can be easily achieved in experi-
ments. For evaluating the average distance measures d1 and
d2, we consider the state of the system to be parameterized by
the squeezing parameter r and the average number of photons
〈n〉 as given in Eq. (16).

1. Calculation of mean distance measure d1

The mean distance measure d1 for the homodyne measure-
ment is calculated as

d1
Hom = 1

2

∫ +1

−1
dHom

1 (r, 〈n〉)dr,= n1 sinh(2)

N
, (65)

where n1 = 2〈n〉 + 1. Similarly, the final expressions of the
average distance measure d1 for the other measurement

FIG. 7. Both panels show the mean distance measure d1 as a
function of the initial width of the meter �Q1 for an ensemble of
size N = 20. (a) The averaging is done over the identically prepared
pure squeezed coherent state (〈n〉 = 0), whose squeezing parameter
r is uniformly distributed between −1 and +1. (b) The averaging is
done over an identically prepared squeezed coherent thermal state
with 〈n〉 = 1, whose squeezing parameter r is uniformly distributed
between −1 and +1.

schemes are

d1
Het = 2 + n1 sinh(2)

2N
,

d
SM
1 = 2[(�Q1)2 + (�P1)2] + n1 sinh(2)

2N
,

d1
AK = 1

4N
{(�Q2)2 + (�P1)2 + 4[(�Q1)2 + (�P2)2]

+ 2n1 sinh(2)}. (66)

The results for the mean distance measure d1 for various
measurement schemes are shown in Fig. 7. We see from
Fig. 7(a) that the heterodyne measurement outperforms the
homodyne measurement, and the optimal performance of the
Arthurs-Kelly and sequential measurement schemes equals
the heterodyne measurement. Figure 7(b) shows that the per-
formance trend for the thermal state ensembles is similar to
the pure state ensembles except that the distance measure
of the mean d1 is reduced for the thermal state ensemble as
compared to the pure state ensemble.
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FIG. 8. Both panels show the mean distance measure d2 as a
function of the initial width of the meter �Q1 for an ensemble of
size N = 20. (a) The averaging is done over an identically prepared
pure squeezed coherent state (〈n〉 = 0), whose squeezing parameter
r is uniformly distributed between −1 and +1. (b) The averaging is
done over an identically prepared squeezed coherent thermal state
with 〈n〉 = 1, whose squeezing parameter r is uniformly distributed
between −1 and +1.

2. Calculation of mean distance measure d2

We now calculate the expressions of the mean distance
measure d2 averaged over different squeezed coherent ther-
mal state ensembles with squeezing parameter r uniformly
distributed between −1 and +1 for different measure-
ment schemes. The mean distance measure d2 for the
homodyne measurement and the heterodyne measurement
evaluate to

d2
Hom = n2

1 sinh(4)

2N
,

d2
Het = 4 + 4n1 sinh(2) + n2

1 sinh(4)

4N
. (67)

Similarly, the expressions of the mean distance measure d2 for
the sequential and the Arthurs-Kelly measurement schemes
evaluate to

d2
SM = 1

4N

{
4[(�Q1)2 + (�P1)2][2 + n1 sinh(2)]

+ n2
1 sinh(4)

}
,

TABLE I. Homodyne measurement versus heterodyne measure-
ment. d1 and d2 represent the accuracy of the mean and the variance
estimation, respectively.

Ensemble Distance measure Relative performance

Coherent state (r = 0) dHom
1 = dHet

1 Hom = Het

Squeezed state (r > 0) dHom
1 > dHet

1 Hom < Het

r < rc [Eq. (64)] dHom
2 < dHet

2 Hom > Het

r > rc dHom
2 > dHet

2 Hom < Het

−1 � r � +1 d1
Hom

> d1
Het

Hom < Het

−1 � r � +1 d2
Hom

> d2
Het

Hom < Het

d2
AK = 1

8N

{
[4(�Q1)2 + (�Q2)2 + 2n1 sinh(2)]

× [4(�Q1)2 + (�Q2)2] + [(�P1)2 + 4(�P2)2]

× [(�P1)2 + 4(�P2)2 + 2n1 sinh(2)] + 2n2
1 sinh(4)

}
.

(68)

The results for the mean distance measure d2 for various
measurement schemes are shown in Fig. 8. As can be seen
from Fig. 8(a), the heterodyne measurement outperforms the
homodyne measurement, and the optimal performance of the
Arthurs-Kelly and sequential measurement schemes equals
the heterodyne measurement. For the thermal state ensem-
bles, the performance trend remains the same; however, the
distance measure of the variance d2 is reduced for the thermal
state ensembles as compared to the pure state ensembles as
can be seen from Fig. 8(b).

We summarize the relative performances of the homodyne
measurement and the heterodyne measurement in Table I. We
further note that the optimal performance of the sequential
and the Arthurs-Kelly measurement schemes is equal to the
heterodyne measurement for both the mean and the variance
estimation.

D. Environmental interactions and imperfect detectors

In this subsection, we consider that the ensemble interacts
with a thermal bath. The associated interaction Hamiltonian is

ĤSB = g
∞∑

k=1

(âb̂†
k + â†b̂k ), (69)

where g is the coupling constant and b̂k represents the an-
nihilation operator of the kth mode of the bath interacting
with the system. The master equation for the evolution of
system density operator ρ under Markovian assumption can
be written as

∂

∂t
ρ = γ

2
(NB + 1)(2âρâ† − â†âρ − ρâ†â)

+ γ

2
NB(2â†ρâ − ââ†ρ − ρââ†), (70)

where γ is the decay constant and NB is the mean photon
number of the thermal bath. The evolution of the displacement

vector ξ̂ and covariance matrix V after an interaction for time
t with the thermal bath can be evaluated using the master
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FIG. 9. (a) The distance measure d1 as a function of the squeez-
ing parameter r. We have set τ = 0.1. (b) The distance measure d1

as a function of the dimensionless time parameter τ . We have set
r = 0.5. Other parameters have been set as 〈n〉 = 0, N = 20, NB = 4,
q0 = 1, p0 = 1, and η = 0.9 for both panels.

Eq. (70), which turns out to be [48]

ξ̂ ′(t ) = X (t )ξ̂ , V ′(t ) = X (t )V (0)X (t )T + 1
2Y (t ), (71)

where X (t ) and Y (t ) are given by

X (t ) = (1 − τ )1/4 12, Y (t ) =
(

1 + NB

2

)
(1 − √

1 − τ ) 12,

(72)
with τ = 1 − e−2γ t being a dimensionless time parameter.
Further, while t runs from 0 to ∞, τ runs from 0 to 1.

We also consider imperfect detectors with nonunit quan-
tum efficiency η. Such detectors (without dark counts) can
be modeled by a beam splitter of transmissivity η fol-
lowed by an ideal detector of unit quantum efficiency. The

displacement vector ξ̂ ′(t ) and the covariance matrix V ′(t )
further evolves to

ξ̂ ′′(t ) = √
η ξ̂ ′(t ), V ′′(t ) = ηV ′(t ) + 1

2 (1 − η)12. (73)

Since, at optimal performance, the Arthurs-Kelly and se-
quential measurement schemes yield the same results as
that of the heterodyne measurement, therefore we consider
only homodyne and heterodyne measurements in this
subsection.

We first analyze the distance measure d1 with respect to
the squeezing of the state and time τ . It should be noted that

FIG. 10. (a) The distance measure d2 as a function of the squeez-
ing parameter r. We have set τ = 0.1. (b) The distance measure d2

as a function of the dimensionless time parameter τ . We have set
r = 0.5. Other parameters have been set as 〈n〉 = 0, N = 20, NB = 4,
and η = 0.9 for both panels.

d1 also depends on the initial displacement ξ̂ = (q0, p0)T of
the state (14), which is in contrast with the results in the
earlier sections. As shown in Fig. 9(a), heterodyne measure-
ment outperforms homodyne measurement for all squeezing,
including r = 0, which is contrary to the estimation of pure
Gaussian states, where homodyne and heterodyne measure-
ments perform equally at r = 0. The plot for the distance
measure d1 as a function of τ is shown in Fig. 9(b). The results
reveal that the performance of both homodyne and heterodyne
measurements degrades as τ is increased. On comparing the
derivative of the distance measure d1 with τ for homodyne
and heterodyne measurements, we find that the heterodyne
measurement is more robust for all interaction times.

We now study the distance measure d2 with respect to the
squeezing r and time τ . As we can see from Fig. 10(a), ho-
modyne measurement outperforms heterodyne measurement
up to a certain squeezing threshold, which is similar to the
estimation of pure Gaussian states. Now we plot the distance
measure d2 with respect to τ in Fig. 10(b). It can be seen
that the performance of both measurements decreases as τ is
increased. Further, on comparing the derivative of the distance
measure d2 with τ for homodyne and heterodyne measure-
ments, we find that the homodyne measurement is more robust
up to a certain τ beyond which the heterodyne measurement
is more robust.
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IV. MODIFIED HAMILTONIAN IN THE ARTHURS-KELLY
MEASUREMENT SCHEME

The Arthurs-Kelly measurement scheme has two measur-
ing probes. What if these probes can influence each other and
are correlated [37]? To this end, we consider a modified form
of the interaction Hamiltonian [37,38] in the Arthurs-Kelly
measurement scheme

H = δ(t − t1)

(
q̂P̂1 − p̂Q̂2 + κ

2
P̂1Q̂2

)
, (74)

where κ determine the coupling strength between the two
probes. This Hamiltonian entangles the system with both
meters as well as the two meters between themselves.
The corresponding symplectic transformation acting on the

quadrature operators is

(75)

The covariance matrix and the displacement vector corre-
sponding to system-meters state after time t1 can be evaluated
using Eq. (13). The covariance matrix of the reduced state of
the two meters is given by

V RED
M1M2

=

⎛
⎜⎜⎝

VM1 (Q1) 0 (κ−1)
2 (�Q2)2 0

0 (�P1)2 0 − (κ+1)
2 (�P1)2

(κ−1)
2 (�Q2)2 0 (�Q2)2 0

0 − (κ+1)
2 (�P1)2 0 VM2 (P2)

⎞
⎟⎟⎠, (76)

where

VM1 (Q1) = (�q)2 + (�Q1)2 + (κ − 1)2

4
(�Q2)2,

VM2 (P2) = (�p)2 + (κ + 1)2

4
(�P1)2 + (�P2)2. (77)

We find, using Simon’s entanglement criteria [49], that the
reduced state of the two meters is entangled for |κ| � 1. The
variance of the probability distribution for the measurement
of the q̂ quadrature on meter 1 and the p̂ quadrature on meter
2 can be written as the variance corresponding to Q̂1 and P̂2 in
the covariance matrix for the reduced state of the meters (76):

V COR(q̂) = (�q)2 + (�Q1)2 + (κ − 1)2

4
(�Q2)2,

V COR( p̂) = (�p)2 + (κ + 1)2

4
(�P1)2 + (�P2)2. (78)

Thus, the distance measure d1 for the modified Arthurs-Kelly
measurement scheme reads

dCOR
1 = V COR(q̂)

N
+ V COR( p̂)

N
. (79)

We optimize the distance measure dCOR
1 with respect to the

parameters �Q1 and �P2. The optimal value of the distance
measure dCOR

1 evaluates to

dCOR
1 OPT =

{
1+(�q)2+(�p)2

N |κ| � 1,

|κ|+(�q)2+(�p)2

N |κ| > 1.
(80)

We note that the optimal distance measure dCOR
1 OPT for |κ| � 1

equals the distance measure for the heterodyne measurement

dHet
1 (55).

The plot of the distance measure d1 as a function of the
coupling strength κ for a coherent state ensemble is shown in
Fig. 11(a). The results show that the estimation of the coherent
state ensemble using the modified Arthurs-Kelly measure-
ment scheme is best in the range |κ| � 1, which corresponds
to uncorrelated probes. The corresponding value of �Q1 and
�P2, which optimizes the distance measure dCOR

1 , turns out to
be

�Q1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1+κ

2 κ > 1,
√

1+κ

2 |κ| < 1,
√−1−κ

2 κ < −1,

�P2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√−1+κ

2 κ > 1,
√

1−κ

2 |κ| < 1,
√

1−κ

2 κ < −1.

(81)
We have also plotted �Q1 and �P2 as a function of the
coupling strength κ corresponding to the optimal perfor-
mance of the modified Arthurs-Kelly measurement scheme
in Fig. 11(b). For the coupling strength κ = 0, the modified
Arthurs-Kelly measurement scheme reduces to the original
Arthurs-Kelly measurement scheme. This can also be verified
from Fig. 11(b), where at κ = 0, �Q1 = �P1 = 1/2, which
is the same as Eq. (59).

Furthermore, the analysis for the distance mea-
sure d2 also shows that the estimation of the
coherent state ensemble using the modified Arthurs-
Kelly measurement scheme is best in the range
|κ| � 1.

V. DISCUSSION AND CONCLUSION

In this paper, we have explored the estimation of the
mean and the variance of an ensemble of a fixed number
of identically prepared Gaussian states by employing four
different measurement schemes with a view to compare their
efficiencies. Since we were dealing with Gaussian states and
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FIG. 11. (a) Optimal distance measure dCOR
1 OPT for the modified

Arthurs-Kelly measurement scheme, represented by the solid curve,
as a function of the coupling strength κ . The dashed curve represents
the distance measure for the heterodyne measurement dHet

1 . (b) �Q1

(dashed) and �P2 (dotted) for the optimal performance of the modi-
fied Arthurs-Kelly measurement scheme as a function of the coupling
strength κ . We have considered an ensemble of coherent states for
both panels.

quadratic Hamiltonians, the covariance matrix, phase space
formulation, and symplectic group techniques provided an
elegant and intuitive way to handle the analysis. Detailed
analysis of the distance measures revealed that the optimal
performance of the Arthurs-Kelly measurement scheme re-
quires nonclassical resources in the sense that the meters
should be initially prepared in a squeezed state; however, the
optimal performance of the sequential measurement scheme
requires only classical resources, i.e., the meter should be
initially prepared in a coherent state. Further, we showed that
the optimal performance of the Arthurs-Kelly and sequen-
tial measurement schemes equal heterodyne measurement for
both the mean and the variance estimation.

For mean estimation, the analysis revealed that the per-
formance of the homodyne measurement and the heterodyne
measurement is the same for a coherent state ensemble,
whereas, for a squeezed state ensemble, the heterodyne mea-
surement performs better than the homodyne measurement.
For variance estimation, the homodyne measurement outper-
forms the heterodyne measurement for a squeezed coherent
thermal state ensemble up to a certain squeezing parameter
range. The results show that the heterodyne measurement
always perform better than the homodyne measurement for
both the mean and the variance estimation on the average.

We considered the possibility of correlated probes for the
Arthurs-Kelly measurement scheme and showed that optimal
performance of the scheme can be obtained only when the
meters are uncorrelated.

We also investigated the effects of environmental interac-
tions and imperfect detectors. We observed that the precision
of the homodyne and heterodyne measurements decreases as
the interaction time increases. We also observed that the het-
erodyne measurement is more robust for the distance measure
d1 at all interaction times, while for distance measure d2,
the heterodyne measurement is more robust beyond a certain
interaction time.

Purification of noisy coherent state ensemble [50] have
been carried out by performing arithmetic averaging of vari-
ance [51]. In this scheme, N identical noisy coherent states
are combined using N − 1 beam splitters, and one of the
output signals corresponds to the purified coherent state [51].
It would be interesting to compare the efficacy of various
measurement schemes in the mean and variance estimation
of the purified state with the original ensemble. One can also
extend the analysis for Gaussian states squeezed in arbitrary
directions and non-Gaussian states, where we are required to
estimate higher order moments.
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APPENDIX A: CALCULATION OF THE SYMPLECTIC
TRANSFORMATION MATRIX FOR A GIVEN

HAMILTONIAN

We provide two different methods to evaluate the symplec-
tic transformation matrix for a given Hamiltonian.

1. Method I: Hilbert space and Baker-Campbell-Hausdorff
formula

Consider the Hamiltonian Ĥ (t ) = δ(t − t1)q̂P̂1 [Eq. (28)].
The corresponding infinite dimensional unitary operator for
t > t1 is given by

U (Ĥ (t )) = e−i
∫

Ĥ (t ) dt = e−iq̂P̂1 . (A1)

In the Heisenberg picture, the evolution of any operator Â can
be written as

Â
U (Ĥ (t ))−−−−→ U (Ĥ (t ))† ÂU (Ĥ (t )). (A2)

Thus, the transformation of various quadrature operators us-
ing the Baker-Campbell-Hausdorff (BCH) formula can be
evaluated as following:

eiq̂P̂1 q̂ e−iq̂P̂1 = q̂,

eiq̂P̂1 p̂ e−iq̂P̂1 = p̂ − P̂1,

eiq̂P̂1 Q̂1 e−iq̂P̂1 = q̂ + Q̂1,

eiq̂P̂1 P̂1 e−iq̂P̂1 = P̂1. (A3)
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Thus, the quadrature operators transform as⎛
⎜⎜⎝

q̂
p̂
Q̂
P̂1

⎞
⎟⎟⎠ U (Ĥ (t ))−−−−→

⎛
⎜⎝

1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
S

⎛
⎜⎜⎝

q̂
p̂
Q̂
P̂1

⎞
⎟⎟⎠, (A4)

where S is the symplectic transformation corresponding to the
Hamiltonian Ĥ (t ) = δ(t − t1)q̂P̂1. However, this method gets
a little complicated for the modified Arthurs-Kelly measure-
ment scheme, where the Hamiltonian is H = δ(t − t1)(q̂P̂1 −
p̂Q̂2 + κ

2 P̂1Q̂2). Alternatively, we can take another approach
where such complicated calculations can be performed easily.

2. Method II: Exponentiation of the generators of Sp(2n,R)

Let J be the generator of the symplectic group Sp(2n,R),
i.e., J is an element of the Lie algebra of Sp(2n,R) group. The
corresponding symplectic group element S can be obtained by
exponentiating J as follows:

S = exp(J ). (A5)

We can associate a quadratic function of quadrature operators
with every J , which is Hermitian, as follows:

H (J ) = 1
2 ξ̂T (�J )ξ̂ , (A6)

where ξ̂ is the column of quadrature operators and � is
the symplectic form. Since the generators of the symplectic
group and quadratic functions of the quadrature operators
are in one-to-one correspondence at Lie algebra level, we
can exponentiate H (J ) to obtain infinite-dimensional unitary
representation of S = exp(J ). Thus, in our case, we can first
determine the generator J from the given Hamiltonian and
evaluate the corresponding symplectic transformation by ex-
ponentiation. We illustrate this procedure for the Hamiltonian
Ĥ (t ) = δ(t − t1)q̂P̂1, whose corresponding infinite dimen-

sional unitary representation is e−iq̂P̂1 . We can write

−iq̂P̂1 = 1
2 ξ̂T (�J )ξ̂ , (A7)

where ξ̂ = (q̂, p̂, Q̂1, P̂1)T and

�J = −

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (A8)

Consequently, the generator J becomes

J =

⎛
⎜⎝

0 0 0 0
0 0 0 −1
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A9)

Thus, the symplectic matrix corresponding to the generator
J is

S = exp(J ) =

⎛
⎜⎝

1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1

⎞
⎟⎠, (A10)

which is the same as the symplectic transformation
matrix obtained using the BCH formula in the previous
section.

APPENDIX B: FINAL STATE IN ARTHURS-KELLY
MEASUREMENT SCHEME

The displacement vector and the covariance matrix of the
transformed joint system-meters state are given by

ξ̂ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈q̂〉 = q0

〈p̂〉 = p0

〈Q̂1〉 = q0

〈P̂1〉 = 0
〈Q̂2〉 = 0
〈P̂2〉 = p0

⎞
⎟⎟⎟⎟⎟⎟⎠ (B1)

and

(B2)
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